Problem 3.27

(a) $x(t)=\cos \left(-250 \pi t^{2}\right) \psi(t)=-250 \pi t^{2}$. To be able to find spectogram, compute the instantaneous frequency defined as, $f_{i}(t)=\frac{1}{2 \pi} \frac{d \psi(t)}{d t}$
For (a) the instantaneous frequency is 250 t Hz .
Hence, (a) corresponds to (2).
(b) $x(t)=\cos \left(100 \pi t-\frac{\pi}{4}\right)+\cos (400 \pi t)$

Here,
$\psi_{1}(t)=\left(100 \pi t-\frac{\pi}{4}\right)$ and $\psi_{2}(t)=(400 \pi t)$
The instantaneous frequencies are then,
$f_{1}(t)=50 \mathrm{~Hz}$ and $f_{2}(t)=200 \mathrm{~Hz}$
Hence, (b) corresponds to (5).
(c) $x(t)=\cos (100 \pi t) \cos (400 \pi t)$
$\Longrightarrow x(t)=0.5[\cos (500 \pi t)+\cos (300 \pi t)]$
Here,
$\psi_{1}(t)=(500 \pi t)$ and $\psi_{2}(t)=(300 \pi t)$
The instantaneous frequencies are then,
$f_{1}(t)=250 \mathrm{~Hz}$ and $f_{2}(t)=150 \mathrm{~Hz}$
Hence, (c) corresponds to (1).
(d) $x(t)=\cos \left(200 \pi t^{2}\right)$
$\psi(t)=200 \pi t^{2}$. To be able to find spectogram, compute the instantaneous frequency defined as, $f_{i}(t)=\frac{1}{2 \pi} \frac{d \psi(t)}{d t}$
For (d) the instantaneous frequency is 200 t Hz .
Hence, (d) corresponds to (6).
(e) $x(t)=\cos \left(30 e^{2 t}\right)$
$\psi(t)=30 e^{2 t}$. The instantaneous frequency is then $f(t)=\frac{30 e^{2 t}}{\pi}$ Hz. Hence, (e) corresponds to (3)

