Problem 3.22

(a) Given $f_{1}=4800 \mathrm{~Hz}, f_{2}=800 \mathrm{~Hz}$ and $t_{1}=0 \mathrm{~s}$ to $t_{2}=2$
s , Mathematical formula for instantaneous frequency,
$f_{i}(t)=2 \mu t+f_{0}$
Then $f_{1}\left(t_{1}\right)=2 \mu t_{1}+f_{0}$, since $t_{1}=0, f_{1}=f_{0}$
Similarly, $f_{2}\left(t_{2}\right)=2 \mu t_{2}+f_{1}=4 \mu+f_{1}$
Hence, this implies $\mu=\frac{\left(f_{2}-f_{1}\right)}{4}$.
Substitute this in (A),
$f_{i}(t)=\frac{\left(f_{2}-f_{1}\right)}{2} t+f_{1}$ is the mathematical formula.
$\psi(t)=2 \pi \mu t^{2}+2 \pi f_{0} t+\phi=-2000 \pi t^{2}+9600 \pi t+\phi$
Hence, the chirp signal is :
$x(t)=\cos \left(-2000 \pi t^{2}+9600 \pi t+\phi\right)$
(b) $y(t)=\cos \left(40 \pi t^{2}+500 \pi t-\frac{\pi}{4}\right)-(1), t=[0,3] s$
$f_{i}(t)=\frac{1}{2 \pi} \frac{d \psi(t)}{d t}$
The quadratic angle function, $\psi(t)$, of (1) is
$400 \pi t^{2}+500 \pi t-\frac{\pi}{4}$. Then the instantaneous frequency is from
(A),$f_{i}(t)=400 t+250$

Starting instantaneous frequency, at $t=0 \mathrm{~s}$,
$f_{i}(0)=400(0)+250=250 \mathrm{~Hz}$
Ending instantaneous frequency, at $\mathrm{t}=3 \mathrm{~s}$,

$$
f_{i}(3)=400(3)+250=1450 \mathrm{~Hz}
$$

