Problem 2.4

Given in the question,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Then,

$$
e^{j \theta}=1+j \theta+\frac{(j \theta)^{2}}{2!}+\frac{(j \theta)^{3}}{3!}+\frac{(j \theta)^{4}}{4!}+\frac{(j \theta)^{5}}{5!}+\ldots
$$

It is known that,

$$
j=\sqrt{-1}
$$

Hence,

$$
\begin{gather*}
e^{j \theta}=1+j \theta-\frac{\theta^{2}}{2!}-j \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+j \frac{\theta^{5}}{5!}+\ldots \tag{1}\\
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\ldots
\end{gather*}
$$

and

$$
\sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots
$$

are given in the question. Rearranging terms in equation (1) yields,

$$
e^{j \theta}=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+j\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots\right)
$$

Therefore, $e^{j \theta}=\cos (\theta)+j \sin (\theta)$, Euler's formula is verified.

