Problem 2.15

Given, $x(t)=2 \cos (\omega t+5)+8 \cos (\omega t+9)+4 \cos (\omega t)$. Required to express $\mathrm{x}(\mathrm{t})$ in the form $x(t)=A \cos (\omega t+\phi)$.
Let, $x_{1}(t)=2 \cos (\omega t+5)$
$x_{2}(t)=8 \cos (\omega t+9)$
$x_{3}(t)=4 \cos (\omega t)$
Step 1: Represent $x_{1}(t), x_{2}(t)$ and $x_{3}(t)$ by the phasors:
$X_{1}=2 e^{j 5}, X_{2}=8 e^{j 9}, X_{3}=4 e^{j 10}$.
Step 2: Convert X_{1}, X_{2}, X_{3} to rectangular form:
Method :
$X_{1}=2 e^{j 5}$ can be converted to form $\mathrm{a}+\mathrm{ib}$
where $a=A \cos \phi$ and $b=A \sin \phi ; A$ is amplitude of the signal, for $X_{1}, A=2$ and $\phi=5$.

Hence,
$X_{1}=0.567+j(-1.9178)$
$X_{2}=-7.2890+j(3.29)$
$X_{3}=4+j 0$
Step 3 : Add the phasors
$X_{4}=X_{1}+X_{2}+X_{3}=-2.722+j(1.3722)$
Step 4: Convert back to Phasor Form
$X_{4}=3.048 e^{j 2.674}$

Step 5: Expressing the Complex Exponential in the
form $x(t)=A \cos (\omega t+\phi)$:
$3.048 e^{j 2.674}=3.048 \cos (\omega t+2.674)$
Phasor diagram:

