Problem 2.15

Given, $x(t) = 2\cos(\omega t + 5) + 8\cos(\omega t + 9) + 4\cos(\omega t)$. Required to express x(t) in the form $x(t) = A\cos(\omega t + \phi)$. Let, $x_1(t) = 2\cos(\omega t + 5)$ $x_2(t) = 8\cos(\omega t + 9)$ $x_3(t) = 4\cos(\omega t)$ Step 1: Represent $x_1(t), x_2(t)$ and $x_3(t)$ by the phasors: $X_1 = 2e^{j5}$, $X_2 = 8e^{j9}$, $X_3 = 4e^{j10}$. Step 2 : Convert X_1, X_2, X_3 to rectangular form: Method : $X_1 = 2e^{j5}$ can be converted to form a + ib where $a = A\cos\phi$ and $b = A\sin\phi$; A is amplitude of the signal, for X_1 , A = 2 and $\phi = 5$. Hence, $X_1 = 0.567 + i(-1.9178)$ $X_2 = -7.2890 + j(3.29)$ $X_3 = 4 + j0$ Step 3 : Add the phasors $X_4 = X_1 + X_2 + X_3 = -2.722 + j(1.3722)$ Step 4: Convert back to Phasor Form $X_4 = 3.048 e^{j2.674}$

Step 5: Expressing the Complex Exponential in the

 $\frac{\text{form } x(t) = A\cos(\omega t + \phi)}{3.048e^{j2.674} = 3.048\cos(\omega t + 2.674)}$

Phasor diagram:

