Problem 2.11

Given equation is $\Re\left\{(1+j) e^{j \theta}\right\}=-1$. Required to solve for θ.

Expressing complex number $(1+j)$ in terms of complex exponential polar form yields $\sqrt{2} e^{j \frac{\pi}{4}}$.
Hence the equation can be rewritten as, $\Re\left\{\sqrt{2} e^{j \frac{\pi}{4}} e^{j \theta}\right\}=-1$.
The real part of a complex exponential polar form is the cosine function. Thus $\Re\left\{\sqrt{2} e^{j\left(\frac{\pi}{4}+\theta\right)}\right\}=\sqrt{2} \cos \left(\theta+\frac{\pi}{4}\right)=-1$.
$\cos \left(\theta+\frac{\pi}{4}\right)=\frac{-1}{\sqrt{2}}$ implies that $\left(\theta+\frac{\pi}{4}\right)=\frac{3 \pi}{4}$ or $\frac{-3 \pi}{4}$.
Thus, $\theta=\frac{\pi}{2}$ radians or $\theta=-\pi$ radians.

