Problem 10.28

Given, $y[n]=(0.95)^{n} \cos (0.2 \pi n+0.4 \pi)$
(a) Plot of $y[n]$ for $0 \leq n \leq 10$:

(b) IIR filter that will synthesize $y[n]$ as its impulse response will have an impulse response: $h[n]=(0.95)^{n} \cos (0.2 \pi n+$ $0.4 \pi) u[n]$. Required to find the output for this impulse response.

Taking z-transform of $h[n]$ yields:
$H(z)=\frac{\frac{1}{2} e^{j 0.4 \pi}}{1-0.95 e^{j 0.2 \pi} z^{-1}}+\frac{\frac{1}{2} e^{-j 0.4 \pi}}{1-0.95 e^{-j 0.2 \pi} z^{-1}}$
Taking LCM yields:

$$
H(z)=\frac{\cos (0.4 \pi)-0.95 \cos (0.2 \pi) z^{-1}}{1-1.9 \cos (0.2 \pi) z^{-1}+0.9025 z^{-2}}=\frac{0.31-0.85 z^{-1}}{1-1.54 z^{-1}+0.9 z^{-2}}
$$

Output $\left(y_{1}[n]\right)$ in the form of difference equation is:

$$
y_{1}[n]=0.31 x[n]-0.85 x[n-1]+1.54 y_{1}[n-1]-0.90 y_{1}[n-2]
$$

