Problem 10.15

Given IIR filter defined by the difference equation :
$y[n]=\frac{1}{2} y[n-1]+x[n]$
(a) According to the question, $x[n]=u[n]$. Taking z-transform $X(z)=\frac{1}{1-z^{-1}}$.
Taking z- transform of $y[n]$ gives, $Y(z)=\frac{1}{2} Y(z) z^{-1}+X(z)$
Thus, $\frac{Y(z)}{X(z)}=H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}$.
Hence, $Y(z)=H(z) X(z)=\frac{1}{1-\frac{1}{2} z^{-1}} \frac{1}{1-z^{-1}}$.
From partial fractions, $Y(z)$ can be expressed as: $Y(z)=$ $\frac{A}{\left(1-\frac{1}{2} z^{-1}\right)}+\frac{B}{\left(1-z^{-1}\right)}$, where $A=-1$ and $B=2$.
Hence, $y[n]=2 u[n]-\frac{1}{2}^{n} u[n]$.

