Signals often are represented as a sum of sinusoids:

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos (2\pi f_k t + \theta_k)$$

Sum of multiple sinusoids (same f)
 \rightarrow single sinusoid (f)

For a periodic signal:

fundamental frequency = f_0 $f_0 = \frac{1}{T_0}$ $\mathbf{x}(t) = A_0 + \frac{1}{2} \sum_{k=-1}^{\infty} A_k \cos(2\pi f_k t + \theta_k)$

Fourier Series: Periodic signal in time \rightarrow Discrete coefficient (f) samples

Expanding around orthogonal basis (other basis possible)

Often we expand "cos" by complex exponentials

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j(2\pi k f_0 t + \theta_k)} \xrightarrow[]{\text{Operations}} x(t-t_d) = \sum_{k=-\infty}^{\infty} a_k e^{-j2\pi k f_0 t_d} e^{j(2\pi k f_0 t + \theta_k)}$$

$$\xrightarrow[]{\text{Operations}} x(t-t_d) = \sum_{k=-\infty}^{\infty} a_k e^{-j2\pi k f_0 t_d} e^{j(2\pi k f_0 t + \theta_k)}$$

$$\xrightarrow[]{\text{Operations}} x(t-t_d) = \sum_{k=-\infty}^{\infty} a_k e^{-j2\pi k f_0 t_d} e^{j(2\pi k f_0 t + \theta_k)}$$

$$\xrightarrow[]{\text{Operations}} x(t-t_d) = \sum_{k=-\infty}^{\infty} a_k e^{-j2\pi k f_0 t_d} e^{j(2\pi k f_0 t + \theta_k)}$$

$$\xrightarrow[]{\text{Operations}} x(t-t_d) = \sum_{k=-\infty}^{\infty} a_k e^{-j2\pi k f_0 t_d} e^{j(2\pi k f_0 t + \theta_k)}$$

 $\xrightarrow{dx(t)} \underbrace{\frac{dx(t)}{dt}}_{\text{(differentiation)}} = \underbrace{\sum_{k=-\infty}^{\infty} \frac{2\pi k f_0 a_k e^{j(2\pi k f_0 t + \theta_k)}}{= j\omega}$

 $\rightarrow \int x(t)dt = \sum_{k=-\infty}^{\infty} \frac{a_k}{2\pi k f_0} e^{j(2\pi k f_0 t + \theta_k)}$

(integration)

 $=i2\pi f$

 $= 1/i\omega$

 $= 1/j2\pi f$

Fourier Series for a Square Wave

Generalizing the Frequency Representation (continuum) → Fourier Transform

Spectrogram: Time and Frequency (& MATLAB command)