
History of Starting with Signal Processing (SP) First

Each week: 
• Two large lecture sessions
• Faculty Led Recitation Session 
•Weekly computer (MATLAB) exercises

Fall 1999 at GT: 
Full implementation
Requirement for 

all ECE students

Ron Schafer
Jim McClellan

SP First (GT 1999)

Classically (e.g. 1950s to 1990s), 
Electrical Engineering started with circuits
Signal processing through circuits (historical start)

Why not start with Signal Processing?
Signal Processing first, 
then circuits enabled through SP

And others at GT, those who founded DSP
and some good friends at Rice, Rose-Hulman

In the 1990s, Digital SP: 4th year or Grad course



Complex Operations

Complex Multiplication: (polar)

Complex Addition: (rectangular)

Complex Numbers = Real + j Imaginary
like a unicorn

Unicorn ! divide by “j”

(rectangular) (polar)

Re

Im

a1

b1

R1

θ1

One often converts between rectangular and polar forms

b1



Euler’s Formula:



Sinusoidal functions

(Amplitude) (phase)

Summation (y1(t) + y2(t)): 
(Same frequency)

f = frequency of the sinusoid (Hz)

2π f = radians of the sinusoid (rad)
T = 1/f = period of the sinusoid (s)



Linear (Time-Independent) Systems are characterized by sinusoids and exponentials

Linear Functions: f(x)

Differentiation

Example functions 

Integration

Linear gain factor: 

Single frequency input ! Single frequency ouput

Linear
System



Signals often are represented as a sum of sinusoids:

Sum of multiple sinusoids (same f)
! single sinusoid (f)

For a periodic signal: 
fundamental frequency = f0

Fourier Series: Periodic signal in time 
! Discrete coefficient (f) samples

x(t)

Expanding around orthogonal basis 
(other basis possible)

Often we expand “cos” by complex exponentials

+ & - Frequency

= jω
= j2πf

= 1/jω
= 1/j2πf

Operations 
on Fourier 

Series = e-j2πf td(delay)

(integration)

(differentiation)



Fourier Series for a Square Wave

T0 = 1/f0= 2ms

Integrate over a single period: 
-1ms (-T0/2) to 1ms (T0/2)(-1ms)

Odd k ( = 0 for Even k)

(1ms)

(normalize time) 



Fourier Series

Signal in Time

Representation in Frequency
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Spectrogram: Time and Frequency
(& MATLAB command)

Speech Signal

Generalizing the Frequency Representation (continuum)
! Fourier Transform



Digital Sampling Implications

Continuous
To Digital
Converter

Sampler:
Sample &

Hold

Analog to
Digital 

Converter 
(ADC)Continuous-Time

Continuous 
Amplitude

Discrete-Time
Continuous 
Amplitude

x(t) x[n]

n T0

Sample Time (T0)
f0 = 1/T0 (sample frequency)

x[n]

Comparitor(s)+ References
Typically “Assumed”
m-bit resolution 

Discrete-Time
Discrete 

Amplitude
x(t)

n T0

Buffer

GND

x[n]

Make ideal clock (no jitter)
Make ideal sampler
Make ideal buffer

Limits SNR
& Linearity

C2Dx(t)

n T0

x[n]

Quantitizer

x[n] x[n]

^

^

Limits SNR
& Linearity

Similar for D2C: 
Digital to Analog Converter (DAC)
Analog Low-Pass Filter (Smoothing)



Periodic Signal in Time !
Samples in Frequency

Samples in Time

Periodic Continuous Frequency
Nyquist:  If sample 2x of highest frequency, 

then can one can perfectly reconstruct

Fourier Series

Signal in Time

Samples in Frequency

x(t)

t

x(t)

t

|X(f)|

Samples in Time !
Periodic Frequency Waveform

f0 = 1/T0



Sampling of a single sinusoid:
,

Can add or subtract
2π from ω
2π n comes out

Sample: ,

^

At fs=1.25kHz, 
f ! -0.2 x 1.25kHz 

= -250Hz
(T0 = 4ms)

At fs=830Hz, 
f ! 0.2 x 830Hz 

= 166Hz
(T0 = 6ms)



b0

Delay
z-1

Delay
z-1

Delay
z-1

b1 b2 bM-1 bM

x[n] x[n-1] x[n-2] x[n-M-1] x[n-M]

Σ y[n]

C2Dx(t)

n T0

x[n] FIR
h[n]

y[n]

VMM ! Fundamental Computation
! Multiply-Accumulates

What if 
x(t) ! y(t)?

Main Machine Learning Computation

Finite Impulse Response Computation

x[n]

z[n]

Delay Line (or other decomposition)
x[n-1] x[n-2] x[n-M-1] x[n-M]

Example other decompositions:
• Frequency Spectrum
•Wavelets / Subsample
• LC approximate delays

For multiple outputs (e.g. M):

z1[n]
z2[n]

zM-1[n]

zM[n]

Vector-
Matrix

Multiplication
(VMM)



Linear System Theory ! Unit Impulse Function

Linear
System

Unit step function

Autonomous ODE: often parameter change & sometimes initial condition

• acts like flipping a switch at t=0

• Derivative of Unit Step Function
• Signals composed of many Impulse Functions
• Often called an “Impulse”
•Autonomous ODE: mostly moving initial condition

δ[n] =  
0   otherwise
1    n=0

u(t) = u[n] = 0    n < 0
1    n >= 0

0    t < 0
1    t >= 0 &

δ[n-3] = impulse delayed 3 time samples  

What about δ(t), 
continuous-time impulse?

• mostly 0 everywhere 
• approaching       near t=0 

δ[n]  
δ(t)

Impulse Response: 
Fundamental Linear Dynamics

Stable
Unstable
Oscillation

FIR
IIR

Discrete 
time



Linear
System

Linear Transforms:

Real
Input

Signals

Transformed
Input

Signals

Mathematical
Operations

(Transformed
Signals)

Real
Output
Signal

Motivation: Solving Convolution (LTI: fixed coefficients)
Convolution in 
time (CT or DT)

Multiplication in 
transform space. 

Transforming Differential / Difference Equations
to Algebraic Equations (then invert transform)

Direct Paths !Frequency Response

Fourier ! ω
Laplace: 

Z: 

Connections between transforms
s < 0 ! | z | < 1 (unit circle)



Linear
System

Frequency Response: Single Freq. Sinusoids

Same frequency, different magnitude & phase

Discrete Time, FIR Filter:

Linear
System

(Nyquist)

Linear Phase
(constant delay)

Magnitude



Linear
System

Convolution (Discrete or Continuous):
Solving for a linear system response 

to an arbitrary waveform
by decomposing the input signal 
into several impulse functions

Linear
Systemδ[n]  

δ(t)

Impulse Response:
Averaging
(Boxcar)

Filter

Convolution: Enables solution of any 
Linear Time-Invariant System

With an arbitrary input

Any input signal
Is a set of impulses
(DT or CT)

Discrete-Time is easier to understand / visualize

Input
x[n]

Impulse
Response

h[n]

Two Impulse Convolution:

Relationship to multiplying polynomials



Boxcar Filter ! Averaging Filter

M=3 Sample Averaging
Frequency 
Response

A typical Low-Pass Filter to remove “noise” 
and unwanted  variations

Impulse
Response

x[n] with multiple
frequencies

y[n]: high frequencies
Diminished / smoothed

Smoothed
Edge

Filtered
Sign Change 
! π shift

Linear Phase

MagnitudePhase



Differencing FIR Filter !
High-Pass based on a Derivative

h[n] = δ[n] – δ[n-1]

Sign Change 
! π shift

x[n]

Approximate Derivative on input signal (x[n]):

y[n]

Rising Edge Falling Edge

Fast Signal Change

MagnitudePhase



Case 2: make a table

Frequency Response of h[n]

MagnitudePhase

x[n] (Case 1)

x[n] (Case 2)

Case 1:

Convolution

1 tap Delay

n

4

-4

0

2

-2

π

-π



x[n]

y[n]h[n]

Convolution Examples

Case 1: h[n]

Case 2: h[n]

Case 3: h[n]

Case 1: y[n]

Case 2: y[n]

Case 3: y[n]



Fourier Series for Triangle Waveform

= 1/jω = 1/j2πf(integration)

T0 = 1/f0= 2ms

Magnitude

Amplitude 
is 2 ! -2

k odd, 
= 0 k even

k odd



Sampling & Operating on a Triangle Waveform

Odd k ( = 0 for Even k)

7th order:

T0 = 1/f0= 2ms

~ 2% Signal

First three terms have 98% of signal

MagnitudePhase

1st order:

For 2-4% error, sample at 5kHz (Nyquist) 
to get the 5th order term

The sampled signal then goes through

Frequency Response

f0= 500Hz



Addition of Sinusoids of same frequency

2 cos( w1t + p/2)5 cos( w1t )

5 cos( w1t - 0.644)

(Amplitude) (phase)

4ej0

Magnitude = 5, phase = -0.644 !

3e-jp/2
= 3 cos(w1t – p/2)



FIR Frequency Response1

t

Review of Initial Digital Signal Processing Concepts

Discrete Convolution

Unit Step Response (Continuous)

Periodic Waveform Period

Sampled function

Discrete Step Function

Sampling Period

δ[n] =  
0   otherwise
1    n=0

u(t) =

u[n] = 0    n < 0
1    n >= 0

0    t < 0
1    t >= 0

Discrete Impulse Function



4

f = 1kHz
Example sinusoidal sampling

Maybe a plot or two
of sampled waveforms?


