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Abstract— This paper addresses and experimentally demon-
strates a programmable linear equation solver by analog com-
putation. A set of differential equations using transconductance
devices directly translated from circuit theory converges to the
linear equation solution. These energy-efficient analog techniques
are experimentally demonstrated in a configurable analog plat-
form. The resulting analog linear equation solution circuits are
effectively analog filters. The paper analyzes the algorithmic
issues and analog numerical analysis issues, including accuracy,
convergence time, and the interpretation of condition number for
analog solutions.

Index Terms— Solving linear equations, transconductance
amplifiers, FPAA.

I. FRAMING ANALOG SOLUTIONS OF LINEAR EQUATIONS

SOLUTION of linear equations is a fundamental digital
computation technique (Fig. 1), whereas it is considered

difficult to solve using analog computation [1]. Linear equa-
tions solve

Ax = b, (1)

where A is the input matrix, b is the input vector, and x is
the solution vector. The classic digital solution uses Gaussian
elimination. This computation shows all of the strength of
digital processing, including the pivots, to get the maximum
accuracy for the decomposition [2]. Numerical tools (e.g.
MATLAB: MATrix solution LABoratory) are dedicated to
these ubiquitous operations. Computing benchmarks are based
on solving linear equations (e.g. LINPACK [3]). As digital
computing is well matched to solving (1), a problem is
considered analytically solved when reduced to solving (1) [1].

If programmable analog techniques competitively solve (1)
experimentally, analog techniques span the range of numerical
analysis techniques [1], [4], enabled through analog algo-
rithmic techniques [5]. Since a direct analog equivalent to
Gaussian elimination involves numerous integer steps and
memory manipulations (e.g. pivots) that require the storage
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Fig. 1. Digital and analog linear equation solution techniques include
both direct (e.g. Gaussian elimination, L U decomposition) and iterative
techniques. Analog techniques can utilize iterative techniques by using
differential equations that converge to the solution. Resistive circuits with
linear dependent and independent sources can be directly transformed and
then solved by a set of linear equations; this work reverses that perspective
to solve linear equations by transforming these equations to a circuit that
converges to the linear equation solution. This transformation requires using a
set of Transconductance Amplifiers (TA) as voltage-controlled current sources,
enabling direct implementation in a programmable and configurable platform
(e.g. FPAA), thereby enabling the solution of a wide range of matrices.

of high-resolution intermediate values, this effort considers a
different approach to solving (1). This Ordinary Differential
Equations (ODE) converges for the solution of (1):

τ
dx
dt

+ Ax = b, (2)

where τ is the network time-constant. The iterative method is

x[n] = x[n − 1] + � (b − Ax[n]), (3)

where � is a function of τ and time-step. Sometimes, Iterative
digital techniques in some cases require fewer operations than
digital Gaussian elimination, particularly for sparse matrix
solutions as well as for embedded computations (e.g. [6]). (2)
and (3) converges for positive eigenvalues of A; one can find
related iterative equations for other A [2].

This work focuses on analog solutions to (1) using (2).
Reconfigurable and programmable Transconductance Ampli-
fiers (TA) implement (2), as well as provide a platform to
analyze the analog numerics. An SoC Field-Programmable
Analog Array (FPAA) [7] provides the experimental demon-
stration platform; these approaches could be implemented in
earlier FPAA devices (e.g. [8]) or custom Silicon. Engineering
students are taught that static resistive circuits with inde-
pendent and dependent voltage- and current-sources (Fig. 1)
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Fig. 2. Potential continuous-time circuit architectures to solve systems
of linear equations. Shaded areas show the input b and output x regions.
Connection dots show connections at connecting wire intersections. A T
would be a connection. (a) Linear equation solution built from resistors
and current sources. The programmable resistors and current sources can
be implemented with programmable transistors. (b) Linear equation solution
built from Transconductance Amplifiers (TA). The constraint matrix of
voltage-controlled current sources is set by individual conductances and the
corresponding bias currents.

are directly formulated and solved as a system of matrix
equations like (1). This work experimentally demonstrates and
characterizes the other side of this statement that configurable
TA configurations solve (1) through (2) for any stable A
(Fig. 1). A resistor-only network is limited in the possible
A matrix, while resistors with op-amps may have stability,
mismatch, or parasitic concerns for physical implementa-
tions [9]–[13]. These approaches encompass early theoretical
discussions of analog computing solving (1) [14], [15], as
well as theoretical discussions using multiple-output TA-based
recurrent neural networks for solving (1) [16], [17]. Electronic
circuits are used to illustrate solutions (e.g. Hopfield networks
[18], [19]), simulating linear solutions for a reduced class of
problems [20], [20], [21], and considering specialized cases
(e.g. elliptic Partial Differential Equations (PDE) [23], [24].)

If an analog linear equation solver is built, one would want
this computation to have at least a fraction of the typical
1000× improvement in computational energy efficiency (e.g.
[25]) compared to digital techniques (e.g. [26]), as well as

typical area efficiencies. Vector-Matrix Multiplication (VMM)
shows these efficiencies compared with digital computation
[27], [28], and has a related digital algorithmic complexity to
solution of (1). This effort will discuss the potential energy
efficiencies as well as algorithmic complexities.

This work moves to unify analog solutions of linear
systems into a low-energy, compilable approach, including
discussing its wider numerical analysis and resulting circuit
techniques. The discussion moves towards transconductance-
based (Fig. 2), as well as resistive-based, iterative methods for
solving linear equations (Sec. II), describing the relevant FPAA
implementation details (Sec. III), as well as demonstrating
analog solutions of representative linear systems (Sec. IV).
The discussion moves towards analyzing the algorithmic issues
and analog numerical analysis issues, including accuracy and
convergence time considerations. Finally, the resulting analog
linear equation solution circuits are effectively analog fil-
ters or control systems, and we discuss the connection to these
approaches (Sec. V). By directly considering the eigenvector-
eigenvalue analysis of (2) (Sec. VI), we reinterpret the impact
of condition number, the ratio of largest to smallest eigenvalue,
as a question of signal gain as well as algorithm convergence.

II. PHYSICAL ODE SOLUTIONS OF LINEAR EQUATIONS

Analog linear equation solutions could be implemented
utilizing resistive coupling between nodes (Fig. 2a), and/or
transconductance amplifier coupling between nodes (Fig. 2b).
FPAAs efficiently implement resistive and transconductance
networks, including utilizing routing fabric elements [7], [29].

Linear systems built of resistors create a diagonally domi-
nant system with negative non-diagonal coefficients. Under-
graduate engineering students would recognize that low-
frequency circuits of resistors and supplies are modeled by
linear system of equations. A generic resistor network for
solving a system of linear equations (Fig. 2a) is modeled as

Il = −
m∑

k �=l

Gl,k Vk + Vl

m∑

k=1

Gl,k + C
dVl

dt
, (4)

where Gk,l is the inter-node conductance, Gk,k is the node
conductance, and k, l represent the matrix indices of A that
are of size m. This stable ODE converges to the solution.

Physical computation uses continuous variables as represen-
tations. These variables are often scaled, including the units,
to abstract the computation from physical values. For example,
users solving linear systems often prefer representing their
problem as a normalized variable, x , that varies from 0 to 1,
rather than keeping track of an arbitrary range of currents (e.g.
14.6nA and 31.7nA). Knowing the abstraction, tools should
remove these low level details from the user. Normalizing
these variables converts the physical equations to mathematical
equations. The smallest of the diagonal sums,

∑m
k=1 Gl,k ,

typically normalizes the resulting equations. The time-constant
τ is set by capacitance, C, over a value proportional to the
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conductances. The relationships connect (4) to (2):

al,k ∝ −Gl,k k �= l

ak,k ∝
m∑

k=1

Gl,k, bk ∝ Ik . (5)

Input currents are signed, and the output voltages are signed
values around some bias point. All diagonal values will be
greater than 1; all off-diagonal values will be negative.

Transconductance amplifiers (TA) achieve a larger A range
compared to resistive elements by using voltage-controlled
current sources and not just resistor elements. A TA operating
in its linearized region is expressed as

Iout = G(V + − V −), (6)

where G is the circuit’s transconductance parameter. When
the 9-transistor TA (as in [30]) in the SoC FPAA [7] is
programmed in the typical case with a subthreshold bias
current (Ibias), the resulting transconductance, and coupling
between nodes (k,l), would be Gk,l = κ Ibias

UT
. where κ is

the capacitive division between gate and surface potential
for a MOSFET (e.g. [30]), and UT is the thermal voltage,
kT/q (≈25mV at T = 300K). Similarly, an expression for G
can be derived for different bias current regions (e.g. above-
threshold bias currents) with smaller increases in G for further
increases in Ibias . An on-chip amplifier, such as the TA in on-
chip custom [30] and configurable [7], [31] designs, becomes
a voltage or transconductance amplifier depending on the
resulting circuit operation as they are often unbuffered designs.
The SoC FPAA has 196 non-FG input TAs and 196 FG input
TAs [7]. As the SoC FPAA TA bias current sources are set
with an internal FG element, these TAs do not have a fourth
terminal (e.g. [30]) to set the bias current.

A generic TA network for (2) (Fig. 2b) for the l-th row with
subthreshold Ibias is modeled as

C
dVl

dt
= Il −

m∑

k=1

Gl,k Vk (7)

The normalizations connect (7) to (2):

al,k ∝ Gl,k , bk ∝ Ik (8)

One could have a different τ per row due to different con-
ductance modeling and capacitances, and potentially tuned to
optimize convergence. Current sources set b inputs. Positive
current sources would go to Vdd , and negative current sources
would go to GND. ODE solution for these networks requires
positive eigenvalues for A; related techniques can transform
the resulting matrix for the solution of general A (e.g. [21]).
Often, quantities are built around a single bias current, Ibias ,
which abstracts the resulting currents (typically one of the
programmed current values), resulting in τ = CUT

κ Ire f
. The

scaling of current is a question of speed of the computation.
Each output row could be scaled accordingly, setting each
row’s resulting τ and normalizing the row values as required.
Each row in (2) could have a different τ .

Physical linear equation solutions, transforming a linear
system into an ODE problem, should involve problems that

Fig. 3. Analog linear equation solution in the SoC FPAA [7]. (a) High-level
tool (Scilab) blocks for the Floating-Gate (FG) and non-FG TA based linear
equation solution. (b) A representative block diagram setup for computing
and measuring a linear equation solution, where each line represents a
parameterized bus of inputs or outputs. This diagram shows a 4 × 4 A as
used in later experimental examples. (c) Arrays of FG and non-FG TAs in
SoC FPAA Computational Analog Blocks (CAB) perform the linear equation
solutions.

start as a series of linear equations. It is inefficient to take
an ODE or PDE, transform it into a linear system, and then
to transform it to a linear ODE circuit for the solution.
As ODE / PDE applications are efficiently solved by direct
implementation [1], [29], we focus on the physical solution of
linear systems that originates from different applications.

III. CONFIGURABLE ANALOG LINEAR EQUATION SOLVER

The TA-based analog linear equation solution is experi-
mentally demonstrated in an SoC FPAA [7]. The SoC FPAA
is enabled by a significant infrastructure and tool base; an
extensive overview of FPAA devices is written elsewhere [31].
The SoC FPAA operates with analog supplies at 2.5V and
ground. This computation is encapsulated in a linear equation
block (Fig. 3a), abstracting the analog TA computation [32]
that can be targeted to an FPAA IC, as well as a macromodel
simulated in a full system level simulation (level=1), in an
open-source toolset in Scilab [33]. The block parametrizes
the number of inputs (b) and outputs (x) and the resulting
matrix (A).1 This discussion presents experimental circuit
measurements, and simulation computations where mentioned.

This linear block becomes part of the experimental on-
chip test setup (Fig. 3b) that includes providing the b input
as well as multiplexing each value of the output vector x.

1This block is implemented in the FPAA tool set, as well as a single example
shown in this paper, is implemented as an example for these tools.
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Fig. 4. Comparison of non-FG TA and FG TA for solving Ax = b. The FG
TA results in higher voltage signals and SNR, as well as larger τ by the ratio
of total capacitance (CT ) to the input coupling capacitance (C1).

TA in Computational Analog Blocks (CAB) is a 9 transistor
circuit topology (Fig. 3c) [7], [30]. The A matrix is set by
the conductances of the individual TAs, that in turn are set by
Floating-Gate (FG) bias currents set by the pFET bias current.
The TA has nearly rail-to-rail output range, although the
upper range is limited by the pFET current source remaining
saturated. Typical operation occurs for signals around a 1V
to 1.25V reference (Vre f ). A TA is used to convert the
input voltage (b) signal to a current. The reference voltage(s)
can be controlled by Digital-to-Analog Converters (DAC)
compiled on the FPAA [7]. The sign of each A matrix element
determines the TA input sign, where positive values are input
in the - input and the reference to the + input, while negative
values are input in the + input and the reference to the - input.
The measured outputs, x(t), are scanned and buffered out.

The choice of FG or non-FG TA depends on the required
linearity and convergence (Fig. 4), where a FG TA has higher
linearity with a slower time-constant for a given bias current,
while a non-FG TA has a lower linear range and provides a
faster convergence for a given bias current. Other papers have
discussed a range of programmable current bias TA [34], the
effect of FG capacitance coupling on core circuit parameters
[35], built-in self-test algorithms [36] and application of these
structures in nonlinear dynamics [37] and education [38].
We summarize these core results to facilitate our linear-
equation solutions (Fig. 4). The non-FG TA is more energy
efficient for a given bias current. The FG TA is easier to
instrument using 1V signals rather than 50-100mV signals.
The key parameter that scales these results is the ratio of
total capacitance (CT ) to the input coupling capacitance (C1).
The experimental measurements will illustrate the properties
of these two TA approaches (Fig. 4) corresponding to these
two blocks (Fig. 3a). Using FPAA routing fabric results in
efficient resistive networks [7], [29], although they typically
result in lower SNR and signal amplitudes than TAs.

Fig. 5. Measured system level (level=1) simulation results for a 4 × 4 FG
TA for a matrix programmed with 100nA on the diagonals, 50nA for the off
diagonal elements, and an input (b) that switches between no current and its
particular current level. The graph shows two cases of the input vector (b),
one case (same inputs) for b = [ 300nA 300nA 300nA 300nA], and a second
case (different inputs) for b = [50nA 75nA 100nA 125nA]. These results are
compared for an equivalent, more detailed level=2 [39] simulation model,
and the results compare closely with experimental measurements.

The system model (level=1) for this TA based equation
solver where voltages are referenced to Vre f , and where the
inputs utilize a similar FG-based TA would be

dVl

dt
= Ib,l

C
tanh

(
Vx,l/VL

) − 1

C

m∑

k=1

IA,l,k tanh (Vk/VL)

(9)

where Ib,l are the bias currents for the input FG TAs (b),
Vx,l are the input voltages (b), IA,l,k are the bias currents for
the matrix TAs (A), VL is the linear range of the TA, and
we assume a nominal value of C (e.g. 1pF) until compilation
provides better data that gives a better estimate, including the
circuit place and route. This model is implemented for the FG
TA block, and can be directly modified for the non-FG block.
One can show results from this abstracted simulation model
(from (9)), and compare it to a more detailed transistor level
simulation [39] and experimental measurements (Fig. 5).

IV. LINEAR EQUATION EXPERIMENTAL DYNAMICS

Experimental measurements from a 4×4 A matrix illustrate
the linear equation solver (Fig. 3b) dynamics. The compiled
4 × 4 linear solver requires 16 TAs to implement the 4 × 4 A
matrix, and 4 TAs to implement the b matrix. The b vectors are
inputs fed to the gate input of the TA structure, step functions
from a zero point ( = fixed potential or current switched off)
to a desired input for b. The matrix solution outputs, x(t) ,
show the dynamics when new inputs are applied.

An identity matrix for A illustrates the solution circuit
dynamics (Fig. 6). The circuit model (Fig. 6, non-FG TAs)
simplifies to a group of two-TA components for a diagonal A
(Fig. 6). The time-constant is directly related to the diagonal
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Fig. 6. Setting up Ax = b using TA elements. (a) Effective circuit for solving Ax = b for a diagonal matrix A, that corresponds to a first-order TA circuit
with tunable gain based on the ratio of the bias currents. (b) Effective matrix programmed for this diagonal computation (1μA as the 1 elements and 10nA as
the 0 elements), where the off diagonal elements programmed to 1% or less of the diagonal elements (1μA compared to 10nA). Effectively, the off diagonal
elements can be ignored in these measurements. (c) Analysis for the convergence of A matrix after applying a 40mV b input through the TA current sources.
The time-constant was extracted to be roughly 47μs for each component. It is nearly identical for all the four curves, thereby getting similar convergences.

Fig. 7. Measured convergence x for A matrix with 200nA and 100nA as the diagonal and off-diagonal elements, respectively. For a 40mV b input applied
as current sources, the x(t) solution is plotted and is within the linear range of the TAs. The time-constant (61μs) from curve-fitting the log(·) of the step
responses; as expected, there are three identical eigenvalues for this matrix. One of the components along the larger eigenvalue (by a factor of 5) converges
5 times faster in 12μs.

TA bias current and the FPAA routing capacitive load, showing
un-programmed mismatches. In general, we can normalize
each row, effectively changing the time-constant, but not
affecting the final steady-state solution. The voltage offsets
could be tuned out by using FG-TA elements. If the A elements
are operating in their linear region, one can define zero at
any particular offset because if the outputs (x) are measured
around an offset vector (x0) due to an offset (b0) in the input
(b), then one can simply normalize the output around the
starting zero point because we are solving a linear system,
A(x − x0) = b − b0.

Analyzing (2) illustrates the circuit dynamics that can be
experimentally verified. A can be written as

A = E�E−1 (10)

where � is a diagonal matrix of eigenvalues, and E are the
corresponding rows of normalized (power = 1) eigenvectors
corresponding to the particular eigenvector. This relationship
simplifies to A = E�ET for symmetric A. Transforming the
solution x into a projection along the eigenvector basis, x = Ey
for (1), we project along the eigenvector basis to get

τ
dy
dt

+ �y = E−1b = b̂,

τ

λk

dyk

dt
+ yk = b̂k

λk
, (11)

where yk is the kth component of y, and λk is the kth eigen-
value of A. The matrix requires positive λk values, although
through transformations in A and b, one could achieve positive
values (A is positive definite). Depending on the projection of
b on the eigenvector basis, the solution could effect one or all
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Fig. 8. Measured solutions for a FG TA based linear equation solution circuit. Each case shows the measured results and the log trajectory (or error)
towards the steady state. (a) Solution of diagonal matrix with 100nA diagonal elements. (b) Solution of 200nA diagonal elements and 100nA off-diagonal
elements (c) Solution of 110nA programmed diagonal elements and programmed 100nA elements. Some mismatch resulting from indirect programming was
not compensated, so the elements had some random variation.

Fig. 9. Dynamics for a compiled 8 × 8 A matrix with the diagonal elements programmed to 200nA and the off-diagonal elements programmed to 100nA.
(a) Starting from an initial value, each of the eight nodes converges to their final value. (b) Several of the outputs directly converge to their steady state
solution (Out1, 3, 6, 7, 8), although they might have different time-constants depending on the convergence of other nodes. (c) Some of the outputs may
overshoot or have a damped oscillation into their steady-state solution (e.g. Out2 vs. Out5).

of the eigenvectors. The time-constants are scaled by λk ,
so the largest eigenvalue component will converge first, the
smallest eigenvalue component converges last and often is the
component most noticed in the system dynamics. The value
of τ could be modified along each row to compensate for the
slower response of the smaller λk values, where these changes
are projected onto the eigenvector basis.

Programming different A matrices can illustrate these
dynamics (Fig. 7). The dynamics are studied by plotting
the matrix solution outputs, x(t) which are the steady-state
responses. The effective time-constant is 61μs from the three
eigenvalues, obtained through curve-fitting the exponential
curves from the step responses. Since one of the eigenvalues
is larger by a factor of 5, it converges 5 times faster, in 12μs.
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The FG TA implementation enables further investigation of
the linear solution dynamics given the larger signal amplitudes
and SNR. The larger signal amplitudes from the FG TA
devices enable observation of the multiple time-constants
(Fig. 8), particularly when we choose matrices with less
symmetry and identical eigenvalues (Fig. 8c). Scaling the
currents of the A matrix also scales the convergence time
(Fig. 8a versus Fig. 8b). The larger eigenvalue spread results
in a larger spread in the resulting time-constants (Fig. 8d).
This case is an example in our FPAA graphical tools.2

The core block can compile solutions to larger A matrices,
including 8×8 (e.g. Fig. 9), where the largest square matrix on
an SoC FPAA would be 14 x 14 resulting from the 196 FG
TAs and/or 196 non-FG TAs. A trajectory may converge to
the solution through an oscillatory path (e.g. imaginary roots,
elliptic paths), depending on the rows of A, where a particular
variable might overshoot or spiral into the solution (e.g.
Fig. 9). One could imagine building TA with other elements,
including routing elements, to increase the matrix size. Fewer
elements are needed for a sparse matrix, where one needs one
particular element per value in the A matrix.

V. ANALOG LINEAR SOLUTIONS AS LINEAR FILTERING

A different look at (2) through the TA circuit configurations
(Fig. 2b) illustrates that this linear equation solver sets up a lin-
ear filter between the inputs b and outputs x. The 4×4 equation
solver in Fig. 8b) shows a low-pass frequency response when
applying a sinusoid to one of the b inputs (Fig. 10a), as well
as a low-pass chirp signal response (Fig. 10b). This second-
order low-pass response from the higher-frequency attenuation
is consistent with the step-response dynamics (Fig. 8).

The solution of linear equations transforms to filter design
as well as approaches used in control system implementations.
One might be able to utilize this transformation to optimize
for a filter transfer function using a full A relaxing other
parameter constraints, often expressed as requirements for
high resonance and/or minimizing energy requirements. Gm -
C filter cascades of first and second-order filter components
(Fig. 11) match directly to the linear equation solver with TA
components (Fig. 2b). Second-order filter sections, which are
cascaded for many filters, are equivalent to a linear equation
solver (Fig. 12). These circuits illustrate wave-propagating
behavior where the delay would linearly scale with the number
of components, consistent with cascades of TA elements
including unity gain devices or cochlear models (e.g. [30]).

VI. ANALOG LINEAR EQUATION SOLVER NUMERICS

Given the opportunity of an analog linear equation solver
(Fig. 2b), and using the equivalency of linear equation solu-
tion and filter design, we can start addressing the computa-
tional algorithmic questions. The discussion focuses on under-
standing the architecture aspects of linear equation solutions
(Sec. VI-A) as well as discussing the accuracy of linear
equation solutions and matrix condition number (Sec. VI-B).

2We will post this item in our FPAA toolkit example elements by the time
this paper would be first made available.

Fig. 10. Linear equation solver characterized as a linear filter for a 4×4 FG
TA configuration. The A matrix was the same as in Fig. 8b. (a) Frequency
response from input (b) to the output (x) vectors. (b) The output response
of a linear equation solver for a chirp input (b), shows an expected response
of a second-order low-pass filter as in (a). The chirp input sweeps from 1Hz
to 20kHz over a time duration of 10ms as a 20mV sinusoidal offset around
1.25V. The output response shows the attenuation of the higher frequencies
corresponding to a first-order low-pass filter.

A. Methods of Linear-Equation Solutions

This discussion focuses on the architectural tradeoffs for
analog solutions of (2) as well as some digital alternatives.
If the application comes from a directly solvable physical
system (e.g. PDE computations), one would utilize those more
natural techniques for that application. Both analog and dig-
ital techniques have similar tradeoffs for sparse computation,
particularly with configurable analog capabilities [31].

Gaussian elimination can be represented as decomposing
A into a Lower diagonal matrix (L), and an Upper diagonal
matrix (U), a technique used when solutions for multiple
inputs (b) are required. Analog techniques directly solve
these two matrices (Fig. 14), linearly propagating each of the
results in a similar fashion to a digital solution for L and U,
retaining the typical improvement for an analog system over
a digital system (e.g. [28]). This analog operation could be
transformed to a Vector-Matrix Multiplication (VMM). All of
these computations are O(m2) in area and total operations for
mxm matrices when only considering computational elements,
while for full architecture analysis [32] with communication
/ memory access, the computations require (at least) O(m3)
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Fig. 11. Visualizing linear equation solution as active linear filtering. (a) The effective circuit for solving Ax = b for a tridiagonal matrix A results in the
propagation of a sequence of linear, first-order filters. (b) A ladder filter topology based on second-order LC prototypes results in a different tridiagonal A
matrix, resulting in the propagation of coupled filter elements. The last diagonal element is 1 for typical matched resistive termination.

Fig. 12. Second-order filter prototypes result in 2 × 2 A matrices that are often cascaded for a typical linear system. The TAs are normalized around a
baseline transconductance (G), resulting in a baseline time-constant of C/G. A TA operating in its linear region that uses both + and - terminals can be split
into two different TAs, and therefore fits the form in Fig. 2b. (a) Bandpass filter based on a gyrator topology. (b) Lowpass filter utilizing positive feedback
(a). (c) Lowpass filter based on Tow-Thomas configurations.

Area–Delay and Power–Delay products. One might digitally
decompose a single A into L and U and further download
them into the analog solver for continuous analog processing.

Since the solution of several matrices has a similar architec-
tural scaling between digital and analog approaches, compar-
ing the computational efficiencies between digital and analog
solvers shows the comparison between the two methods, in
a similar way to VMM comparisons [27]. The operating
frequency, f, which is inversely proportional to the τ of
the system, is proportional to the bias current (sub-threshold
operation) and inversely proportional to the load capacitance
and linear range. Each TA effectively computes a Multiply-
ACcumulate (MAC) operation in addition to ODE integration;
we will start by comparing MAC operations at a given
frequency. The proportionality depends on the eigenvalues of
A, typical of other iterative matrix solutions. The required
computational power (P) is proportional to the bias current
per TA (2×) and Vdd . The total (thermal) noise and SNR per
node will be dependent on kT/C noise, given the higher linear

TABLE I

COMPUTATIONAL EFFICIENCY FOR M = 16, VL = 1V, AND Vdd = 2.5V

range (VL ). Table I shows this model assuming an average
Ibias over the m values on a row or column, and C is the
single element total capacitance (C = 200fF).

Analog techniques to solving linear equations do have
computational energy efficiency improvements compared with
digital techniques, although not quite the 1000× advantages
over digital computation in this configurable platform. The
TAs in this configurable framework have higher capacitance
than other algorithms, such as VMM computations [28]. A
scaled down FPAA device, an optimized FPAA device, or
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Fig. 13. Linear equation solution comparison (n ×n matrix) between analog
versus digital approaches at 350nm CMOS and projected 40nm CMOS both
in area and in average power consumption. Area Comparison: An FG TA
is roughly 1500μm2 in 350nm CMOS, and a 16 × 16 multiplier and MAC
unit is roughly 0.25mm2 in 350nm CMOS (optional block in MSP430 SoC
FPAA processor). The same blocks in 40nm CMOS would roughly scale
quadratically (100×) in area for both digital (e.g. 2500μm2) and analog (e.g.
15μm2) blocks. The area improvement between analog approaches at 350nm
and at projected 40nm CMOS is 167× the digital approach in the same
process. The energy comparisons Power / Energy Comparison: Power com-
parison assuming a 100kHz output bandwidth for linear equation solutions,
assuming the iterative solution requires O(n) convergence time (eigenvalue
spacing). At 350nm CMOS, a custom analog implementation would require
16μW per stage (≈10× lower capacitance than this FPAA case), and a custom
digital implementation would require 6mW per stage ( 1MMAC(/s)/mW). For
40nm CMOS, the analog implementation scales quadratically because of the
decreased capacitance, and the digital implementation optimistically moves to
a factor of the energy efficiency wall (10MMAC(/s)/mW).

a custom IC implementation would result in substantially
smaller capacitances and similar VMM efficiencies. In a
custom solution, a TA could be built using a single FG device.
One would have similar VMM crossbar computational effi-
ciencies, preserving the 1000× factor for analog computation
compared to the digital efficiency wall of 40MMAC(/s)/mW
(16bit registers) [26], to obtain similar numerical results for
analog computations [1]. These analyses allow a comparison
between a custom analog and a custom digital solution at
350nm CMOS, as we have measured components in this
process as well as extrapolate for 40nm CMOS [40], showing
roughly a 100× area improvement and 350× energy efficiency
improvement (Fig. 13).

B. Eigenvalue Analysis of Matrix Solutions

The numerical accuracy of analog linear equation solutions
is a bigger issue for analog solutions than digital solutions,
given the lower starting precision of analog computation. For
digital numerical analysis of linear systems, the condition
number of A determines the discussion of numerical accuracy.
The condition number of A is related to the ratio between the
largest magnitude (λmax ) eigenvalue and smallest (magnitude)
(λmin ) eigenvalue of A, demonstrating the eigenvalues spread.
The metric is a loose bound on the error propagation for
digital linear solvers, grouping all errors in the starting values
and the numerical computing errors together. The condition
number measures the output value sensitivity for a small
change or errors in the input argument. The larger the condi-

Fig. 14. Linear equation solver / analog filter direct implementation for
solving a lower-triangular (L) or upper-triangular(U) linear equation.

Fig. 15. Condition number relates to the propagation time of the resulting
network. (a) Condition number of the Ladder Filter Topology scales linearly
with node size, consistent with the propagation time of wave-propagating
systems. Tridiagonal systems have similar wave-propagating properties, and
similar changes in condition number for normalized A. (b) Condition number
of the Resistive Diffusion Problem scales quadratically with node size,
consistent with the propagation time of diffusive systems.

tion number, the higher expected starting precision is required
to counteract the amplification of numerical errors in b.

One might imagine that A with a moderate or high condition
number would be unusable for analog techniques. Typical
practice assumes that one loses the number of bits related to
the log2 of the condition number of A; such loss of precision
could make analog techniques nearly infeasible in several
cases. The analog steady-state solutions are derived from (11),

yk = E−1b
λk

(12)

The output, x, is the eigenvector projection of y, x = Ey, so
the difference in gain of one component would be the ratios
of their eigenvalues. Gain of errors in the input (b) or the
eigenvector projected input ( E−1 b ) would have a similar
issue for the worst case. The maximum gain, the ratio between
the maximum and minimum eigenvalues, is the condition
number of A.

Does condition number of A for analog linear equation
solvers relate to the loss of accuracy between the input b and
the output x? Condition number does not directly translate to
numerical errors in the analog solver, because if the solution
exists and is bounded in the dynamic range of the analog
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solver, then one has the correct solution within the output
measurement precision. The system converges to the exact
steady state of the programmed physical system. Linear filters,
solvers of linear equations, are built without catastrophic
accuracy losses. The numerical issues are primarily questions
of having sufficient dynamic range for the particular solution,
relating to issues of solving Ax = b using fixed-point digital
computation. If a component has such a small gain that it
is small compared to the output accuracy, then its required
accuracy is already small.

1) Large Signal Gain: The gain for particular solutions
could saturate the available dynamic range. For the FG TA
case, that dynamic range would be nearly the entire power sup-
ply range, and yet the range is still finite. One interpretation of
condition number gives an upper bounds of the gain between
input (b) and output (x), although the ratio of two large
eigenvalues is considerably different than the ratio of two small
eigenvalues. Normalization of the initial matrix (A) values
as well as having bounded input (b) values in implementing
the analog solver partially addresses these issues; additional
normalization (e.g. along a row of A x = b) could further
improve these systems. Filter cascades do consider balancing
the noise and distortion power accumulation per stage although
these issues typically grow linearly with node size as well as
are handled in multiple situations. One such cascade would
be a ladder-filter delay line implementation, a second-order
system where one might expect instabilities, and yet, the con-
dition number scales linearly for this system (Fig. 15a). Circuit
implementations often have these normalization aspects. For
example, for a one-dimensional PDE resistor solution one
rarely expects having large solutions for this diffusive system,
even though the condition number increases quadratically with
node size. Many linear equation formulations are transfor-
mations of linear sets of ODEs or PDEs, transforming the
two dimensional space into a one-dimensional vector, enabling
these solutions for digital computation. Solving this linear set
of equations, either in whole or in blocks, by analog circuits
seems highly inefficient, although such viewpoints are some-
times considered (e.g. [23], [24]). The physics behind solving
linear systems may be useful for other ODE solutions, and
these techniques should be used for those ODE applications
where applicable.

2) Preconditioning: Multiple preconditioning steps can be
applied to improve the convergence and eigenvalue spread for
a particular linear system, techniques often used in digital
solvers [2]. Several techniques attempt for simple modifica-
tions, such as normalizing to optimize A diagonal components,
and these can be directly utilized, as well as adapting τ values
as a part of that preconditioning. Preconditioning along the
diagonal and related elements can also quickly translate an A
matrix with negative eigenvalues to a stable ODE system.

VII. SUMMARY AND DISCUSSION

The paper discussed solving systems of linear equations
using analog computation, transforming the linear system
solution method to a set of ODEs. The technique is related
to iterative digital methods for solving linear equations. These
approaches extend the energy efficient properties of analog

computing initially shown for vector-matrix multiplication to
solutions of linear systems, where the vector-matrix multipli-
cation happens through arrays of TAs.

The paper also starts analyzing the algorithmic issues
and analog numerical analysis issues of this approach. The
dynamics and convergences are studied for different matri-
ces, through experimental measurements of the matrix output
solutions from hardware. Analog solutions of linear sys-
tems typically is the most challenging algorithm for analog
computation. Hence, finding analog algorithmic solutions for
linear systems opens the entire range of analog computing
towards high-performance computing. This approach allows
for solution of any positive definite A matrix through the use of
TA devices, and not limited as in resistive coupling networks.

These techniques could be extended towards building a
canonical nonlinear function solver by mixing different types
of transconductance amplifiers (e.g. built on an FPAA). Dif-
ferent TA circuits result in different even and odd nonlineari-
ties, allowing the direct implementation of second and third-
order normal forms within a similar architectural framework.
Considering such nonlinearities expands solution spaces to
include oscillatory systems. This capability further enables
compilation and synthesis of nonlinear ODEs in experimental
hardware, as well as a framework for further theoretical
development of applications utilizing nonlinear functions.
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