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Abstract— We present a System-On-Chip Field Pro-
grammable Analog Array (FPAA) for analyzing and processing
the signals off an accelerometer for a wearable joint health
assessment device. FPAAs have been shown to compute with
an efficiency of 1000 times, as well as area efficiencies of 100
times, more than digital solutions. This work presents a low
power signal processing system which allows us to extract
features from the output of the accelerometer. These features
are used by the classifier, implemented using a vector matrix
multiplication and a two output 1-winner-take-all, to detect
flexion and extension cycles in the subject. The compiled design
consumes 0.636 W of power for the front end analog signal
processing chain where as the single layer classifier uses 13
W of power. Thus the system is highly suitable for wearable
applications where power consumption is a major concern. The
current FPAA is fabricated in a 0.35 ym CMOS process and
is operated at a power supply of 2.5 volts. The Gm-C filters
and other circuits are operated in the subthreshold regime of
the transistor to obtain the highest transconductance to current
ratio offered by the process.

I. RECONFIGURABLE ANALOG PROCESSING FOR
WEARABLE DEVICES

The paper presents a low power System-On-Chip (SOC)
to interface with accelerometers and analyze and classify the
data so as to make a decision on whether to enable a system
which performs a real-time knee-joint health assessment
[1] [2]. Joint disorders are one of the leading causes of
disability among adults particularly active adults such as
athletes and soldiers [3] [4]. Currently the assessment of
knee-joint rehabilitation requires frequent physical exams
which are subjective. Thus a non-invasive system which
could operate outside the clinic could be highly beneficial
for a faster recovery and could lead to improved therapies
tailored towards the need of the patients.

A promising signal modality to analyze the knee-health
condition non-invasively is joint sounds [5] [6]. In previous
efforts using joint sounds to probe the status of the knee-
joint health, various time- and/or frequency-domain features
from acoustical emissions from the knee-joint under mo-
tion are extracted and through sophisticated off-line digital-
signal-processing techniques such as single classifiers (e.g.,
classification using neural networks in [7]) or ensemble of
classifiers (e.g., least-squares support-vector-machine fused
with dynamic weighting in [8]), variability of the joint-sound

This material is based upon work partly supported by the Defense Ad-
vanced Research Projects Agency (DARPA), Arlington, VA under Contract
No. WI11NF-14-C-0058.

The authors are with School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, Georgia 30332
oeinan@gmail.com, jenniolson@gmail .com

978-1-4577-0220-4/16/$31.00 ©2016 IEEE

features as well as correlation between the features and knee-
health-status have been investigated. More recently we have
shown that, for a given healthy-knee high-frequency acousti-
cal features, namely clicks, of joint-sounds consistently occur
at similar knee-angle locations for a variety of activities [2].
A distribution pattern of the clicks over the range of knee-
angle, and an output measure based on the changes in the
pattern due to knee-disorders could be a promising metric
for the knee-health. To generate such a metric based on
different activities and therefore different loading conditions
and range-of-motions of the knee, a wearable system that
can operate for hours throughout the day while the subjects
perform daily activities is required.
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Fig. 1.
system. The primary chain which is implemented in this work is highlighted
in blue. The front end signal processing chain and the one layer neural
network is implemented on a FPAA to detect the activity in the subject.
The activity detector generates an enable signal for MEMS/piezoelectric
microphone to start recording.

The figure shows an overview of the knee joint rehabilitations

One major challenge towards designing such a system is
the large power consumption associated with high data-rates
required (f>50 kSps) to minimize information loss during the
acquisition of knee-sounds. In fact, we have recently shown
that a high sampling-rate data-acquisition system having a
wearable form-factor can operate only for several hours for
recording knee-sounds and inertial data for the knee-joint.
It should be noted however that, most activities valuable in
regards of knee-sound-emissions last for less than ~15-20
sec. Therefore, by limiting the operation of a power-hungry
data acquisition system to only these valuable activities, as
long as the activity-detection could be achieved in a power-
efficient manner, a system as such could be operated for
days with limited or no user input. In this paper, towards
achieving the ultimate goal of classifying a number of
activities, we present an early version of a very-low-power
real-time activity-classifier that can classify flexion-extension
and sit-to-stand activities.

This work shows a system which could perform feature
extraction from multiple sensors and process and analyze
the data locally with very low power consumption. Fig. 1

4784



» . ADXL203EB
Q REV.1

Accelerometer

<
=

Vin

out

Vout

Lol " Ahdbd A A Lol " bbbtk L
25 AR Y AR Y

- P T TS OV T TR WWWWWWW%&HO%&M
L e

Random
motion

Flexion and
| extension

)

Fig. 2.

-10 0 10 20 30

a) Die photograph of a field programmable analog array and the dual axis accelerometer. b) The figure shows a signal processing chain to extract

the average signal spectrum. The frond end is composed of 12 tap bandpass filters, with a Q=2 and frequencies scaled evenly from 700 mHz to 15 Hz, a
amplitude detect and a low pass filter. ¢) The output of the accelerometer is recorded for three different activities by the subject. The output response of

the fifth channel of the band pass and amplitude detect is shown.

shows a block diagram of the proposed system building on
the previous work [1] [2]. The system consists of a low
power signal processing chain which extracts the average
of the signal spectrum and a classifier using Vector Matrix
Multiplication (VMM) and Winner-Take-All (WTA). Here a
dual axis accelerometer, ADXL203 from Analog Devices,
is used for monitoring the activity of the subject. This
work uses just one axis (x-axis) of the accelerometer for
measurement. The accelerometer has a low sampling rate
as opposed to the output of the MEMS and piezoelectric
microphone and hence the system could operate at lower
frequency and lower power compared to the signal chain of
the microphone. Thus the accelerometer signal chain could
be used to detect the activity and in turn enable the recording
of acoustical emission from the knee joint via a microphone.

II. SIGNAL PROCESSING ON FPAA

The signal chain used for the signal processing is designed
and compiled on a Field Programmable Analog Array [9].
FPAA is a fully reconfigurable mixed signal integrated circuit
which uses floating gate to program the design in a non
volatile fashion. The FPAA consists of low power MSP430
microprocessor for programming the floating gates and com-
municating via a universal serial bus. These large-scale
FPAA enables analog computation with energy efficiencies
of 1000 as well as area efficiencies of 100 over digital
solutions [10]. Such high efficiency allows us to effectively
use these FPAAs in wearable devices where low power
computation is a necessity. Also reconfigurability of signal
processing chain allows us to account for the mismatch in the
system and compensate for the changes due to temperature.

This is significant because this allows for robust computation
when the device is deployed in the field.

TABLE I
POWER CONSUMPTION OF THE FRONT END

Component Power (W)
Band Pass (C4) 36 nW
Amplitude Detect 0.3 uW
Low Pass Filter 0.3 uW
Total 0.636 uW

The front end consists of 12 Gm-C filter banks followed
by amplitude detect and a low pass filter. A more detailed
analysis of linearity, distortion and dynamic range of the
second order band pass filter can be found in [11]. The
band pass filter have their frequencies evenly scaled from
700 mHz to 15 Hz with a quality factor of 2. As shown in
the Fig. 2b the output of the band pass is passed through
a minimum detector and low corner low pass filter. The
accelerometer is used to monitor different activities of the
subject under a control environment. Fig. 2c shows the output
of the accelerometer during flexion and extension, walking,
and sit to stand activities. These outputs are then passed
through the front end signal processing chain implemented
on the FPAA. Fig. 2c shows the response of the fifth channel,
from 12 parallel channels, to these activities. The bandwidth
of the low pass filter could be further reduced to have a
smoother response at the output. The power consumption of
the front-end processing chain is summarised in the table I.
Power is of the compiled front end analog processing circuit,
that is the filter bank chain, used for feature extraction.
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III. VECTOR MARTIX MULTIPLICATION AND
WINNER-TAKE-ALL

There has been significant efforts for using machine learn-
ing and neural network to perform accurate diagnosis and/or
prognosis [12]. But most of this work involves performing
data acquisition and analyzing it off chip, using clusters of
servers, which usually require large storage and bandwidth
for transmission. Such a method would not scale, when
taking into account multiple devices generating data from
multiple users. Thus there is a need for a robust as well
as low power computing method which could effectively be
used on a wearable device.
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Fig. 3. a) Shows a general NxM VMM and WTA. The weights for the
classifier are implemented using the charge on the floating gate of the
transistor. Input is at the source of the floating gate transistor. b) The figure
shows the output of 3x3 VMM-WTA implementation of an XOR function)

Classification on FPAA has been shown to be power
efficient and robust [9]. A single layer VMM and WTA is a
universal approximator, in that it can be used to perform a
XOR functionality. The VMM is implemented in the routing
fabric of the FPAA thus allowing for a high area density.
Fig. 3a shows a generic NxM VMM block and WTA. The
multiplication is performed by storing the charge onto the
gate of the floating gate transistor, which are part of the
routing fabric and work as a switch during normal operation
but could be target programmed when required [13]. The
weight update on the VMM follows the simple transistor
equation in subthreshold regime given by equation 1.
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Here , is the fractional change in the pfet surface
potential due to change in A Vg4, Uy is the thermal voltage.
Here AV}, which is the charge on the floating gate is given
by AVy, = AVjgres + AV]ﬁ’q. So the weight of the VMM is

given by the change in AVf , and is adapted using electron
injection where as Fowler-Nordheim tunneling is used as
global erase. V;,, is the source voltage of the pfet transistor
and is used as an input to the matrix. The output of the
VMM is a current signal and is an input to the winner-
take-all circuit, first introduced by Lazzaro et. al. [14], to
perform classification. The output of the Fig. 3b shows a
XOR functionality performed by the single layer of VMM
and WTA.

IV. SINGLE LAYER CLASSIFICATION

Fig. 4 shows the output for the proposed system. A
vectorized representation of the signal chain, the way it is
implemented in the open source FPAA design tools [15],
is shown in the Fig. 4a. A shift register, controlled using
general purpose input/output registers of the MSP430 micro-
processor, is used to characterize the signal processing chain.
The root mean square voltages of the 12 filter banks for two
different activities is plotted in the Fig. 4b.

The weights for the VMM were adapted outside and
programmed on the floating gate. Here a 12x2 VMM-WTA
is implemented for detecting flexion and extension cycles.
Instead of implementing a K-WTA, which could have K win-
ners, the winner-take-all circuit is designed to have just one
winner. Due to the particular topology of the winner-take-all
the output is low when it wins. For the purpose of testing,
a dataset consisting of accelerometer output during flexion
and extension cycles and sit to stand cycle was created. This
dataset was passed through the signal processing chain and
a single layer of VMM-WTA. As seen in Fig. 4c WTAI1
has its weights programmed to the values where it wins
when there is no flexion and extension cycles and WTA2
is where the detection takes place. Due to finite sampling of
the oscilloscope for the time scale used in Fig. 4c some of
the wta wins are not captured correctly which can be seen
clearly in the experiment performed with the smaller time
scale in Fig. 4d. The VMM-WTA structure with its adapted
weights, for which the detection takes place, consumes 13
W of power.

V. DISCUSSION

We present a system which classifies the signal from an
accelerometer and consumes 13.63 W of power. The system
is designed and compiled on a field programmable analog
array fabricated on a 0.35 pum CMOS process. Reconfigura-
bility of these ICs allows us to compensate for the mismatch
and temperature variation. The compiled signal chain is
shown to efficiently detect the flexion and extension cycle
of the knee-joint, by processing and classifying the output
of the accelerometer. Multiple band pass and amplitude
detect circuits are used to extract the features, average signal
spectrum, from the data. These features are used by a single
layer VMM and WTA circuit to perform classification.
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a) Shows the signal chain used to characterize the output of the accelerometer. Shift register is used to scan out the 12 channels of the front

end. Shift register is controlled by general purpose input/output registers from the MSP430 processor on the IC. b)The figure shows AC RMS of two
different activities performed by the subject. ¢c) A dataset of two activities, sit-to-stand and flexion detection, was created with goal of detecting flexion
and extension cycles in the subject. WTAL is clustered around a null and wins when the subject is not performing flexion and extension cycles. WTA2
output corresponds to detection of flexion and extension cycles. d) Figure shows the detection of flexion and extension cycles on a smaller time scale.

The low power consumption of the system allows us to
operate it and collect the data for several days while the
subject performs their daily activities. Also, this signal pro-
cessing chain would work in conjunction with the acoustic
recording of knee-joint sounds via a MEMS/piezoelectric
microphone. Future work and direction would be to feed
the system with data from several subjects and allow it to
process, analyze and classify the data. Training the weights
using the data from several subjects will make the system
more robust and reduce the rate of errors. A similar signal
processing chain could be used to analyze the acoustic data
from the microphone, to classify the clicks and sounds from
the knee-joint. We believe that the whole system would lead
to a better and more precise assessment of the knee-joint
and which could lead to tailoring the rehabilitation process
towards the need and activities of the patients.
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