
A Remote FPAA System for Research and
Education

Sahil Shah, Jennifer Hasler, Sihwan Kim, Ishan Lal, Matt Kagle, and Michelle Collins
Georgia Institute of Technology, Atlanta, GA 30332–250 USA E-mail:jennifer.hasler@ece.gatech.edu

Abstract—We present a novel remote test system, enabled by
configurable analog–digital ICs to create a simple interface for a
wide range of experiments, whether in research or educational
directions. Our remote test system utilizes a nearly identical
setup to the existing large-scale Field Programmable Analog
Array (FPAA) toolset; a mixed-mode configurable system with
a common digital interface (e.g. USB) enables a nearly seamless
transition. The system overhead requirements are straightfor-
ward, requiring simple email handling, available over almost all
network systems with no additional requirements. We present
using the FPAA devices and baseline tool framework, present
overview examples for the remote system.

We present and demonstrate a novel remote test system,
enabled by configurable analog–digital ICs to create a simple
interface for a wide range of experiments. Our remote test
system opens opportunities for a simple remote test infras-
tructure by utilizing a highly configurable large-scale Field
Programmable Analog Array (FPAA) device [7] and high-
level tool framework [8], as well as a straight-forward digital
interfaces for the resulting experimental system. The system
overhead requirements are straightforward, requiring simple
email handling, available over almost all network systems with
no additional requirements.

This paper discusses a novel remote test system, enabled by
configurable analog–digital ICs to create a simple interface for
a wide range of experiments. We have seen a wide range of
previous remote test systems that have to spend considerable
time developing their hand-tailored configurable system [1],
[2], [3], [4], [5], [6]. Figure 1 remote test system using simple
email handling, available over almost all network systems.
Independent of the distance, the system enables users from
anywhere we have an internet connection sufficient to send
and receive email. This approach minimizes computer support
setup and maintenance, relieving the pressure overworked
computer support staff, particularly in cost-conscious aca-
demic environments, trying to keep pace to maintain a larger
number of computing systems. With a single button click in
the graphical tool, the system will email the resulting targeting
code for the FPAA device to a server location, to be picked
up by the remote system, that compiles, runs, and then emails
back the target results.

This approach gives a simple digital peripheral using a
standard interface (i.e. USB), enabling a small Internet of
Things (IoT) block interfaced through an email system to an
open-source design / control tool. The resulting controlling de-
vice, whether it be directly connected through this digital port
(i.e. phone or tablet) or through a network, allowing minimal

(linux) code for programming and operation for continuous
data processing, enabling all features on the resulting system,
including sensory / actuation devices connected to this remote
platform. Whether remote or not, we see these concepts as an
easy approach for networks of remote sensor nodes, potentially
enabling real-time sensor processing that can send context
aware results while requiring minimal support overhead for the
approach. We see the opportunities both in academic, as well
as research and industrial applications. Our novel open-source
tool platform empowers the user to do seamless low-power
analog-digital CoDesign in a single environment.

This technical platform enables collaborators in different
areas to investigate items on a single platform; setting up a
system is straight-forward and capable for multiple systems.
Our novel open-source tool platform empowers the user to
do seamless low-power analog-digital CoDesign in a single
environment [8]. Our FPAA SoCs consist of an integrated pro-
cessor, I/O peripherals, and a FPAA comprised of analog and
digital components, although the approaches can be extended
to other platforms. Our approach integrates multiple open-
source tools, using Scilab and VPR [10], to develop a coherent
user-friendly design flow, with a custom software toolkit that
generates and implements high-level simulation and experi-
mental measurement of the resulting hardware system. The
ability to seamlessly move between tools designed for a board
in hand as well as a remote test system has greatly improved
the student’s interest in using either hardware platform, as well
as kept development complexity for such a complex laboratory
course under control.

This approach gives a simple digital peripheral using a
standard interface (i.e. USB), enabling a small Internet of
Things (IoT) block interfaced through an email system to an
open-source design / control tool. The resulting controlling
device, whether it be directly connected through this digital
port (i.e. phone or tablet) or through a network, can be a
potentially simple OS enabling the resulting system, including
sensory / actuation devices connected to this remote platform.

I. REMOTE TOOL FRAMEWORK AND FPAA OVERVIEW

Figure 1 shows the framework for the remote system
approach. We want the resulting structure to be as easy to use
on both the user and remote server side, requiring minimal user
maintenance, using a integrated user tool platform, and having
as few location constrains as possible. Our modifications to the
high level Xcos tools on the user side required extending the
GUI interface, as well as updating the (python) code to enable



USB

FPAA 
IC(s)

Sensors

Send 
Email to 
address

POP 
email

Send 
Measurements 
to target 
email address

Outgoing 
email 
server

Fig. 1. Detailed flow for the remote test system implementation. The design toolset in scilab / Xcos allows the user to ”send email” in addition to ”program
FPAA”. When that option is chosen, the resulting file is sent, by email into the cloud. The resulting email is POP-ed off the server, the resulting programming
files are extracted and executed, the resulting data measurement is performed on the device, and the results are sent back by email to the original sender. The
user can directly use the results in Scilab or any other data analysis program to observe their data as well as complete their analysis. The resulting flow is
enabled by having a highly configurable analog / mixed-mode system with a simple digital interface through USB, really enabling the connection as a typical
digital peripheral.

emailing the resulting compiled FPAA targeting file out from
the Virtual Machine (VM). The user will receive their resulting
data to their email location as an attached representation of the
measured results; the user can move this data into Scilab or
another analysis / plotting tool of their choice. By using an
email-based system, one would not expect real-time control
occurring through the resulting email network.

We package the entire tool flow, illustrated in Fig. 1, from
Scilab/Xcos, device library files, and compilation tools into a
single Ubuntu 12.04 VM1 that encapsulates the entire toolset
that simply requires pressing one button to bring up the entire
graphical working toolset. The approach allows us a given user
to access and use this toolset on their remote computing de-
vices with minimal effort, and we will assume this perspective
as we dig deeper into the remote system approach. We could
be designing with a single FPAA IC, multiple ICs, rack of
boards, etc. as well as a set of other components that have
some programmability. The high-level graphical tools enable
a user to be able to try different approaches to optimize the
system performance, allowing consideration of tradeoffs of
power, system utilization, time to market, etc.

The tools output a single programming file, that is a
combination of multiple smaller files compressed into a single
structure, that is used for FG programming and SRAM mem-
ory setup for the SoC FPAA. The design tools can process the
downloading of this file, as well as other devices (e.g. remote
computer, tablet). The SoC FPAA devices enable Floating-

1available at http://users.ece.gatech.edu/phasler/FPAAtool/index.html

TABLE I
FORMAT AND SUBFILES FOR THE FPAA PROGRAMMING FILE

Function Data Type Core Files
erasing Compiled tunnel revtun swc CAB.elf
and initialization (assembly) switch program.elf
measuring outputs Compiled voltage meas.elf
input (e.g. DAC) data data input vector
FG block data output info
info switch info
(num, address) target info
switch list data
Course Prog Tinj data pulse width table
Fine prog Vd table data Vd table 30mV

Gate (FG) device programming entirely on the device as an
input data stream, therefore the entire data stream, including
µP code to execute programming, simply looks like a single
stream of data to the system. The FPAA utilizes an open-
source µP, embedded 16k × 16 SRAM for program and
data memory, as well as the memory mapped registers for
FG programming. We give the file definition in Table 1.
We expect this structure will remain relatively stable across
future generations; fortunately, each programming file is self
contained for programming since it includes its own code and
parameters for programming.

The remote server platform is also kept to require minimal
resulting overhead. We utilize standard email servers to enable
a relatively stable remote platform capable with nearly zero
administrative overhead. The remote server will periodically
check for email on the server, POP the resulting message from
the server, check its control syntax, and have the object code
ready for programming. Recent FPAA devices now enable



Input Blocks

Implicit Components

GPIO

DAC

Vmeasure

GPIO

G
PI

O

G
PI

OADC

Output BlocksAnalog/ 
Digital 
Blocks

SRAM 
Memory

SRAM 
Memory

micro 
processor

USB

System Comm

USB

SRAM 
Memory

micro 
processor

Analog/ 
Digital 
Blocks

FPAA IC

System Comm

System Board

Fig. 2. Our approach is enabled through a single port of communication, through a USB port to a self contained programmable and configurable mixed-signal
IC through its programmable interface. This simplicity results in understanding both the analog and digital capability of the FPAA IC, as well as the resulting
input and output blocks for the system as well as the resulting system control, at the level allowed for the high-level tool framework (Xcos / Scilab). The
entire IC is the computing system, and all components are part of the computation. A typical user will often use digital (GPIO) or analog (DAC through
GPIO) input blocks, interfaced through the SRAM memory and µP control, and will often use digital as well as analog compiled ADC through GPIO or
voltage measurement through slower and more accurate 14bit ADC. The tool framework compiles down the resulting analog, digital, and µP components, as
well as the vector input into the system.

Floating-Gate (FG) device programming entirely on the device
as an input data stream; therefore the entire data stream,
including µP code to execute programming, simply looks like
a single stream of data to the system. Encapsulating this entire
structure in a single file requires small, unix-based code to
communicate the file to be programmed. After the device is
programmed and the input data is loaded into the processor,
the IC proceeds to compute the resulting function, also storing
data in local or in the remote server memory. The resulting
output data results is pulled together and sent out by email to
the host’s chosen email address.

When one thinks of testing a configurable analog platform,
one thinks of systems mostly having a single or a group of
analog ICs, some controlled switches, and an infrastructure to
connect to a computer to control the entire setup, as well as
run the testing interface. When looking at a remote testing
system, the testing interface layer requires further complica-
tion, depending on the particular system. In the case for a SoC
FPAA devices like we utilize in this paper, interfacing requires
communication through USB or potentially SPI ports, appear-
ing to be a typical standard peripheralx. Such an approach
enables a family of configurable hardware, utilizing a single
configurable framework and tool infrastructure to control the
resulting device. This difference in configuration provides the
opportunity for empowering our remote test system, we have
these examples for classroom use, research groups, as well as
interested users. Integrating this approach into an existing tool
framework keeps compatibility for a range of applications.

II. REMOTE USER INTERFACING CAPABILITY

Figure 2 shows the remote server was partially enabled
by a simple digital (USB) interface, with simple interfacing
between the FPAA IC (or multiple ICs) to the resulting USB

infrastructure to the host device. The input data, output data,
FG programming, and other control functions all move through
a single standard digital USB interface; the device to the
remote system looks like any other embedded, USB peripheral,
where the tools handle a similar case whether the board is
local to the tools or emailed to the remote server. We currently
use a setup with no external pins; one could connect multiple
devices, heterogeneous devices, and additional sensors, but to
the external world, the device is still a simple USB connected
device. The practical issue is understanding the particular
interfacing options available on the FPAA, as well as the
computation possible on the FPAA device. The USB interface
is connected through serial interfaces on the device; in our
case, we have the potential of a simple serial (8n1) debug
interface.

Figure 2 shows the high-level blocks representation, similar
to the corresponding Xcos diagram, both including computa-
tional blocks, as well as input and output blocks available
and their interfacing into the µP / SRAM memory block.
The arbitrary waveform generator uses data as a vector input
representation versus time in the Scilab workspace (i.e. DAC
devices) and packed with the programming file; the interface
for the data is directly set by the high-level tools. A short list
of potential on-chip interfacing options for moving data in and
out of the µP / SRAM memory are:

• General Purpose Input / Output (GPIO) memory mapped
digital registers

• hardware interrupts based on routed fabric signals
• signal DAC through memory mapped registers
• Compiled ADC coupled with FG elements in the fabric

through GPIO registers
These approaches are all voltage-mode inputs and outputs,
consistent with level=1 block definition [11] for system



-100

0

100

200

-5

0

5

10

D
ig

ita
l C

od
e

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Analog Input (V)

 IN
L 

er
ro

r (
LS

B)

Ideal Transfer Function
Measured Transfer Function

DNL <= 1LSB
Monotonic

-50

0

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-100

0

100

0.5

1

1.5

Time (s)

In
pu

t S
ig

na
l (

V
)

D
A

C 
Co

de
 

A
D

C 
Co

de
 

GND

Vdd

Compiled ADC

SRAM Memory 
(read out / sent)

DAC Bank

SRAM Memory 
(Scilab waveform)

Compiled (ramp) ADC

Compare / 
Ramp (t)

uP control 
& counting

SRAM 
Memory

Repeat 
(4k steps)Input G

PI
O

Fig. 3. Measurement of the compiled 8-bit ramp ADC used in the FPAA device. 4kSPS ADC for this 8-bit ramp conversion integrates the compare +
ramp functions compile into a single CAB, routing the digital output bit to GPIO. This simple ADC polls for the digital bit to change while counting in the
processor; more advanced blocks utilize interrupts and compiled counter blocks in the CLBs for the conversion. The ADC is not meant to be the highest
precision component, but we have a very small, monotonic ADC that we can calibrate the resulting response as necessary. Further, we show a simple example
of a simple compiled system for a first-order low-pass filter; we don’t explicitly draw the load capacitance of the circuit (output going into the ADC), because
we always have capacitance at a node, often from the routing infrastructure. We programmed the corner frequency of the LPF at 150Hz, and measured the
resulting device by applying a linear chirp signal going from 25Hz to 250Hz, showing the resulting signal attenuation, as expected, as well as the resulting
signals from the input 7-bit DAC as well as the 8-bit ramp-ADC (4kSPS). The output of the ADC inverts the resulting response from the original signal.

building. Further, blocks can have some assembly code (or
completely assembly code) as part of the functionality, there-
fore would interact with memory, potentially, more directly.
Where necessary, one can measure currents through compiled
transimpedance amplifiers, switched capacitor network, and
related circuit techniques. One key constraint on any algorithm
is efficiently using the 16k x 16 SRAM space either to hold
data, or buffer data coming through the serial communication
from the host system running the remote interface.

One representative question would be the types of Analog-
to-Digital Converter (ADC) blocks, and their applicability for
a configurable architecture. An important question is what type
of ADCs to compile in such a configurable system, particularly
in a compiled system where we have a high density of
FG devices available. One would not expect an architecture
with lower latency than a pipelined 1-bit ADC architecture,
primarily because if we had a smaller control loop, we likely
would directly compile the computation in analog circuits.
We expect these pipelined devices mostly for acquisition of
data, often for circuit debugging opportunities. We expect that
algorithmic converters, being related to the pipelined ADCs,
would most likely win over successive-approximation ADCs
because of not requiring the design of a separate DAC for the
system. The approaches get closure on the most promising
ADC IP blocks to compile down for these architectures.

Figure 3 shows a simple compiled ramp ADC converter
to illustrate the flow from input SRAM memory data to the
computed output SRAM memory data. The resulting simple
8bit ramp ADC illustrates using the digital infrastructure and
µP to move analog signals into stored SRAM memory; the
simplicity only requires part of a single CAB element while
still giving reasonable monotonic performance with some
curvature due to the nonideality of the current source element
creating the ramp; we will show measurement examples at
4kSPS. Figure 3 also shows a complete computing loop for

data through a board, as we see for a remote test, where we
start with data loaded into SRAM as part of the programming
structure, processes through one of multiple memory mapped
7bit DACs, through a first-order LPF block programmed with
a corner frequency of 150Hz, through the above ADC block,
to arrive back as stored solution vector in SRAM that is
transmitted back to the user.

REFERENCES

[1] Ananda Maiti et.al, “Merging Remote Laboratories and Enquiry-based
Learning for STEM Education,” IJOE, 2014.

[2] V.J. Harward et. al, “The iLab Shared Architecture: AWeb Services In-
frastructure to Build Communities of Internet Accessible Laboratories,”
Proceedings of the IEEE, 2008.

[3] D. Lowe et. al, “Evolving Remote Laboratory Architectures to Lever-
age Emerging Internet Technologies,” IEEE Transactions on Learning
Technologies, 2009.

[4] N. Suosa et. al, ’An Integrated Reusable Remote Laboratory to Comple-
ment Electronics Teaching’, IEEE Transactions on learning technologies
2010

[5] M. A. Bochicchio et. al, “Hands-On Remote Labs: Collaborative Web
Laboratories as a Case Study for IT Engineering Classes”, IEEE
Transactions on Learning Technologies, 2009

[6] M. Cooper et. al, “Remote Laboratories Extending Access to Science
and Engineering Curricular”, IEEE Transactions on Learning Technolo-
gies, 2009.

[7] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich,
S. Nease, and S. Ramakrishnan “A Programmable and Configurable
Mixed-Mode FPAA SOC,” IEEE Transactions on VLSI, available on
IEEE Xplore January 2016.

[8] M. Collins, J. Hasler, and S. George, “An Open-Source Toolset Enabling
AnalogDigitalSoftware Codesign,” Journal of Low Power Electronics
Applications, January 2016.

[9] W. Wolf, “Hardware-software co-design of embedded systems,” Pro-
ceedings of the IEEE, 1994, 967–989.

[10] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz. VTR 7.0: Next Generation Architecture and CAD System
for FPGAs. volume 7, pages 6:1–6:30, June 2014.

[11] C. R. Schlottmann and J. Hasler, High-Level Modeling of Analog
Computational Elements for Signal Processing Applications IEEE Trans
on VLSI, 2014.


