
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Integrated Floating-Gate Programming
Environment for System-Level ICs

Sihwan Kim, Jennifer Hasler, Senior Member, IEEE, and Suma George

Abstract— We present the first integrated system to handle
heterogeneously used and programmed floating-gate (FG)
elements in a single modular approach. We focus on IC design,
integration, characterization, and algorithmic development
of an integrated FG programming system for a large-
scale field-programmable analog array. We work through
tunneling approaches to initialize the FG devices for precision
programming, as well as hot-electron injection approaches for
precise device programming.

Index Terms— Floating-Gate Programming.

I. INTRODUCTION

WE PRESENT the first IC system to program hetero-
geneous digital and analog floating-gate (FG) ele-

ments in a single modular approach. This paper focuses
on the IC design, integration, characterization, and algo-
rithms of an integrated FG programming system for system-
level ICs, such as large-scale field-programmable analog
arrays (FPAAs) [1], [2].

Fig. 1 shows the high-level view of the current FG program-
ming approach implemented in this IC system. This program-
ming system only requires that the IC user simply download
the desired programming file, including code and FG devices
to program into the IC. The on-chip components, such as
DACs, ADCs, and microprocessor (μP), for programming are
drop-in modules for a larger programmable system design.

This paper’s approach builds an FG programming algorithm
requiring only a few fixed-point computations. This paper
requires a fresh look into FG programming techniques and
algorithms, particularly, when the FG programming approach
must work for highly diverse circuit functions. Precision
programming of FG devices uses hot-electron injection due to
the nearly ideal selectivity between the devices, while global
initialization uses electron tunneling due to the relatively
poor device selectivity [3], [4]. Target programming using
hot-electron injection requires measuring the channel current
(14-bit fixed-point value) and computing the voltages
(7-bit fixed-point DAC value) for the next injection pulse.

These approaches are based on the previous component-
level hardware structure [5], hot-electron injection [6], [7],
and discussions on programming very low target currents [8].
The previous MATLAB-based algorithms required extensive
floating-point computations. Specialized FG circuit program-
ming, such as voltage sources [9]–[16], or standard digital

Manuscript received April 6, 2015; revised July 21, 2015 and
October 2, 2015; accepted November 5, 2015.

The authors are with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332-250 USA (e-mail:
jennifer.hasler@ece.gatech.edu).

Digital Object Identifier 10.1109/TVLSI.2015.2504118

Fig. 1. FG programming approach we describe in this paper, enabling a direct
download, as typical of digital programming (i.e., SRAM chains for FPGAs)
has programmed switch and parameter information. This process empowers
through complete on-chip FG analog and digital targeted programming to a
heterogeneous set of FG circuits and computing devices. The programming
structure uses on-chip DACs, ADCs, and a 16-bit open-source processor
available for postprogramming computation. From the user’s perspective, after
their design has been compiled, like on a large-scale FPAA, the resulting
programming operation looks like a typical data-download operation to an
embedded device.

memories [17]–[22] are both far too constraining for a hetero-
geneous array of computations; nondigital memory approaches
fall short of user-friendly interfaces (e.g., downloading a
device switch list). This paper experimentally shows the mea-
sured results unless otherwise mentioned.

II. FG PROGRAMMING INFRASTRUCTURE

We first discuss the infrastructure and programming
framework before jumping into the physics and program-
ming discussions. Fig. 2 shows our standard for accessing
the FG devices for programming. We show a representative
structure, including switches and active devices, typical of a
computational analog block in a large-scale FPAA device [25].
For programming, the entire circuitry gets reconfigured into
a single crossbar array. We program in a crossbar array
because hot-electron injection is a product of the current in
the transistor channel and the voltage between the drain and
channel potentials (≈near source voltage); by only allowing
current for a particular column and by only allowing a

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. When using a heterogeneous array of FG devices, we require that all FG devices are reconfigured into a single crossbar array of FG devices. In this
configuration, we can program using hot-electron injection with nearly perfect selectivity, because a device requires channel current and high voltage from
the drain-to-channel potential. Sometimes, we have additional control structures to guarantee transistor currents are turned OFF when not selecting a column;
for example, a switch programmed ON will have some current in the case when its Vg is at Vdd . Reconfigurability between the program mode and the run
mode is essential to enabling programming of all potential FG elements. The significance of this crossbar array and the gate and drain selecting multiplexers
is that we can talk about addressing, measuring, and programming a single device in the array; equivalent to a device separated from the rest of the array.

high voltage between the drain and source terminals on a
particular row, we are assured that only the desired device
is affected. As a result of the nearly ideal selectivity due
to the AND process for hot-electron injection and resulting
selectivity for each transistor’s current–voltage response,
this entire structure effectively collapses as a single
FG pFET device with a selected gate and drain terminal.
We globally erase and restore devices by electron tunneling
effects, partially because of the limited selectivity of these
two-terminal devices typical of most physical two-terminal
devices. When we program a device, we can measure the
device properties in as close a situation as desired to the actual
operation, therefore minimizing the effect of parasitic elements
degrading the resulting programming accuracy when we move
from the program mode to the run mode.

Fig. 3 shows the board and on-chip infrastructure. Fig. 3(a)
shows the board-level infrastructure for programming and
accessing the FG programming structure, as well as the
digital infrastructure for accessing the chip during the normal
programming operation. Fig. 3(b) shows the high-level
block diagram for the on-chip programming structure,
which includes utilizing an open-source μP, embedded
16 k × 16 SRAM for program and data memory, as well as
the memory-mapped registers which control the elements for
programming. We see in Fig. 2 that we simply need to control
the gate and drain voltage (through two separate DACs) and
then measure the resulting device current, which is at the core
of the structure. The accuracy of the gate and drain DACs is
not directly correlated with the final programmed accuracy; the
frequency and noise of the ADC, which is 14 bit, are directly
related to the final programming accuracy.

III. ON-CHIP INTEGRATED FG PROGRAMMING

Our FG programming relies on a combination of electron
tunneling for erasing and resetting FG devices and hot-electron
injection for programming FG devices. Fig. 4 shows the
FG programming framework, with the resulting tunneling and
injection steps. Over Sections III-A–III-D, we will discuss
the global erasing and initialization (reverse tunneling) steps,
FG recovery by injection, FG rough programming through
open-loop injection, and final short step of FG fine program-
ming through predictive FG calculations.

A. Global Array Erasure and Initialization

Erasing a block requires raising an entire block of tunneling
junction voltages (Vtun) to a sufficiently high voltage to move
toward a high FG voltage, which in turn results in a low
channel current (i.e., fA in a pFET device) while still allow-
ing programming to the desired target location. We initially
tunnel all the FG values to a high voltage that ensures a
pFET device has no channel current, and then we perform
a reverse-tunneling operation to bring FG voltages to a small,
but negligible, pFET current for a gate selection voltage at 0 V.
Electron tunneling for erasing blocks is a common approach
for erasing FG devices [3]–[7]. The 12 V charge-pump IC is
only operational during the tunneling erase operation. One
could choose to tunnel the voltage just enough to reach a
sufficiently low current and measure a few representative
currents, expecting that all the devices are erased. Unfortu-
nately, tunneling current measurements for identical operating
conditions show a variability of 2–3 (or more), resulting in
exponentially different rates between the devices. Therefore,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: INTEGRATED FG PROGRAMMING ENVIRONMENT FOR SYSTEM-LEVEL ICs 3

Fig. 3. Integrated infrastructure blocks, including test board, high-level
IC schematic for programming, and detailed programming schematic. (a) Sys-
tem interface block diagram used for programming a representative FPAA
device with the on-chip open-source MSP430 μP and memory. The pri-
mary off-chip infrastructure is μP IC-controlled high-voltage power handling
(12 and 6 V charge-pump ICs); these components were left off-chip to
minimize the IC design risk. A USB to serial converter IC was chosen to
interface to μP. (b) Core on-chip circuit infrastructure used for μP-based
programming arrays of FG devices. The μP and integrated 16 k × 16 SRAM
block programming FG devices through a sequence of memory-mapped
registers for the DACs supplying the gate and drain voltages, the FG current
measurement structure using a ramp ADC, and two pFET transistors to
convert from the current to the voltage. We estimate the processor requires
approximately 200 pJ per instruction, including the local memory access.

without measuring all the devices, we tunnel enough so that
each device’s FG voltage is sufficiently high.

Reverse tunneling turns the polarities around on the
tunneling junction to bring the resulting currents back toward
a small but reasonable current for injection with less device
mismatch than tunneling. The reverse tunneling phase requires
lower voltages; for the 350-nm IC process, voltages between
0 and 6 V are used, resulting in lower charge across the
tunnel oxides. The resulting code for implementing these
two phases only requires applying the desired voltages, waiting
a particular timeframe (allowing the processor to shut down or
download programming instructions), and resetting voltages to
the normal operating condition.

B. First Injection Step: FG Recovery

Once we have cleared all of the FG devices (FG voltage
sufficiently high), we begin the process of programming
FG devices that have nonnegligible current. FG pFET devices
that we do not program will stay in accumulation and pull
negligible levels (<1 pA) of current, even for scaled-down
devices. Furthermore, our FG devices in the run mode are

biased with Vg at roughly 0.6 V, enabling the algorithm to
observe lower current values by measuring current at Vg at 0 V.
For the IC used for measurements, we had a constant leakage
current, due to the reverse-bias source–drain junction currents
near 1 nA, thereby enabling current measurements in the
10–30-pA range even with this high leakage current. For a
switch FG device, we typically measure 30 pA of current
for Vg at 0.6 V but 1 nA for Vg at 0 V; for devices
with larger FG capacitive coupling, this effect is even
stronger.

The initial process simply looks for a significant channel
current (i.e., 20–30 nA) when measuring current at Vg = 0 V
for a switch element corresponding to 1 nA for Vg = 0.6 V;
levels for a significant channel current differ for different
groups of FG devices with different capacitive couplings.
Furthermore, we have a programming sequence in parallel
to what is shown in Fig. 4 for lower currents (<1 nA for
switches) where we just simply inject until we have roughly
1 nA of current for Vg = 0 V, enabling targeted currents
between 30 pA and 1 nA as needed. One can modify the
drain voltage for the pulses to move the current values closer.

C. Approximate FG Programming by Injection

Target programming typically requires measuring channel
current, comparing it with the desired current, performing a
range of calculations for the conditions (i.e., drain voltage)
during the next injection pulse, and repeating until it suffi-
ciently converged. Previously, these calculations were rather
complex, particularly, for a fixed-point embedded process-
ing environment, giving an opportunity to reformulate this
approach to fit better with fixed-point arithmetic.

We start by describing our measurement of the channel cur-
rent at a compressed FG voltage through the 14-bit ramp ADC,
as shown in Fig. 5. We are measuring an FG pFET device
through the drain current switched through the programming
crossbar infrastructure. Measuring current typically requires
a conversion from current to voltage, and we potentially
require four-to-seven orders of magnitude in our measurement.
Therefore, we need some form of compression; in this case,
a better approach would be translating the current into a
representation near the original voltage difference from the
well voltage to the FG voltage. We use a pFET device with
the drain voltage tied to the gate voltage with the special
case of the well voltage tied to the source voltage for our
measurement circuitry. Fig. 5 also shows the reduced circuit
to look at the resulting relationship between the FG voltage
and the resulting Vout. A straightforward, large signal analysis
of this circuit (assuming matched devices) shows

Vout = 2(Vdd − Vfg). (1)

Threshold voltage variations simply require adding terms to
the resulting structure.

We look next at the resulting-type S curves, taken from
an FG switch element, looking at this Vout, which is directly
related to Vfg. For a starting (subthreshold) drain current,
injection decreases the FG voltage, increasing the drain
current, further decreasing the FG voltage. The process slows
down as the current moves to above-threshold operation



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Algorithm steps for programming an array of FG devices. Top: block diagram of the key required programming steps. The overall programming
sequence requires putting the programming code into memory (for each operation), erasing and recovering devices through electron tunneling, reverse tunneling,
and an additional recovery injection step, injecting FG switches where used, and then using a sequence of course and fine injection phases to reach the target
for the subthreshold and above-threshold currents. In each case, switch data are loaded into the data SRAM block, programmed, and then additional pages
of data are input to finish a phase if necessary. The final steps are loading the SRAM memory for the code desired (if necessary) for the IC operation and
then switching the IC into the run mode. Left: graphical illustration of the FG programming steps following the procedure for a range of FG devices starting
and ending at a desired target value. Right: experimental data showing actual trajectories of four FG devices through the first four programming steps; Fig. 5
will show the remaining precision injection measurements. The goal is to get devices close to target programming. Our devices operate in the run mode,
biasing Vg at roughly 0.6 V; our measurements start with Vg at 0 V to measure devices with low currents and enable FG precision targeting for currents
below the ≈1-nA measured leakage current from the array.

(defined as significantly greater than the threshold current
or Ith), because as the FG voltage decreases, the increased
drain current decreases the drain-to-channel voltage available
for injection due to the additional voltage drop across the
channel. This response, designated S curve, given the shape
of the response.

Fig. 5 shows a measurement of Vout after an injection pulse
(always for Vd to 0 V for a 6 V Vds) versus the initial
measured Vout; this process was repeated until reaching a
near steady-state solution. For these measurements, we used a
pulsewidth of 10 μs. We measure the output through the ADC,
which follows the linear relationship:

Vout[n] = 0.0001602a[n] + 0.3490 (2)

where a[n] is the 14-bit integer code (0 through 16 383)
measured in the ADC (we can keep all the codes within
the 14-bit code on the 16-bit processor). Fig. 5 also shows
two straight-line curve fits to the resulting data, as well as the

table for the equation both in Vout and a, allowing simple,
fixed-point computations for targeted programming.

Typically, we use a single pulse time width Tinj for every
pulse, although the timing could be modified where desired.
Therefore, the better the computational model, the fewer the
number of pulses, and the shorter the resulting programming
time (assuming the computation is fast). The fundamental
model for hot-electron injection current (Iinj), using transistors
operating with the subthreshold or near subthreshold bias
currents [23], [24]

Iinj = Ise f (Vfg,�dc) ≈ Iinj0

(
Is

Iso

)α

e�dc/Vinj (3)

where Vinj represents the one parameter for the f (·, ·)
linearization. with all voltages relative to its Vdd . At each step,
we should be exponentially decreasing the percentage change
needed for the target, improving 1 bit of accuracy per iteration.
Many combinations of Vg and Vd schemes are possible for the
algorithm. The S curves have exponential growth in FG voltage



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: INTEGRATED FG PROGRAMMING ENVIRONMENT FOR SYSTEM-LEVEL ICs 5

Fig. 5. Movement from the basic FG circuit array elements to course programming algorithm. Path from FG to Vout: crossbar network of indirect FG devices
communicates through the drain current outputing a voltage through two pFET devices directly related to the FG voltage. Each FG device must be measured
as well as enabled for hot-electron injection. Circuit analysis: equivalent circuit from the FG voltage (Vfg) to the output voltage (Vout). Using the same size
(or similar size) pFET devices (Vsw = 0) implies that transistor k match, resulting in �Vout / �V f g = 2. Measured data from Vout[n] (start) to Vout[n + 1]
(final): measurement of the final value after injection for Vout on the current measurement versus the initial value before injection for Vout on the current
measurement for maximum injection drain voltage pulse (6 V). Two straight-line curves, modeling the subthreshold part of the regime and the above-threshold
part of the regime, enable the fixed-point computation for the updates for the on-chip μP with a simple fixed-point multiply and addition operations. Vout
to course programming: using this data, the first initial injection jumps require simple operations (that can be stored in a table) due to the linear modeling,
making an open-loop jump for a particular number of pulses or pulsewidth, based on the target value, as well as for iterative jumps based on Vout measurement
to get the FG voltage within a single pulse spacing. Lower equations: resulting extracted (and used) Vout equations expressed both in the measured voltage,
as well as in the measured 14-bit ADC codeword (a[n]).

(exponentially growing from an unstable equilibrium) for the
subthreshold and near-threshold measurements and exponen-
tial convergence (exponentially decreasing toward a stable
equilibrium) for higher above-threshold measurements.

From this framework, the next stages for the programming
algorithm include a first injection phase, then a measured
injection phase to get results within one pulse step, ready
for the last sequences of fine programming. Fig. 4 shows the
results of four representative trajectories where target levels
are 0.5, 1, 5, and 10 μA. Since the starting drain current and
measured Vout are roughly the same (≈1–2 nA), and we have
good matching between these parameters on an IC, we use
a first injection pulse to approximate but not overshoot the
target level. From the extracted linear curve, we can make a
table (shown in Fig. 5) of the target value as a function of the
number of pulses on a given device. A longer pulsewidth is
roughly equivalent to multiple pulses of the same total time.

The table is not large, since in 29 steps, we reach the
cross over point, and in 48 pulses, we are at the top of the
second curve, resulting in under 500 μs for this open-loop
programming step; a full 14-bit measurement, using a typical
25-MHz clock, takes roughly 1 ms to complete, so these
injection measurements, even at 6 V, are shorter than a full
measurement. These approaches are not limited by the speed
of the μP. This first step does not require an additional
measurement, reducing the programming time.

Next, μP calculates the number of pulses, based on mea-
surement, to reach within one pulse of the target without
overshooting the device. Effectively, if we had zero mismatch
in the array, this step would be unnecessary, but we use this
step to get devices within one injection step even with potential
device mismatches. We will repeat this step as needed.

D. Precise Targeted FG Injection Programming

Our programming approach starts by measuring the desired
device current, comparing that result with the desired target
result, and computing the desired drain and/or gate voltages
used to reach the desired target without overshooting the
desired result. After the system applies the programming pulse,
it proceeds to measure the new device current and repeats until
sufficient accuracy has been achieved.

Targeted programming in one sense is the one aspect
in this paper that leans heavily on the previous history of
FG programming algorithms, including targeted subthreshold
and near-threshold devices [7], adaptive targeting of sub-
threshold currents [6], and early efforts using on-chip ADC
for current measurement [5]. In another sense, our approach
for this phase of programming takes a different turn by
constraining/considering FG targeted programming using the
fixed-point, reduced arithmetic using lower precision DACs
than the precision of the targeted value while still obtaining
the required high accuracy on a single FG device.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6 shows representative measured subthreshold and
above-threshold target injection programming. μP computes
resulting error between the target value and the measurement
value after a measurement. That error estimates the optimal
drain voltage, without overshoot, for the next injection pulse.
The resulting processing requires first finding the bit where we
have the next significant error, then finding the resulting drain
DAC code to minimize the error for that bit, using the resulting
few bits of the DAC code that are computed related to the
next few bits of the error approach. Our approach measures,
pulses all devices, and then repeats until error is minimized
to minimize the effect of voltage transients after the injection
supply ramps up to, and down from, the 6 V supply.

Fundamentally, the task is controlling the injection process
through a sequence of measurements and pulses of fixed
time (Tinj), to hit the desired target in as few pulses as possible
without overshooting the target. The previous process moves
Vfg reasonably near its desired target (i.e., within 100 mV),
minimizing the amount of FG dependence when modeling
injection current, and ignoring the dependence of Iinj on Vfg
(subthreshold and above VT 0 currents). Pulses are modeled as

�Vfg[n + 1] ≈ �Vfg[n] − Iinj0Tinj

CT
e−�Vd/Vinj (4)

where Vfg[n] is the FG voltage at programming iteration n,
Tinj for injection pulse, and we now set Iin j0 to this phase
injection current at �Vd = 0.

Drain voltage results in an exponential factor for the Vfg
change per iteration, enabling the system to improve on
MSB as well as LSB through a compressed, linear drain
voltage. Fig. 6(d) shows a shift of nearly a factor of 1000 in
injection current change, resulting in a factor of 1000 change
in the FG voltage, over a range of 1 V change in the drain
voltage, due to the exponential dependence between Vd and
injection current. An increase of 3.5 codes results in roughly
a factor of two, corresponding to correcting the next least
significant bit for the resulting error. Typically, we will tabulate
the resulting error size and Vd required to get sufficiently close
(i.e., at least one additional binary bit of resolution) to the next
iteration. The exponential function between the drain voltage
and the resulting FG charge/current change enables a wide
dynamic range of FG changes with a linear voltage range. This
approach does not require high-precision DAC components;
the drain voltage (injection pulse) and gate voltage are 7-bit
DACs.

Although one could choose a drain voltage pulse for
optimal convergence, we give some safety margin resulting
from mismatches in the Vinj parameter between the FG
devices; systematic characterization is beyond the scope of
this paper but the subject of future discussions. Potentially,
adaptive modeling for Vinj during programming could be
used, as initially proposed in [6], to decrease the total number
of resulting pulses for successful programming.

A practical issue with this current DAC implementation is
a nonlinear step for low voltages. We have a code for 0 V,
but the next code is typically 0.4–0.5 V with nearly linear
spacing for higher values. For a typical value Vinj of 150 mV,
a change of 450 mV reduces the effect by a factor of roughly

20; having a pulsewidth ten times greater (10 μs → 100 μs)
roughly gets to the next least significant bit to correct.
Therefore, the algorithms have two cases, one for a full size
drain-to-source injection pulse and another for a changing
drain-to-source injection pulse with a wider pulsewidth.

The measuring ADC (14 bit) is the component that requires
accuracy to program the FG to a precise value. For targeted
programming, one key issue not addressed at this point is the
accuracy of the resulting measurement, in particular, what to
predict in terms of the noise, the shape of the noise, and if
we average to improve the resulting measured accuracy. The
theoretical limitation in accuracy comes from using a 14-bit
ADC over the (roughly) 2 V output voltage range, resulting
from 1 V shift in FG voltage for the measured device. The
LSB for the 14-bit ADC results in 61 μV in FG voltage accu-
racy, resulting in 0.166% error for the subthreshold currents
(κ = 0.7). A single electron changes the FG voltage 10 μV for
a total FG capacitance of 16 fF; a larger total FG capacitance
results in a proportionally lower voltage per electron.

These results show that Vout would not be the source of
noise, but the noise source tends to be a combination of
comparator noise, input ramp noise, and clock jitter into
the resulting counter. The measured resulting noise at Vout
through the 14-bit ADC for bias currents throughout the entire
measured current range shows that the noise is roughly five to
seven codes for a standard deviation (two codes as a function
of USB power supply noise, lower noise at lower current), the
noise is a weak function of the resulting current (increases
a factor of 2 over 4+ orders of magnitude in current), even
though the resulting three-transistor circuit bandwidth is not
constant, and the resulting measured noise spectrum is flat,
characteristic of thermal noise. Since the noise follows a
thermal noise spectrum, we expect that we can average the
values to get further accuracy. We find the measured noise
occurs at roughly the 10-bit/11-bit measurement level (<1–2%
for the subthreshold currents); therefore, we need to employ
averaging to get accurate measurements for the last 3 bits of
accuracy. Averaging four samples results in one additional bit
of accuracy; the final measurements use 16 samples.

IV. SUMMARY OF FG PROGRAMMING: PERFORMANCE

AND HISTORICAL PERSPECTIVE

We focused on the IC design, integration, characterization,
and algorithmic development for an integrated FG program-
ming system. We used a recent FPAA IC enabled with an
on-chip processor to experimentally demonstrate this
system [25]. We use hot-electron injection for precision
programming of FG devices due to the nearly ideal selectivity
between the devices, whereas we use electron tunneling for
global initialization because of their relatively poor device
selectivity. We discussed the foundations of FG devices
and programming, including electron tunneling and
hot-electron injection. We presented the methods, approaches,
and infrastructure, both on-chip and on-board, for
FG programming. We discussed this programming algorithm
from erasing, setting up FG charge to be ready for program-
ming, methodology and approach for course programming
steps, and methodology and approach for precision targeting



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: INTEGRATED FG PROGRAMMING ENVIRONMENT FOR SYSTEM-LEVEL ICs 7

Fig. 6. Precision programming measurements for the subthreshold and above-threshold currents, showing representative course injection, measured course
injection (single Vd ), and precision target injection. (a) Four target current measurements for the subthreshold currents. (b) Four representative current
measurements for the above-threshold currents. We programmed several different FG devices to these currents and summarize the average measurement error
as well as the standard deviation over the average current from these multiple measurements using this entire programming infrastructure. Since injection
current and the change in FG voltage are an exponential function of drain (Vd ) voltage, the resulting drain pulse is approximated by pulling apart the difference
of target and measured values. (c) Percentage accuracy for target programming for a range of currents, including the standard deviation after performing
multiple injection target programming rounds. (d) Values for relevant drain DAC codes, and their change on the injection current through a change in Vd
during the programming injection pulse. A constant Vinj of 150 mV (typical value) is assumed for these calculations; in practice, there is some weak curvature
to these calculations over this range of evaluation. A change of 4 (2 bits) occurs for the transition through seven codes or 210 mV.

steps, all based on the opportunities afforded to us through
the current infrastructure.

Table I summarizes the memory requirements, pulse, and
computation time for programming steps, and resulting energy
estimate required for performing these steps. Table II shows a
typical switch list for the coordinates of the FG devices to be
programmed, their resulting current to be programmed (where
relevant) or switch type, as well as the type of FG device
(i.e., particular CT ) used. We programmed many FG devices
in a large array (over 200 000 devices) using these definitions
that can be compiled from higher level tools. Fig. 7 shows
the die photographs of the key components for programming,
including the programmer module (DACs, ADCs, and so on),
the open-source MSP430 μP, and the resulting 16 k × 16
SRAM block used for the data and memory. The biggest issue

Fig. 7. Die photo of the programmer infrastructure, μP, and SRAM memory
(16 k × 16) in a 350-nm CMOS process. The area of the SRAM memory is
much larger than the other two blocks.

in terms of size and power dissipation during programming is
due to SRAM size and communication.

The time estimates do not include the required measurement
time, roughly 7-ms per measurement requiring 0.5 s to
program a single targeted device, which in the current



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Pictorial history of FG circuit programming algorithms developed at Georgia Tech, where we show the complexity for on-chip computation, as
well as board and overall infrastructure required for a programming step. FG devices started from the original single transistor synapse learning device [4],
and developed into a range of FG circuit applications (one summary in [3]). The approaches start with external bench-top instruments programming a few
FG devices [3], to an interface PC board with simple interface to allow computer control [6], to a PC board + field-programmable gate array (FPGA) board
solution to perform the programming infrastructure along with MATLAB programming control [7], to having some of the circuit infrastructure on board as a
programmer module [5], with an on-board microcontroller with MATLAB control of the programming algorithm, and to final our current integrated solution
with the entire programming control and infrastructure entirely on the IC requiring no μP control over the process other than writing the proper file format
to the IC. At each level, we roughly increased the number of FGs routinely programmed by an order of magnitude, going from 10 to 100, to 1 k to 10 k to
our current structure routinely programming arrays of 100 k or larger, such as our current family of FPAA devices, further enabling larger and larger system
application solutions. Our approach also enables using both direct and indirect programming, whether we have nFET or pFET devices.

TABLE I

TABLE OF PARAMETERS FOR μP MEMORY SIZE, TYPICAL COMPUTATION

TIME, AND RESULTING ENERGY ESTIMATE FOR
THAT FULL OPERATION

implementation consumes most of the resulting programming
time. Practically, this limitation means we use injection
supply at 6 V. The Vout measurement requires less than 1 ms
for currents less than 1 nA; therefore, this component is not a
limitation, and the measurement can be further accelerated as
needed. The resulting issue is measurement through a single
14-bit ramp ADC used in our IC required to measure the
full resolution using a 10-MHz down sampled clock (from
20–25-MHz processor clock). We see an opportunity in
building more intelligence into the ADC measurement based
on variations on the ramp function. For example, we can
use the ADC as a threshold when we need a course target
voltage. As another example, we can see setting the ramp
between the 6- and 8-bit linear DAC values to enable faster
precision measurement, increasing the ramp measurement by
a factor of 64 or further. We see these issues as being the
next level question for programming large-scale FG arrays.
Furthermore, as devices scale to millions of devices, we can

TABLE II

PART OF TYPICAL SWITCH LIST

visualize using parallel measure and program components,
organized for blocks of FG devices used to minimize the
programming time. The ramp ADC structure could easily
become a parallel bank of ADCs, and the small amount of
μP assembly code could allow for multiple device operation.

The programming approach shown in Fig. 2 focused on
enabling arrays of arbitrary FG devices, creating the mini-
mal number of rules/constraints for this implementation, and
thereby separating the design of FG circuits and systems
from the FG programming issues. Large FG systems require
automatic programming of arbitrary circuits, particularly for
systems with high configurability that have to be enabled
by higher level tools. These approaches required going past
the basic FG transistor concepts, operation, and program-
ming physics, including requiring hot-electron injection for
precision programming with electron tunneling for erasure
(see [3], [4]) to developing a structure that all the FG devices
can be reconfigured into a 2-D crossbar array for program-
ming. This novel perspective enabled a range of developments,
from external bench-top instrument programming [3], to a
PC board controlled programming [6], to a PC board + FPGA
board solution programming [7], to an on-chip module +



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: INTEGRATED FG PROGRAMMING ENVIRONMENT FOR SYSTEM-LEVEL ICs 9

PC board programming [5], and finally resulting to the fully
integrated solution presented in this paper.

This paper presents the first integrated system to handle
heterogeneously used and programmed FG elements in a sin-
gle modular approach. Fig. 8 shows the progression from the
beginning of the programming approach (shown in Fig. 1) of
FG arrays, which has been a systematic march toward on-chip
integration, while in parallel continuing to build structures
enabling on-chip analog and digital signal processing, includ-
ing configurable architectures. In all the cases, we have the
capability to program a general FG array, therefore requiring
no predefined constraints except for the basic configuration
rules during programming. The on-chip processor enables
an embedded programming approach not done outside of
MATLAB, unlike other previous approaches. Our technical
approach builds on a novel, fixed-point, limited infrastructure,
potentially allowing a translation to verilog processing for a
dedicated block, reducing the power required (as compared
with μP for programming where required). In applications
requiring μP, it often makes sense to utilize that resource
directly. Low milliwatt programming power consumption is
acceptable for USB downloading data into the IC.

Other approaches have built more custom designed pro-
grammer modules for a range of applications. One of the
first developed was a specialized method for programming
a range of voltage sources, called epots [9], for a bench-
top user-friendly programming experience, requiring a signif-
icantly larger overall FG cell to perform this one function.
A few additional improvements to this approach have been
developed since [10], [11], [13], and are used in multiple
applications [12]. Often, when a custom IC using FG devices
is built, a custom programmer dedicated to the particular appli-
cation [14]–[16], requiring FG circuit and programming exper-
tise for every IC being developed (as opposed to the approach
described here). Finally, one sees the ultimate custom applica-
tion, nonvolatile digital memory, as well as the model for the
general programming structure used in this discussion. A good
overview of EEPROM/flash history was presented at ISSCC
2012 [22]. Current EEPROM devices already store 4 bits (16
levels) in a single transistor of 100 nm×100-nm area in a 32-
nm process [17], [18]. Recent data on EEPROM devices show
commercially announced devices at 15 nm (Hynix, IEDM) and
19 nm (Toshiba/SanDisk [19], [20] and Samsung [21]) as well
as the production of 32-nm devices.

ACKNOWLEDGMENT

The authors would like to thank S. Nease who worked on
porting programming circuits into this current architecture.

REFERENCES

[1] C. R. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A digi-
tally enhanced dynamically reconfigurable analog platform for low-
power signal processing,” IEEE J. Solid-State Circuits, vol. 47, no. 9,
pp. 2174–2184, Sep. 2012.

[2] R. B. Wunderlich, F. Adil, and P. Hasler, “Floating gate-based field
programmable mixed-signal array,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 8, pp. 1496–1505, Aug. 2013.

[3] P. Hasler, B. A. Minch, and C. Diorio, “Adaptive circuits using pFET
floating-gate devices,” in Proc. IEEE 20th Anniversary Conf. Adv. Res.
VLSI, Atlanta, GA, USA, Mar. 1999, pp. 215–229.

[4] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead, “Single transistor
learning synapses,” in Advances in Neural Information Processing
Systems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge,
MA, USA: MIT Press, 1994, pp. 817–824.

[5] A. Basu and P. E. Hasler, “A fully integrated architecture for fast and
accurate programming of floating gates over six decades of current,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6,
pp. 953–962, Jun. 2011.

[6] M. Kucic, A. Low, P. Hasler, and J. Neff, “A programmable continuous-
time floating-gate Fourier processor,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 48, no. 1, pp. 90–99, Jan. 2001.

[7] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Adaptive algorithm
using hot-electron injection for programming analog computational
memory elements within 0.2% of accuracy over 3.5 decades,” IEEE
J. Solid-State Circuits, vol. 41, no. 9, pp. 2107–2114, Sep. 2006.

[8] P. D. Smith, D. Graham, and P. Hasler, “A kappa projection algo-
rithm (KPA) for programming to femtoampere currents in standard
CMOS floating-gate elements,” Analog Integr. Circuits Signal Process.,
vol. 50, no. 1, pp. 83–91, 2008.

[9] R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, and S. P. Deweerth,
“A CMOS programmable analog memory-cell array using floating-gate
circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 48, no. 1, pp. 4–11, Jan. 2001.

[10] J. Lu and J. Holleman, “A floating-gate analog memory with bidirec-
tional sigmoid updates in a standard digital process,” in Proc. IEEE Int.
Symp. Circuits Syst., May 2013, pp. 1600–1603.

[11] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-
electron injection programming of floating-gate voltage bias generators
at 13-bit resolution,” IEEE J. Solid State Circuits, vol. 46, no. 11,
pp. 2685–2692, Nov. 2011.

[12] J. Lu, S. Young, I. Arel, and J. Holleman, “A 1 TOPS/W analog deep
machine-learning engine with floating-gate storage in 0.13 μm CMOS,”
IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 270–281, Jan. 2015.

[13] L. Zhou and S. Chakrabartty, “A 7-transistor-per-cell, high-density
analog storage array with 500 μV update accuracy and greater than
60 dB linearity,” in Proc. IEEE ISCAS, Jun. 2014, pp. 1572–1575.

[14] M. Cohen and G. Cauwenberghs, “Floating-gate adaptation for focal-
plane online nonuniformity correction,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 48, no. 1, pp. 83–89, Jan. 2001.

[15] S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog VLSI
trainable pattern classifier,” IEEE J. Solid-State Circuits, vol. 42, no. 5,
pp. 1169–1179, May 2007.

[16] M. Gu and S. Chakrabartty, “Subthreshold, varactor-driven CMOS
floating-gate current memory array with less than 150-ppm/°K tem-
perature sensitivity,” IEEE J. Solid-State Circuits, vol. 47, no. 11,
pp. 2846–2856, Nov. 2012.

[17] G. G. Marotta et al., “A 3 bit/cell 32 Gb NAND flash memory at 34 nm
with 6 MB/s program throughput and with dynamic 2 b/cell blocks
configuration mode for a program throughput increase up to 13 MB/s,”
in Proc. ISSCC, Feb. 2010, pp. 444–445.

[18] Y. Li et al., “A 16 Gb 3 b/cell NAND flash memory in 56 nm with
8 MB/s write rate,” in Proc. ISSCC, Feb. 2008, pp. 506–507.

[19] N. Shibata et al., “A 19 nm 112.8 mm2 64 Gb multi-level flash memory
with 400 Mb/s/pin 1.8 V toggle mode interface,” in Proc. ISSCC,
Feb. 2012, pp. 422–423.

[20] Y. Li et al., “128 Gb 3 b/cell NAND flash memory in 19 nm technology
with 18 MB/s write rate and 400 Mb/s toggle mode,” in Proc. ISSCC,
Feb. 2012, pp. 436–437.

[21] D. Lee et al., “A 64 Gb 533 Mb/s DDR interface MLC NAND Flash
in sub-20 nm technology,” in Proc. ISSCC, Feb. 2012, pp. 430–432.

[22] E. Harari, “Flash memory—The great disruptor!” in Proc. ISSCC,
Feb. 2012, pp. 10–15.

[23] P. Hasler, A. G. Andreou, C. Diorio, B. A. Minch, and C. A. Mead,
“Impact ionization and hot-electron injection derived consistently from
Boltzmann transport,” VLSI Design, vol. 8, nos. 1–4, pp. 454–461, 1998.

[24] P. Hasler, A. Basu, and S. Koziol, “Above threshold pFET injection
modeling intended for programming floating-gate systems,” in Proc.
IEEE ISCAS, May 2007, pp. 1557–1560.

[25] S. George et al., “A programmable and configurable mixed-mode FPAA
SoC,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be published.

Sihwan Kim, photograph and biography not available at the time of publi-
cation.

Jennifer Hasler (SM’02) photograph and biography not available at the time
of publication.

Suma George, photograph and biography not available at the time of
publication.


