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ABSTRACT

We define the multiple-input translinear element (MITE), a
versatile circuit primitive from which we can construct low-
voltage translinear circuits and log-domain filters.  A K-input
MITE produces an output current that is exponential in a
weighted sum of its K input voltages.  We briefly discuss six
MITE implementations and show experimental data from two
of these six that we have fabricated in a 2–µm double-poly
CMOS process available through MOSIS.

1. TRANSLINEAR CIRCUIT ELEMENTS

In 1975, Barrie Gilbert [1] coined the word  translinear to de-
scribe a class of nonlinear circuits whose operation is based
on the exponential current–voltage relationship of the bipolar
transistor.  The word translinear derives from a contraction of
one way of expressing the exponential current–voltage rela-
tionship of the bipolar—that is, the bipolar's transconduc-
tance is linear in the current flowing into its collector termi-
nal.  The subthreshold MOS transistor also has an exponential
current–voltage relationship [2], so we can count it as a tran-
slinear device.  Notwithstanding some limitations of the sub-
threshold MOS transistor compared to the bipolar transistor
from the standpoint of translinear-circuit implementation [2,
3], the subthreshold MOS transistor has some unique proper-
ties that enable us to implement certain translinear circuits
with fewer transistors or with lower supply-voltage require-
ments than we could using bipolar transistors [3–5].

In this paper, we define a new translinear circuit primitive
called the multiple-input translinear element (MITE).  A K-
input MITE has K different transconducances, each of which i s
linear in the MITE's output current.  From these elements, we
can construct MITE networks [6], a class of translinear net-
work circuits that can embody product-of-power-law rela-
tionships in the current signal domain.  For a given product-
of-power-law relationship, a MITE network implementation
will often require fewer transistors and permit a lower power-
supply voltage than would a corresponding translinear loop
implementation.  From MITEs, we can also make log-domain
filters [7], a class of filters in the current signal domain that
are large-signal linear yet comprise only grounded capacitors,
current sources, and translinear (i.e., highly nonlinear) de-
vices.

2. THE MULTIPLE-INPUT TRANSLINEAR ELEMENT

We depict a circuit symbol for an ideal MITE in Fig. 1; the
MITE sums K input voltages, V1  through VK , scaled, respec-

tively, by dimensionless positive coefficients, w1 through

wK .  The MITE then generates a current, I, that is exponential

in this weighted sum.  We assume that we have the ability to
control the values of the weighting coefficients proportion-
ally, so we can make accurate ratios of weighting coefficients.
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Figure 1 .  Circuit symbol for an ideal multiple-input
translinear element (MITE).

The bipolar transistor shown in Fig. 1 represents an ideal
device with an exponential current–voltage characteristic such
that the exponential current, I, flows into a terminal different
from the one to which the controlling voltage, U, is applied.
This device does not need to be a bipolar transistor, but a diode
would not be appropriate in this context.  A subthreshold MOS
transistor would be a suitable replacement for the bipolar.  We
can implement the weighted summation operation in a purely
passive manner using either a resistive or a capacitive voltage
divider.  The triangular amplifier symbols, which represent the
weighting operation in Fig. 1, convey two different notions.
First, they denote that an input voltage, Vk , is scaled by a

constant gain whose value is given by a nearby wk .  Second,

they suggest that the input terminals should draw a negligible
amount of DC current; hence, if we used a resistive divider to
implement the weighted summation, then we would need to
buffer the input voltages into the resistive network.  In prac-
tice, we obtain the most accurate ratios of weighing coeffi-
cients by connecting an integral number of unit cells, each
with weight w, in parallel.  In such cases, we are interested
primarily in the number of cells rather than the actual weight
value involved; in such cases, we omit the w associated with
each of these amplifier symbols.
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Figure 2. Six implementations of the ideal MITE comprising (a) a resistive voltage divider and a bipolar transistor, (b) a
single subthreshold floating-gate MOS (FGMOS) transistor, (c) a cascoded subthreshold FGMOS transistor, (d) a subthre-
shold FGMOS transistor and a bipolar transistor, (e) a floating-gate source follower and a subthreshold MOS transistor, and
(f) a floating-gate source follower and a bipolar transistor.  For the five MITE implementations shown in parts b through f,
we can use the amount of floating-gate charge to store electronically adjustable, nonvolatile multiplicative scale factors
that we can use to build adaptive systems or to compensate for device mismatch.

Without loss of generality, we assume that the weighted sum-
mation of the input voltages, U, is of the form
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where Vk  is the kth input voltage, and wk  is a dimensionless
positive weighting coefficient that scales Vk .  Further, we
assume that the output current, I, is of the form
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where Is  is a pre-exponential scaling current, which could be
temperature dependent, λ  is a dimensionless quantity that
scales Is  proportionally, and UT  is the thermal voltage, kT

q .
Note that, if the weighted summation, U, included a voltage
offset term, the form of the output current would remain un-
changed.

As just defined, the MITE does indeed have K different tran-
sconductances, g1 through gK , each of which is linear in the

output current, I.  To demonstrate this property, we simply
differentiate Eq. 1 with respect to Vk  as follows:
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3. MULTIPLE-INPUT TRANSLINEAR ELEMENT
IMPLEMENTATIONS

Figure 2 shows six different implementations of the MITE.
For the first of these MITEs, shown in Fig. 2a, we use a resis-
tive voltage divider to implement the weighted voltage sum-
mation and a bipolar transistor to implement the exponential
voltage-to-current transduction.  In this case, the weighting
coefficient associated with each input is inversely propor-
tional to the resistance through which the input couples into
the base of the bipolar.  We must buffer the input voltages into
the resistive network so, in a circuit, the network neither sup-
plies current to, nor sinks current from the input nodes.  This
resistor-bipolar circuit is only a good MITE implementation
over those collector currents for which the base impedance of
the bipolar transistor is much greater than the resistances in
the resistive network.  When the base impedance becomes
comparable to the resistances in the resistor network, the base
voltage is clamped by the base-emitter junction and the collec-
tor current then increases only linearly, instead of exponen-
tially, with the input voltages.

In subthreshold, the drain current of the K-input floating-
gate MOS (FGMOS) transistor is proportional to the exponen-
tial of a weighted sum of its K control-gate voltages [8].  Con-
sequently, we can implement a MITE using a single subthre-
shold FGMOS transistor, as shown in Fig. 2b.  In this case,
the weighting coefficient of each input is proportional to the
capacitance through which the input couples into the floating
gate.  Figure 3 shows experimental measurements from a



I d
 (

nA
)

0

0.5

1

1.5

2

2.5

3

3.5

2.93 V/e-fold

Cascoded
FGMOS

MOS

FGMOS

Vg

Vd

Id

Vcas

Vg

Vd

Id

Vg

Vd

Id

Vd (V)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(b)

0 0.5 1 1.5 2 2.5 3
V1 (V)

n=
1

n=
4

n=
3

n=
2

V1

5 V

Id

nC

(4–n)C

Id = I0 exp  n

I0 = 171 fA

VC = 173 mV

V1

VC

10–12

10–11

10–10

10–9

10–8

10–7

10–6

I d
 (

A
)

(a)

Figure 3. Measured subthreshold current–voltage characteristics from a four-input pFGMOS transistor with four nominally
identical control gates.  (a) The plot shows drain current as a function of control-gate voltage, measured as we swept n of the
control gates together with the remaining control gates connected to Vdd .  (b) Drain current as a function of drain voltage

for a subthreshold pFGMOS transistor, a subthreshold pMOS transistor, and a cascoded subthreshold pFGMOS transistor il-
lustrating the effect of the parasitic drain-overlap capacitance on drain conductance.

pFGMOS transistor with four nominally identical control
gates that we fabricated in a 2–µm double-poly CMOS process.
Figure 3a shows drain current measured as a function of con-
trol-gate voltage as we swept n of the four control gates to-
gether with the remaining ones connected to Vdd  along with a

fit to the data of the form of Eq. 1.  The subthreshold FGMOS
transistor is a good MITE implementation over currents rang-
ing from 1 pA to about 1 µA.

The main limitation of the single subthreshold FGMOS
transistor as a MITE implementation is illustrated in Fig. 3b.
The circles in Fig. 3b show measured values of drain current as
a function of drain voltage for the four-input pFGMOS transis-
tor.  As the drain voltage increases beyond 100 mV, the
pFGMOS transistor “saturates,” yet the drain current increases
increases exponentially by a factor of six as the drain voltage
increases to 5 V.  During fabrication, the source and drain im-
plants of an MOS transistor diffuse slightly under the gate,
creating a small parasitic capacitance coupling both the source
and the drain to the gate.  Because the gate of an FGMOS tran-
sistor is floating, an increase in the drain voltage couples into
the floating gate, thereby increasing the subthreshold drain
current exponentially.  In principle, we can decrease this cou-
pling as much as we like by making the FGMOS transistor
narrower (thereby decreasing the overlap capacitance) or by
making the control-gate capacitances larger (thereby increas-
ing the total floating-gate capacitance and, hence, decreasing
the drain capacitive-divider ratio), or by using both tech-
niques.  However, in practice, neither of these solutions are
attractive.

A better solution to this problem is to cascode the subthre-
shold FGMOS transistor, as shown in Fig. 2c.  We can think
of the cascode transistor as a source follower with a constant

input voltage, Vcas ; thus, it fixes the drain voltage of the

FGMOS transistor (i.e., the source follower's output voltage),
effectively reducing the change in current through both tran-
sistors resulting from a change in the drain voltage of the cas-
code transistor.  The pluses in Fig. 3b show measured values of
drain current as a function of drain voltage for a cascoded four-
input subthreshold pFGMOS transistor.  Once the cascoded
pFGMOS transistor is saturated (after about 0.3 V), the cur-
rent–voltage characteristic is flat to within 0.1 %, making the
cascoded subthreshold FGMOS transistor a good MITE imple-
mentation.

Figure 2d depicts a two-transistor MITE implementation
comprising a K-input subthreshold FGMOS transistor and a
bipolar transistor.  Intuitively, this bipolar-FGMOS MITE
implementation works as follows.  The subthreshold FGMOS
transistor makes a current that is exponential in the weighted
sum of the input voltages; again, the weighting coefficient of
each input is proportional to the capacitance through which
the input couples into the floating gate.  The bipolar transis-
tor then acts as a current-gain stage by multiplying the sub-
threshold FGMOS transistor current by the bipolar's forward
current gain.  Because the drain of the FGMOS transistor i s
held at a fixed potential, this MITE implementation is insensi-
tive to the parasitic drain-overlap capacitance.

Figure 4 shows measured data from a four-input version of
the circuit of Fig. 2d that we fabricated in a 2–µm double-poly
CMOS process. The circles in Fig. 4 show collector current
measured as a function of control-gate voltage as we swept n of
the four inputs together with the remaining ones grounded.
The solid lines show least-squares best-fit lines to the log of
the collector current.  Note that the slopes, which are indicated
along with each curve in Fig. 4, are nearly in a ratio of



1:2:3:4, which is what we expect from Eq. 1.  This two-
transistor circuit is a good MITE implementation over ap-
proximately 7.5 decades of collector current.
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Figure 4 .  Measured current–voltage characteristics
from a four-input version of the MITE implementation
of Fig. 2d with four nominally identical weighting co-
efficients.  The plot shows collector current as a func-
tion of input voltage, measured as we swept n of the
inputs together with the remaining inputs grounded.

The final two MITE implementations, shown in Figs. 2e
and 2f, are similar—each comprises a two-transistor FGMOS
source follower and a third transistor that has an exponential
current–voltage characteristic.  Intuitively, the floating-gate
voltage develops as a weighted sum of the K input voltages via
a capacitive voltage divider.  In the source-follower configura-
tion, the FGMOS transistor's source voltage is approximately
a linear function of the floating-gate voltage.  Consequently,
the source voltage is also a weighted sum of the input volt-
ages.  The third transistor then generates a current that is ex-
ponential in this source voltage.  In the MITE of Fig. 2e, the
exponential element is a subthreshold MOS transistor,
whereas, in that of Fig. 2f, the exponential element is a bipo-
lar transistor.  Because the drains of the FGMOS transistors are
held at a fixed potential, these MITE implementations do not
suffer from the drain-overlap capacitance problem.

Because the source-follower circuit configuration does not
depend on the form of the current–voltage relationship of the
MOS transistor, these three-transistor circuits are good MITE
implementations even when we bias the FGMOS source fol-
lower with an above-threshold current.  For the circuit of Fig.
2e, biasing the FGMOS source follower with an above-
threshold current allows us to make the output MOS transistor
as wide as necessary to get a larger range of exponential cur-
rents without having to make the FGMOS transistor, and,
hence, the floating-gate capacitance large.  The above-
threshold bias gives the FGMOS source follower enough
bandwidth to drive the large gate capacitance of a wide output
MOS transistor.  The circuit of Fig. 2f is a valid MITE imple-
mentation only when the base current is negligible compared
with the source-follower bias current.  Thus, for the circuit of

Fig. 2f, biasing the FGMOS source follower with above-
threshold currents allows us to operate this MITE at high cur-
rent levels and, thus, potentially with very high bandwidths.

For each of the five FGMOS-transistor–based MITE im-
plementations just described, we can use the floating-gate
charge to store adaptable weights for building learning sys-
tems or to compensate for scale-factor errors resulting from
device mismatch.  None of the FGMOS-based MITE implemen-
tations, except for the single subthreshold FGMOS transistor,
is affected adversely by the parasitic source/drain-overlap ca-
pacitances.

4. CONCLUSIONS

In this paper, we defined the MITE, a new circuit primitive
from which we can construct low-voltage translinear circuits
and log-domain filters.  We briefly discussed the operation of
six different MITE implementations and showed experimental
data from two of these six that we fabricated in a 2–µm double-
poly CMOS process.
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