This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

A Learning-Enabled Neuron Array IC Based Upon
Transistor Channel Models of Biological Phenomena

Stephen Brink, Stephen Nease, Paul Hasler, Senior Member, IEEE, Shubha Ramakrishnan, Richard Wunderlich,
Arindam Basu, Member, IEEE, and Brian Degnan

Abstract—We present a single-chip array of 100 biologi-
cally-based electronic neuron models interconnected to each other
and the outside environment through 30,000 synapses. The chip
was fabricated in a standard 350 nm CMOS IC process. Our ap-
proach used dense circuit models of synaptic behavior, including
biological computation and learning, as well as transistor channel
models. We use Address-Event Representation (AER) spike com-
munication for inputs and outputs to this IC. We present the IC
architecture and infrastructure, including IC chip, configuration
tools, and testing platform. We present measurement of small
network of neurons, measurement of STDP neuron dynamics, and
measurement from a compiled spiking neuron WTA topology, all
compiled into this IC.

Index Terms—Electrical implementation of neurobiology, neu-
romorphic engineering.

I. OVERVIEW OF A SINGLE IC NEURON LEARNING ARRAY

ULTIPLE research efforts have been looking for an
M array of neuron elements with realistic biological
dynamics at a density that enables looking at neural dynamics
of 100 neurons or more. A biological neuron is defined by
its Soma, dendrite, synapses, and axons, as seen in Fig. 1(a).
For our electrical IC models, we will follow a similar block
diagram for the basic components. Incoming axon lines form
a connection through synapses to the neuron dendrite line that
feeds into the soma block of the neuron. The soma block creates
the dynamics/computation to send a resulting action potential,
often described as an event, to its output axon connection. For
this discussion, we will assume the model of the dendrites is a
wire, typical of most modeling and implementation approaches;
handing dendritic computation is beyond the scope of this work
and discussed elsewhere [1], [2]. Previous efforts have achieved
part of these solutions [3]-[5], often having a tradeoff between
dense circuit structures or modeling biological behavior.

Our goal was to build an IC that implements multiple neu-
rons that uses biologically realistic transistor based models of
neurobiological computation. Previous work has shown dense,
biologically relevant circuit models of synaptic behavior, in-
cluding biological computation [7] and biological learning dy-
namics [8], as well as transistor channel models of biological

Manuscript received November 20, 2011; revised February 07, 2012; ac-
cepted March 28, 2012. This paper was recommended by Associate Editor J.
Van der Spiegel.

The authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-250 USA (e-mail:
phasler@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBCAS.2012.2197858

7 | Neuron

Biological

Axon

1 Dentrite
I

‘ Channel I
\ Model J
Wire to routing matrix)

current input

(a)

Electrical

Triangle Circuits

|
v 1B
| Synapse
g Soma Array
. 11| Array (30k)

(b)

Fig. 1. Our goal was to build an IC that implements multiple neurons that
uses biologically realistic transistor based models of neurobiological computa-
tion. A biological neuron is defined by its soma, dendrite, synapses, and axons.
(a) For our electrical IC models, we will follow a similar block diagram for the
basic components, including efficient models of synapses, channel regions in the
soma, and communication of spikes to other synapses. For this work, we will
assume the typical model that dendrites can be simply modeled as wires. (b) Die
Photo of the IC of 100 neurons and 30,000 synapses consumes 5 mm X 5 mm
area in 0.35 pm CMOS process.

channels enabling soma (as well as dendritic) dynamics [9].
Fig. 1(a) shows this paper’s viewpoint of implementing a silicon
neuron, enabling arrays of neurons on a single IC. Our approach
uses these component level innovations to build a 100 neuron,
30,000 synapse chip in 350 nm double-poly CMOS process in
die area of 5 mm X 5 mm. We show a die photo of the fabricated
IC in Fig. 1(b). The synaptic array consumed roughly 3 mm? in
area; therefore we can imagine in a single retical size chip in
the same process to enable an array of one million synapses and
thousands of neurons on a single IC, with these numbers only
increasing substantially as we move to modern IC processes.

1932-4545/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wires to routing matrix

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

< STDP Learning Synapse

AER Output
© Fixed-weight Synapse

AER Input

il

AER Input

{....STop Learing [[:.] D. E.] Channei Y '_IAER S
l _Model Detect [
postsynaptic AER Input | .
input o T IS\ — ® . —

HHE—%\ﬁ\EI

|
-
\

i

Vv \ \ "

|

neuron number

AER Output

v
100 100 100

s e -
S--

1 R <S> C——" Sy——

AER Input

il

AER Input
\

.
<

=

drain wnne mem spike

(a)

time

excitatory synapses | recusive connections

(b)

inhibitory/excitatory

Fig.2. The approach for the of biologically inspired neuron computation IC. (a) The system approach is to provide low-power biologically realistic silicon models
of synapses (computation and learning), soma elements, and event (action potential) input and output interface handling through Address-Event Representation
(AER). For this discussion, we treat the dendrites as a wire; treating the dendritic dynamics is beyond the scope of this discussion. (b) The architecture built of a
densely packed, mesh-tye structure of synapses, an array of configurable elements to compile the desired soma dynamics, and AER blocks that output action po-
tentials into the synapse fabric as well as AER blocks that that input action potentials from soma blocks. The synapse array is made up of three different functional
blocks of synapses: 10,000 STDP excitatory learning enabled synapses connected in recurrent connections, 10,000 STDP excitatory learning enabled synapses
connected from AER, and 10,000 programmable (fixed-weight) excitatory or inhibitory synapses connected from AER. The STDP synapses have regions of op-

eration where we can turn off learning.

The following sections will the new Single IC Neuron
Learning Array. Section II discusses Neuron IC architecture
and infrastructure, including IC chip, configuration tools, and
testing platform. Section III discusses components of Neuron
IC, including soma circuits, non-adapting and adapting behavior
of synapse circuits, and Address-Event Representation (AER)
spike communication circuits. Section IV discusses measure-
ment of Small Network of Neurons Section V discusses neuron
Learning through STDP rules Section VI discusses neuron IC
implementing a Ring WTA Topology.

II. NEURON IC ARCHITECTURE AND INFRASTRUCTURE

This IC effort required the development of a unique IC archi-
tecture for coupling dense mesh arrays of synapses and groups
of soma elements, as well as software tools for users to configure
the chip as a network of neurons, as well as the resulting hard-
ware testing infrastructure for the tools. We will discuss these
three elements in turn over the following three subsections.

A. IC Chip Architecture

We first will present an overview and our design approach
while developing the neural IC architecture.

Fig. 2(a) shows the high-level viewpoint of our IC imple-
mentation. We want to implement biological model circuits for
synapses, soma (channel model), and input and output spikes
efficiently into the system. We see the array of neurons as
a specialized configurable array, similar to the development
of Large-Scale Field Programmable Analog Arrays (FPAA)
[10], [11], [14]. The reconfigurable nature of the platforms
allow rapid building and testing of different circuit configu-
rations. Because the typical spike rate for all of the neurons
(100 x 200 events/s = 20,000 events/s) is much less than the
speed of communication on the digital bus (> 1 M event/s),
we can faithfully represent each event by directly transmitting
or receiving the address of the event on that digital bus. Such

communication approach is called Address-Event Representa-
tion (AER) [4]. Standard Control blocks for the programmable
floating-gate circuit enables the FPAAs to provide area-effi-
cient, accurately programmable analog circuitry [15]. Dendrites
are modeled and implemented as loss-free wires.

This work shows the first integrated IC with network of neu-
rons based on the original Single Transistor Learning Synapses
(STLS) concept [6]. The STLS are modified EEPROM devices,
fabricated in a standard CMOS process, that simultaneously
provide long-term storage (non-volatile), computation, and
adaptation in a single device. To get the highest achievable
density for the array of synapses, we chose a mesh architecture
for the interconnection fabric, as shown in Fig. 2(b), which re-
sults in general connectivity for this architecture. Our resulting
architecture enables 100 x 100 excitatory recurrent learning
synapses, that is connections from output of on-chip neurons
to on-chip synapses, 100 x 100 excitatory learning synapses
with external input from AER, and 100 x 100 inhibitory or ex-
citatory fixed-weight synapses from external input from AER.
In future versions, one could make the excitatory learning
synapses be either excitatory or inhibitory synapses as was
done for the programmable synapses; for this implementation,
we only used excitatory learning synapses.

This approach shows the most direct approach of computing
through a memory device, since in fact, the array of synapses
is quite similar to an array of EEPROM devices, but with
enhanced capabilities described above. Any off-chip memory
based scheme will only be more complex and expensive system
design. More configurable, sparse type patterns could be
implemented in FPAA array type concepts. The analog pro-
grammability empowers the switch elements to have a dual role
as computational elements [10], [13]. Because STLS synapses
are at the density of EEPROM arrays, we expect similar STLS
densities, particularly as we scale to smaller IC processes.
Current EEPROM devices in 32 nm CMOS processes are less

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINK et al.: LEARNING-ENABLED NEURON ARRAY IC

TABLE 1

PARAMETERS FOR THE NEURON IC CHIP

Parameter Value
Number of Neurons 100

Prog Synapses 10000
STDP Synapses (Feedforward) 10000
STDP Synapses (Recurrent) 10000

STDP Prog 4.5V

Prog (inj) 5.6V
Erase (tun) 10.2V

B

y=a.create(‘Neurons’,{},3}
x=a.create(‘Neurons’, {},2}
z=a.create(‘Neurons’,{},1}

1

a.connect(x(2),z,1e-6)
a.connect(x,x(1),le-5) a.connect(x,y,le-6)

sel(y(2:3),{‘leak’ 1-8})
(b)

Fig.3. Overview of our configurable toolflow. (a) Our traditional software flow
for designing systems on the FPAA. Top level designs are done in Simulink.
Sim2Spice converts it to a Spice netlist, which can then be compiled into an
FPAA switch list. GRASPER does a place and route compilation from an anno-
tated SPICE net list to a switch list for compiling on an FPAA device. RAT is
a switch list visualization tool for the particular configurable device, allowing
the user to move switch connections where desired. (b) Representation of our
PyNN language for representing a basic network of neurons. This design flow
can be compiled to object code that can configure our described IC for an ap-
propriate neuron architecture. The current tool flow enables a PyNN text script
to be compiled directly to a switch list in a parallel path to the SPICE compi-
lation. A graphical representation built in Simuilnk can be compiled to PyNN
code through Sim2spice.

than 100 x 100 nm? in area, as small or smaller than current
integrated and functioning nano device array technologies.

Details of the soma elements, synapses, and AER commu-
nication system are presented in the following section. Some of
the IC properties are summarized in Table I. We utilize industrial
methods and practice of designing custom mask sets, allowing
for 1000’s of chips from a single batch of wafers. These aspects
are essential when scaling these architectures from a single chip
to a board (or multiboard) system. Further, these approaches
show the technical viability for a commercial approach if/when
an application is shown to be effective using neural ICs.

B. Tool Infrastructure for Configuring the Neuron IC

A key component of any configurable system is the need for
tools to abstract the programming and configuration of the re-
sulting system. Our previous configurable systems, Large-Scale
Field Programmable Analog Arrays (FPAA), are enabled by a
tool suite controlled through MATLAB [16], using Simulink
[17] at the high level that compiles to a SPICE deck, which
in turn, can be compiled [18] to programmable object code for
the FPAA device. Fig. 3(a) illustrates the approach. Higher-level
tools also enables the use of these systems in educational expe-
riences [19], which we envision is one early application of these
developed chips.

The tool flow for the chip of neurons is currently a simpler
flow that could be integrated with the Simulink toolflow for

building configurable systems. The base language we used for
this approach is PyNN [20], rather than a SPICE deck, to specify
the netlist level of the neuron structure; the PyNN approach is a
network description of the resulting network. PyNN is designed
to be a simulator-independent, Python-based open source lan-
guage designed for describing spiking neural network models.
In our case, we use this language definition for our tool compi-
lation in Matlab, and the resulting compiled output can still be
used in a PyNN platform. Fig. 3(b) shows our resulting PyNN
description for a small neuron network. The resulting code in
sequence is given below.

a=pynnSession % create pynn object

x=a.create(’Neurons’,{},2) % create neurons

y=a.create (’Neurons’,{}, 3)

% change parameters

z=a.create(’Neurons’,{},1) set(y(2:3),{’leak’ 1e-8})

% define connections
a.connect(x,y,le-6)

a.connect(x(3),z,1le-6)a.connect(z,x(1),1e-5)

a.compile % Compile (to switch list)

programleuron(a.list) % program floating gates

AER_run(stop_conditions) % run experiment

As a result, PyNN language is somewhat higher level rep-
resentation of the neural structure than a typical SPICE deck,
enabling users to directly implement a network of neurons di-
rectly through this language. PyNN supports various software
simulators and some neuromorphic hardware systems; one can
port designs between these packages without modifying the ex-
periment description.

Since these are configurable chips, we utilized our generic
configurable IC platform for testing [16]. Platform was not opti-
mized for these types of tests, so many measurements are noisier
and lower resolution than possible. The focus of this paper is to
show the functionality of this IC, rather than quantitative mea-
surements.

III. COMPONENTS OF NEURON IC

This section is a systematic walk through the details of the
soma elements, synapses, and AER communication system as
well as showing corresponding measurement data. The key to
building this bridge is utilizing all of the Si physics to model
key biological physics, starting at the level of channels. For
this implementation, a single neuron has 300 synapses feeding
into the soma compartment, which is approaching a typical cor-
tical neuron having 1000 to 10000 synapses. Modeling den-
dritic compartments would be the next significant milestone to
achieving realistic neuron behavior; dendritic IC modeling are
beyond the scope of this discussion. In the following sections,
we will utilize these effects when discussing the network of neu-
rons implemented on this IC.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

We obtain biologically realistic dynamics by using estab-
lished transistor channel models, published elsewhere, for
models of passive and active channels, including bandpass
(i.e., classic Na™) and lowpass (i.e., classic K*) channels [9],
which build the foundation for our soma models, and that can
be extended to dendritic models [2] We obtain biologically
realistic dynamics by using established transistor channel
models, published elsewhere, for models for non-adapting [7]
and adapting [8] excitatory and inhibitory synapses, which
build the foundation for our synapse models. Such dynamics
have been analyzed [12] as well as models built from these
components [11]. The remaining infrastructure simply pro-
vides communication between outputs of somas to the input
of synapses. We will overview these models in the following
subsections; more detailed treatment, including their biological
relevance is discussed elsewhere [2], [7]-[9], [11], [12].

A. Soma Circuits

Fig. 4 shows the basic circuit diagram for the configurable
soma block. From an FPAA perspective, these are the Com-
putational Analog Blocks (CAB) for this infrastructure, with
a unique routing infrastructure, that includes the programmed
and adaptive synapses. Within this structure, we have the ca-
pability of multiple channels, infrastructure for communicating
action potential events to other structures, as well as circuits to
build local WTA feedback between the soma membrane volt-
ages. We chose local WTA computation between soma elements
to both emulate the similar effect in biological systems [21] as
well as reduce the resulting neuron output event rate, which
can be the primary source of power consumption if not prop-
erly handled. We have additional configurable infrastructure for
allowing some level of debugging and tuning, for example, we
have circuitry to directly perform a voltage clamp measurement
on each channel element.

The base components are based on transistor channel models
of biological channel populations [9]; we will summarize briefly
the key concepts here. The physical principles governing ion
flow in biological neurons share interesting similarities to elec-
tron flow through MOSFET channels, and exploiting these sim-
ilarities results in dense circuits that model effectively biolog-
ical soma behavior. The energy band diagram (source to drain)
looking through the channel of the MOSFET is similar to the
energy band diagram (inside to outside) looking through a bio-
logical channel. Because we utilize the similarities between bio-
logical and silicon channels, the voltage difference between the
channel resting potentials on the silicon implementation is sim-
ilar to the biological power supplies. The resulting spiking ac-
tion-potential circuit requires six transistors, which is the same
number of transistors and just a few more capacitors (transistor
size capacitors) than the basic integrate and fire neuron approach
[22].

In this IC, we have available one bandpass and one lowpass
voltage-gated channel. We call the Na™ channel a bandpass
voltage-gated channel, meaning it has both an activating and
inactivating mechanism causing current magnitude to increase
and then decrease as time progresses. This channel circuit could
be used to model a range of bandpass channel dynamics, within
a range of parameters, and this channel has two time constants

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

>

E.

syn,exc

_____ Dendrite Vinem
l —
\ To Axon
l Ck
P T &
Ex I Vek Vo
(a)

(b) ©

Fig. 4. Block diagram of the reconfigurable soma architecture. (a) The chip
employs 100 of these configurable blocks. All blocks connect to the membrane
voltage, and therefore the routing is straightforward; the output of the neuron
goes through a single processing stage to communicate through the fabric. The
small configurable block includes a low-pass channel, typical of a K channel, a
bandpass channel, typical of a Na channel, leak channel, and nearest neighbor
coupling to enable Winner-Take-All (WTA) behavior between the blocks. We
level shift the resulting voltage for these blocks, which run at 2.5 V, as opposed
to the adaptive synapse blocks running at a higher voltage to enable STDP. The
output goes through a buffering circuit to transmit the signal either to the AER
sender and/or back through the resulting synaptic fabric. (b) Voltage clamp re-
sults from a single neuron CAB element for Na channel. (c) voltage clamp re-
sults from a single neuron CAB element for K channel. (d) Representative trace
of spontaneous spike waveform from combining the K and Na channel to make
a neuron circuit.

(fast and slow). We call the KT channel a lowpass voltage-gated
channel, meaning it has only an activating mechanism. This
classic circuit implementation [9] leverages a large capacitive
coupling from membrane to K gating voltage to achieve biolog-
ical dynamics. Typically, the time constant is much slower than
either of the time constants found in Na™, resulting in a hyper-
polarization of the cell for a period of time by the overshooting
the equilibrium voltage during an action potential event.

Fig. 4 shows the voltage clamp responses for the Na and K
channel models, as well as one of multiple representative output
spikes. As seen in Fig. 4(b), a Na channel and gating function
gives the step response of a bandpass filter, and in Fig. 4(c), a
K channel and gating function gives the step response of a low-
pass filter. Fig. 4(d) shows a resulting action potential from one
of these pairs of channels in a soma block. These circuits are
modified versions of the original circuit by adding additional
floating-gate elements into the circuit to directly set the pro-
grammed bias currents (i.e., for timeconstants). The particular
implementation reasonably implements the original circuit ap-
proach [9] using the floating-gate devices, but deviated from the
original implementation in two ways. First, the gain of the Na™*
channel should have been higher, being closer to 3 to 4 instead
of 8 (or higher) mentioned in [9], resulting in a less sharp transi-
tion for the resulting positive feedback, and making spiking be-
havior more challenging. Second, the Capacitive coupling into
the K* channel should have been higher (more than a factor

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINK et al.: LEARNING-ENABLED NEURON ARRAY IC

matrix matrix | Neuron
connection connection

- - {presynaptic computation) - ,

l

Wy,
i ik
2 it Rl T
% 4 2 0 2 4 6 8 10 2 T

0 s 10 15 20 2 32 3
tms)

(b) (©)

Fig. 5. Silicon Synapse Array utilizing a single floating-gate device for the
synaptic array, giving densities similar to conventional EEPROM arrays.
(a) Architecture for the synaptic array structure. The inputs into the array are
preconditioned using a triangle waveform, such that, when the signal is passed
through a subthreshold transistor, gives a biologically realistic post-synaptic
potential. (b) A trace of the output of the gate waveform shaping circuit.
(c) Measured synapse circuit current output during non-adapting behavior.

of 2), resulting in the channel enabling a significant restoring
force instantaneously, and therefore making a spike more chal-
lenging. The coupling of these two nonidealities both makes
tuning neuron dynamics more difficulty; overall dynamics were
still able to be preserved, although the spike shape is not quite
ideal as desired. Having a programmable and configurable in-
frastructure made using this chip design possible.

B. Synapse Circuits: Non-Adapting Behavior

Synapses represent the connection between axon signals and
the resulting dendrite of a particular neuron. The connection
starts as an electrical event arriving into the presynaptic cell,
releasing chemicals that reach and modulate the channels at the
postsynaptic cell, resulting in a response in the dendritic struc-
ture. A synaptic Post-Synaptic Potential (PSP) is modelled typ-
ically as

Toyn = te™"/ et ()

where 7¢,; is typically on the order of 0.5 ms to 2 ms.

Our synapse implementation, shown in Fig. 5(a), has a
triangle waveform modeling the presynaptic computation, a
MOSFET transistor modeling the postsynaptic channel be-
havior, and a floating-gate to model the strength of the resulting
connection. We use a floating-gate device that can be used to
store a weight in a nonvolatile manner, compute a biological
EPSP, and demonstrate biological learning rules (discussed
in the next subsection) [6]-[8]. A MOSFET transistor in sub-
threshold has an exponential relationship between gate voltage
and channel current; therefore to get the resulting gate voltage
to get the desired synapse current, we take a log of (1) to get

the gate voltage, which has the shape of a triangle waveform. A
typical measured triangle waveform from this chip is shown in
Fig. 5(b), and the resulting PSP current is shown in Fig. 5(c).

Also seen in Fig. 5(a), as well as other earlier architecture
figures, is that the architecture is highly scalable along a row
of the computation, as well as scalable into a rectangular mesh
architecture. For a mesh architecture, the presynaptic computa-
tion circuitry is placed at the top of the array and fed into all
synapses afferent to the neuron in that column. The output from
all synapses in one row feed into a soma block. Effectively, we
have a modified EEPROM array with the computations required
for a mesh-type synaptic array, resulting in the ultimate com-
puting in memory architecture. The effective density for this
350 nm CMOS process is roughly 10,000 synapses per mm?.
This mesh architecture of synapses that supports all-to-all con-
nectivity between soma blocks, effectively being a specialized
routing fabric heavily involved in the computation.

Currently there is a significant debate about what the resulting
precision for synapses would be; at this stage, there are many
theories and approaches, but there is little agreement on those
numbers. More research in neuroscience is essential in applying
neuron inspired approaches as competitive applications before
this question can be answered with high certainty. As a result, if
one can easily and directly build synapses that can handle wide
dynamic range and precision, it makes sense to include these
possibilities. The synapse approaches we have built clearly en-
able both high dynamic range and precision in stored weight
and in resulting dynamics. On the other hand, since our synapse
element is one transistor (effectively a EEPROM), even if one
wanted a single bit weight, the synapse circuit is still as simple
as possible; a lower bit precision will simplify the program-
ming infrastructure and learning circuits, but the core synapse
transistor will be the same size. Any comparison of size of this
synapse (= one transistor) with other approaches must include
the memory elements and communication to reach that element.

C. Synapse Circuits: Adapting Behavior

Biological synapses adapt to their environment of event
inputs and outputs, where typical programming rules include
long-term potentiation (LTP), long-term depression (LTD), and
spike-time-dependent plasticity (STDP). In biology, synapses
strengthen through chemical and morphological changes that
improve signal transduction from the presynaptic to the postsy-
naptic cell [23], [24].

Recently, we presented a single floating-gate device that en-
abled both the long-term storage and PSP generation, but also
allowed a family of LTP, LTD, and STDP type learning ap-
proaches through the same device [8]. In this neuron chip, we
have implemented these learning algorithms as part of the array,
and we will summarize the key aspects of the STDP learning
algorithm. The weight increases when the postsynaptic spikes
follow the presynaptic spikes and decreases when the order is
reversed.

The learning circuitry is again placed at the edges of the
array at the end of the rows, included in the soma blocks, there-
fore not limiting the area of the synaptic matrix/interconnection
fabric. Fig. 6 shows the soma component with the additional
blocks required for STDP learning. The row of synapses are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

Timing waveforms Drain and Tunnel waveforms

Current C onveyer—,—b
Channels_|

ND
vall]

AER
Sender

Voltage(V)

T

Dra
10! Tunnel 10
Buffer Scanner i ’k* 8f k

5

Gate

voltage(v)

<—|Drain Waveform M Delay

o

4—[Tun Waveform ’(—I Delay

(a)

Time (ms)

(b)

time(ms)

(c)

synapse current
3

synapse current
3

Change in synaptic weight
°

oo\Wﬂ

0 50 100 150
#of paifings/ 100

(d)

200

80 0 =2 15 -1 05 0 0
tpre-tpost (ms)

¢

40 60
of pairings/100

(e)

Fig. 6. STDP learning characterization from a single synapse element in the array. (a) Soma control circuitry including block diagram components needed to
enable STDP operation. (b) Timing waveform (measured) occurring after an action potential event. (c) More timing waveforms. (d) Change in synapse strength
for successive pre event first followed by post event with small delay. The experiment shows the effect of successive LTP (long-term potentiation) events. We plot
measured synapse current, the measured value of the maximum synaptic output current, as a function of events. The effective synaptic weight is proportional to
this current level. The effect shows the ability of both obtaining a large change in the dynamic range of the synaptic weight (over 4 orders of magnitude from
below 100 pA to above 10 £ A), as well as the capability to get a small percentage changes (16 percent worst case in these measurements) for the synaptic weight.
(e) Change in synapse strength for successive post event first followed by pre event with small delay. The experiment shows the effect of successive LTD (long-term
depression) events. (f) Typical measured STDP learning rule versus the delay between the presynaptic and postsynaptic spike.

turned into ‘PROGRAM’ mode for a short time, allowing the
weight to adapt based on other signals in the inputs and then
reset into ‘RUN’ mode. The learning mechanism is a combina-
tion of hot-electron injection (LTP) and Fowler—Nordheim tun-
neling (LTD). The learning mechanism is only enabled when
an event on a postsynaptic neuron occurs. This approach al-
lows a wide set of potential learning rules to be implemented
by changing the resulting parameters. As part of the algorithm,
we used programmable current-starved inverters to implement
delays for the timing of the drain and tunneling pulses after the
start of an output event. The presynaptic computation remains
the same, effectively, from the PSP part of the computation, in-
cluding a voltage triangle waveform at the input generated by
the presynaptic computation block.

For STDP learning algorithm [8], at the occurrence of a post-
synaptic spike, a program phase consisting of an injection pulse
followed by a tunnel input is applied. If the input spike occurs
before the output spike, the gate voltage is at a lower voltage,
and enables more injection current on the floating-gate device,
increasing the synapse weight. If the input spike occurs after the
output spike, the gate voltage is at a higher voltage, and enables
more tunneling current on the floating-gate device, decreasing
the synapse weight.

Adding the STDP functionality makes no additional area
complexity to the synapse block; we do have some additional
timing control circuit required at the soma element which
requires a small fraction of the soma area. Our discussion in
[8], gives a detailed model as well as derivation of the LTP,
LTD, and STDP learning rule. For completeness, we will

summarize the key modeling results of the STDP learning rule.
The approach is based physically on the hot-electron injection
and tunneling mechanisms, with timing and voltage level of
parameters being able to be programmed/configured for a
given algorithm. We give the modeling we programmed/con-
figured for this particular implementation, although one has
significantly more flexibility as we reported previously [8]. In
[8], we formulated the derivation using a simplified model of
hot-electron injection current (£;5, 50, 50, ¢, and Vj,,; are device
level parameters, « close to 1)

I \" -
Linj = mj0<—> el Vis/Vin 2)

ISO

and a simplified model of electron tunneling current (/44,n0, Voz
are device level parameters)

Viun=Vsg)/Vor (3)
along with the synapse model in (1), and a controlled decay in
the tunneling voltage from its maximum value (¢/7,) to for-
mulate the model of the STDP circuit behavior. We get the fol-
lowing weight update (Aw) as a function of the weight value
(w) as a function of the delay (¢;) between the presynaptic and
postsynaptic event

It'u,n = ItunOe

Aw = AeAVds/ij w1+aTinjeatd/Tfa” _BTtunwl-l'ﬂetd/Tcp

“

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINK et al.: LEARNING-ENABLED NEURON ARRAY IC

] . > (N
Computational AER Noj—p .
Address,,, | AFR Block EE Address Y | FF
| Receiver (neurons, synapses) 1 Sender | <
Ackiy €| e Input & Output % Module € AKout
Reqj, —» through events F»Reqy @ P FF

Other Analog / Digital 1O signals
(@

reset; —DeMux Mux |—req;

“m

Neuron
(Event)
Outputs

Fig. 7. Block diagram of our Address Event Representation (AER) commu-
nication scheme. (a) AER approach is used to interface the input and output
events (action potentials) of a network of neurons to the outside world. We use
an AER receiver to get input events, and an AER transmitter to send output
events. (b) AER receiver block diagram. (c) AER transmission block diagram.

where T,,; and T4,,, are the pulse widths of the injection and
tunneling phases, respectively, and A, B, and (3 are combina-
tions of device constants that can be modified by circuit param-
eters [8]. This single formulation showed a wide range of STDP
curves that were possible from the circuit.

D. Spike Communication Through AER

The user of the neuron IC would need to communicate events
on and off the IC, as seen in Fig. 7(a). We use AER for both
the input and output events. Because the typical spike rate for
all of the neurons (100 x 200 events/s = 20,000 events/s)
is much less than the speed of communication on the digital
bus (> 1 M event/s), we can faithfully represent each event by
directly transmitting or receiving the address of the event on that
digital bus. Further, AER provides a standard for interfacing to
these chips either with additional chips or with other chips using
the AER standard.

Our one-dimensional, asynchronous AER systems were de-
signed considering that we can consider a minimum time resolu-
tion for our events after the start of a single event, and therefore
can gather/queue the resulting events accordingly. Our system
was designed for rates above 10 M events/s, but none of the
measured or proposed applications require such an event rate.
Achieving this rate would require additional design for the re-
sulting board infrastructure (i.e., USB 1.1 won’t communicate at
this speed off of the board). The queuing approach enables easy
interfacing to synchronous systems, and we have written micro-
controller code on our test system to enable AER interfacing.
Our AER system conforms to the typical AER asynchronous
definition for communication. Because we wanted our AER ap-
proach to scale to a wide range of CMOS technologies, we de-
veloped our approach as compilable code in Cadence toolset;
we believe this is the first case of a compiled AER system re-
ported. Given the size of our networks, only one-dimensional
sender and receiver modules were necessary and simplify the
resulting AER implementation. Details of the AER system are
beyond the scope of this paper, and will be presented elsewhere.

The AER output module [Fig. 7(b)], which is taking output
neuron events and transmitting an address for that particular
event, takes 100 rising-edge triggered inputs and latches all of

the events in a given time window into an array of N flipflops.
The result is a simple arbitration circuit, and is easily scalable
to using asynch FIFO queues on event stations. The latched
structure of stored events then converts each event, in turn, to
an address on the output bus. We implemented multiple debug-
ging options, some that are useful in interfacing the output event
stream to digital microcontroller. The working system was com-
pletely synthesized from verilog to standard cells and placed
and routed to silicon in roughly 100 lines of code, where 20 are
port/wire declarations, and is parametrizeable.

The AER input module [Fig. 7(c)], which is taking input event
addresses and communicating events to the synaptic array, out-
puts 200 events into the neural array. the functionality is pri-
marily a digital decoder followed by a circuit to hold the event
for a particular duration to be input into the triangle waveform
generation. Again, the entire structure was synthesized, placed
and routed to silicon from verilog.

We measured input events to and output events from spiking
neurons creating events that are communicated through the AER
communication system. The system uses the input system to
stimulate the system to create these events. The resulting system
is fast enough to communicate input and output events for ex-
haustive testing this entire IC.

IV. MEASUREMENT OF SMALL NETWORK OF NEURONS

In the following subsections, we will present data measured
from small networks of neurons compiled on this IC. First, we
discuss the approach and impact by programming the floating-
gate elements to eliminate mismatch, a critical issue for most
neuromorphic IC implementations. Second, we will describe the
basic interactions between two neurons when we compile two
neurons together in a single device, as well as describe the re-
sults when we compile a group of neurons as a single chain of
neurons with and without a feedback connection. Finally, we
will describe experimental requires when we compile a group
of neurons in a Winner-Take-All (WTA) configuration.

As part of the fabrication process, we obtained and tested
multiple ICs; we have infrastructure to measure at least three
ICs in parallel. Although we have not done detailed statistical
testing over a complete lot of chips, the variability between
chips after programming target currents for the synapses and
somas was not noticed over 3 months of testing 8—10 ICs. We
have taken the same or similar data over multiple ICs and not
seen any noticeable differences. Being able to directly program
bias currents, not to mention more direct calibration of threshold
voltage levels (as mentioned in the first subsection), allows for
highly repeatable results from a densely packed analog com-
puting system.

A. Eliminating Mismatch By Programming Floating-Gate
Elements

Transistor mismatch has been a classical issue for neuromor-
phic designs [22], as well as all designs. Early neuromorphic
systems had to deal with mismatch issues (i.e., [25]) to get even
first order performance for their particular ICs. Although many
have approached the problem by stating there is mismatch in
neural systems, and therefore we should just use this mismatch,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

Vinem [\
Verp
T L L Vh,,-dv
Vinem Verp | Edge Vpuse be Vyate r N B G Vesin estout Ve
Vibresn Detect \Vi H Vesiou B
bn"| T 1 _|
Viusso
ng—\/—
200 T T T T T T T T T
13
Q
@]
©
[&]
c B |
S 5
® E
8 35 -
[
2 o
£ ‘|0A5 K 2 2.5 3 3.5 4 4.5 5
8 \ Upward Slopes (V/ms)
o 100 ——
e \ \
e 8e0f
(ORI \
m © \ \
%5 60+ \ \
s \ \
@ \ \
2 40f \ \
5 ! \
Z 200 \ \
\ \
A
0 7 0\ 6 \ - -4 L
'. \\ Downward Slopes (V/ms) 7 I\
1 1
s 8 80 N7 \y 4
@ R »n @
g T 860
S o O [$)
c - -
O 940 2
Q. @ g
E £ €
¢ Q S 20 S
g O b4 z
Gate Waveform after compensation. # Failures = 0 N
0.5 [} 0
0 0.002 0.004 0.006 0.008 0.01 E 01 03 05 07 -2 -1.67 -1.33 -1
Time (s)

Upward Slopes (V/ms)

Downward Slopes (V/ms)

Fig. 8. An example of solving mismatch problems for one of our implemented neural structures. For our synapse structures, we can have threshold voltage
mismatch both in the edge detection/pulse generation circuits, ramp generator, as well as synapse channel transistor (actual circuit has additional circuit complexity,
but we keep things clear for this discussion) In each of these cases we have floating-gate devices to tune the particular parameters, and in particular, directly affect
the issue with threshold voltage mismatch. We show the initial curves after initial programming, in which the reference devices were all set to the same current,
illustrating the direct issue of these multiple threshold voltage issues; this plot is very characteristic of neuromorphic systems built over the last two decades. We
also show the result after calibrating just the threshold voltage mismatch for the ramp generator, resulting in a change to very usable characteristics. More tuning

can make the curves further ideal going forward.

to date, no system has effectively utilized these errors, and usu-
ally systems simply require more resources (e.g., grouping sev-
eral neurons) to make such a system functional. A more realistic
approach seems to be to enable a system that can deal with the
mismatch and then allow the level of mismatch that might be
useful for the particular system of interest.

The primary source of mismatch in subthreshold or near
threshold circuits is threshold voltage mismatch. For a typ-
ical MOSFET device, the average threshold voltage mis-
match(AVrg) is typically 10 mV or larger; since the effect
of mismatch on the transistor current is proportional to
exp(kAVro/Ur), a 10 mV offset results in roughly 20%
mismatch between devices. Minimum size devices will be sig-
nificantly higher mismatch effects. One can reduce mismatch
effects by using larger transistors, since the average mismatch
will decrease roughly as the square root of the device size,
resulting in far lower system density as well as lower power
efficiency due to the larger capacitances.

The use of floating-gate devices enables programmable
elements that could be used to remove mismatch ef-
fects. Floating-gate techniques directly compensate for
threshold-voltage mismatch effects by directly supplying
an offset charge that can compensate for the oxide or interface

charge responsible for AVpg. Fig. 9 shows experimental data
from our chip illustrating the process and impact of correcting
for mismatch that we use throughout our floating-gate chip. The
data for the triangle waveforms connecting to the gate of our
post-synaptic transistor model before correction looks nearly
unusable, but is the typical situation for most neuromorphic
chips (i.e., [25]). When looking at the distribution of the errors,
we find a change by as much as a factor of three or more
from the baseline level, consistent with the threshold voltage
mismatch from multiple devices. The plot after correcting the
errors in an automated fashion (not hand tuned for optimal
performance) of just the gate waveform generator circuit’s
three floating-gate elements dramatically improves the charac-
teristics, as seen by the improvement of the resulting upgoing
and downgoing slope.

The approach for the correction required initially program-
ming the devices to a ideal (and somewhat lower) current level,
measuring the resulting triangle wave devices, extracting the re-
sulting down going and up going slopes for each device, ex-
tract the resulting mismatch in the bias current, and reprogram
using hot-electron injection according to this mismatch profile
(and repeat if necessary) Because our corrections are by injec-
tion, we typically program the devices to slightly lower currents

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINK et al.: LEARNING-ENABLED NEURON ARRAY IC

AER
(input 10)

VAER Gate [350mV Synapse
N 4,

MOn 1

Vmem
(neuron 99)

>
[
2 AER out 1
% L "
> —" T - e
Syn Gate Synapse
250mV 1
Neuron2 Y
Vmem

(neuron 98)

@ AER out 2 ¢

0 2 4 6 8 10
Time (ms)

Fig. 9. Illustration showing the connection, signals, and approach for con-
necting two neurons together originating from an external source. This setup
starts with an AER input (input 10) from the programmable synapses that
is configured to be an excitable synapse. The input creates a response in the
membrane of neuron 99, which is programmed to be strong enough to cause
that neuron to create an action potential. The action potential is recorded as an
event through the AER communication system. That output is also connected to
the synapse on the membrane of neuron 98. The synapse is again programmed
strong enough to create an action potential, which is also recorded through the
AER communication system.

so we can make corrections entirely by injection programming
and not requiring an erase of the parameters; the percent cur-
rent mismatch will be roughly the same when programming for
a slightly lower current level. This synapse calibration function
requires 3—-5 minutes, and is mostly limited to the MATLAB
level interface and communication; a dedicated piece of micro
controller code would take significantly less time. In some cases,
the mismatch was so significant, that we did not get a proper tri-
angle wave curve; depending if one or both slopes could not be
extracted, we moved the parameters to get some triangle wave
performance and then iterate as mentioned above.

Improving other parameters in this approach will further
bring the elements to an ideal state; we use these techniques
throughout our IC to get sufficient performance. This approach
is different from other approaches (i.e., [26]) in that we are
directly correcting the mismatch of the devices at a device level
in what is a straightforward automated approach; techniques
that tune at neuron, connectivity, or system level can still be
employed to further improve performance, starting at a much
closer optimum point.

B. Neuron IC Implementating a Chain of Neurons

Once the system mismatch is sufficiently handled for our
components, the next stage is illustrating the connection config-
uration issues between two neurons through the resulting chip
infrastructure. Fig. 9 shows a diagram and experimental data of

Neuron Chain without Feedback Neuron Chain witn Feedback

2 . . .

40 . .

Neuron Number
Neuron Number

39| . t . 1 39 ¢ . . .
38} . . 1 38 - . . .

37| . e 1 37 e . .

6l . - . J . !
0 05 1 15 20 25 3 35 400 05 1 15 o0 1 2 3 4 _5 6 1 8 9
Time (ms) Time (ms) Time (ms)

Fig. 10. Block diagram for a chain of neurons, including a chain of neurons
without a feedback connection. and a chain of neurons with a feedback
connection and additional excitatory input. The black dots indicate an event
recorded from a particular neuron at that particular point in time. For the case
with no feedback, we measured these structures with two different sets of
synaptic strengths, resulting in different delays between the neurons.

two neurons compiled on this IC. This characterization can be
repeated, pairwise for any two neuron elements.

Fig. 10 shows two examples of a chain of neurons, both with
and without feedback. These neurons were programmed with
some mismatch compensation, although the channel models
were not programmed using mismatch compensation.

C. Neuron IC Implementing a Ring WTA Topology

To show computation between a group of neurons, we imple-
mented a ring Winer-Take-All (WTA) topology of neurons, as
shown in Fig. 11. We chose this model since it is one of the few
neuron models where the resulting network computation is un-
derstood [21]. The network is composed of multiple (N) excita-
tory neurons that all synapse (excitatory synapses) onto a single
neuron that provides inhibitory feedback connection to all of the
original neuron elements, resulting in a WTA type behavior as
discussed previously [27]. Further, by having local reciprocal in-
hibitory connections, one can make the WTA network a locally
winning network, similar to WTA networks with horizontal dif-
fusor connections between neighbor neurons.

Fig. 11 also shows experimental data from this group of
neurons. The strength of the excitatory connection between
each excitatory neuron and the center inhibitory neuron is pro-
grammed identical for all excitatory neurons. The strength of
the inhibitory connection between the center inhibitory neuron
and each excitatory neuron are programmed to identical values,
although the strength and time duration of the inhibition time
was stronger than the excitatory inputs. We show two cases
for different relative synaptic strengths. The synaptic strength
from each AER input signal to each excitatory ring neuron is
different. We applied device-level techniques to eliminate the
mismatch at the synapses and neurons, as described above.
We apply random input events into each neuron through a
single synapse (we record the input events), and record the
resulting measured output events. We get expected resulting
behavior, both that we get a repeated firing from the inhibitory
neuron (46) that regulates and decreases the firing of the other
excitatory neurons, and that when locally in time when we get
a strong input burst of activity at a particular neuron, we get a
high probability of a resulting output event at that neuron.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS

A
>
.
L]
L]
L]
L]
L]

44@ ¢ @ et = crem B - - . . - oo o [y
AERIn AER out
Input5 5
<—D gaz----- ¢ @ R — - — - P
z
£4 s
5 40 e e @ — e e e @
. 2
N FTY e > *- - .. =
@ AERin
36 |- we ws s s e e s res = -0 ° ® 9@ “ @ o = cateess o
T AER out
Input3 D Input4 D 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (ms) Time (ms)

Fig. 11. Diagram of a spiking Winner-Take-All (WTA) network drawn as a ring topology. The network is a combination of input neurons on the outside part of
the ring, and an interneuron, which provides the negative feedback through inhibitory neurons, for the WTA computation. We label the particular neurons used
for this experiment, and all synapses used are programmable synapses, whether excitatory or inhibitory. We show experimental data from a small network from
the IC, where the small, lighter dots are the input events into the structure, and the larger black dots are the output events from the structure. The interaction with
the inhibitory neuron, and resulting inhibitory synapses greatly decreases and refines the resulting firing rate at the output. We have excitatory inputs into each of
the neurons around the outer ring for this WTA network. We provide two data graphs for the same input stream but with different inhibitory synapse strengths. To
enable local winning networks, we also have additional inhibitory connections between neighboring neurons.

TABLE II
COMPARISON OF SYNAPSE DENSITY AND FUNCTION OF WORKING IMPLEMENTATIONS

Chip Process Die No of Synapse Syn Synapse Storage
Built Node (nm) | Area (mm2) | Synapses | Area (um?) | density | Resolution and Complexity
GT Neuronld 350 25 30000 133 1088 > 10bit, STDP
FACETs IC [29], [30] 180 25 98304 108 3338 4bit register, STDP
Stanford STDP 250 10.2 21504 238 3810 STDP, no storage

INI IC 1 [31] 800 1.6 256 4495 7023 1bit w/ learning dynam
INI Chip 2 [32] 350 68.9 16384 3200 26122 2.5 w/ learning dynam

D. Modeling Energy Efficiency of the Neuron Array

In this subsection, we discuss the power consumed by the net-
work of neurons . For these discussions, we will assume an av-
erage neuron event rate of 10 events/s, V44 = 2.4 V, along line
of shared synapse inputs/outputs on die is 1 pF, 7¢.y = 1 ms,
and external, off-chip capacitances of 10 pF. The synapses re-
quire a burst (PSP) of current for each event, where the average
time for the output is 2 7447, at a peak current determined by
driving the line to the soma (i.e., 2 nA). The resulting energy for
the synapse output per spike would be roughly 10 pJ/spike, and
roughly the same energy at the input of communication/gener-
ation of the triangle (pre-synaptic) event. The spike generation
aspect of the soma requires significant Na™ current to create
sufficient positive feedback. The total number of synaptic inputs
gives a measure of the current level required to reach a threshold;
a typical number would be the maximum synaptic current times
the square root of the number of inputs. For the case of 300 in-
puts, we would expect 170 pJ/output event. The AER commu-
nication interface needs to handle the resulting input and output
events, involving charging capacitances (static power is & 0 to
set up the single event input line as well as pack up and transmit
resulting events. Average numbers show 35 pJ/input event and
240 pJ/output event; the output events are higher because of
driving external communication lines.

For an entire chip of 100 neurons, 200 inputs, and 30,000
synapses all operating with average 10 events/second, we
get synapse power of 6 W, Neuron Power of 0.2 W, and
AER communication Power of 0.3 4W. The synapse power
consumes most of the resulting power. For a small network
(6 neurons, 2 synapses per neuron), we are looking at a power
consumption of 30 nW. This power level is negligible compared

to the protection circuitry used around the IC (= 10 pA), as
well as the resulting programming circuitry; although we pow-
ered the programming circuitry during programming, it could
be disabled when operating the network. These power numbers
don’t include buffering instrumentation circuitry which are
unneeded (and are turned off) during chip operation.

We can compare this power level to a digital computation
computed using say a typical 4th order RK method. We would
expect roughly 200 function evaluation MACs per iteration per
neuron, and roughly 20 function evaluation MACs per iteration
per synapse. One would expect a fixed sample rate of 20 kSPS
would be required; for example 20 kSPS is the low-end sample
rate used for dynamic clamp experiments. Therefore for a full
system of 100 neurons and 30000 synapses, we would require
roughly 12.5 GMAC:s each second. Given the best case for dig-
ital computation, 32-bit MAC operation(required for accurate
ODE solutions) at the best case power efficiency of 100 pJ [28]
and ignoring communication power (which is usually larger),
the system would require 1.25 W compared to the < 7 uW re-
quired for our IC.

We still have quite a long way to go before reaching the
10 pW/neuron power efficiency we see in cortical cells in the
human brain. For our system, a single neuron with synapses
requires 63 nW of power. Cortical cells, which also have ex-
tensive dendritic compartments that are available for computa-
tion, are a factor of 6000 from our efficient implementation. De-
creasing the average spike rate to biological levels of one event
per 2 seconds, and decreasing the power supply from 2.4 V to
150 mV supply will improve this factor by 300. The remaining
factor of 20 could be achieved when scaling IC processes, de-
creasing the source-drain to well/substrate capacitances, and
proportionally increasing the power efficiency. Such a chip built

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRINK et al.: LEARNING-ENABLED NEURON ARRAY IC

in a 45 nm technology should have similar power efficiency as
biological neurons, but a real comparison would require imple-
menting dendritic approaches as well as increasing the number
of synaptic inputs to biological levels of 1000 to 10000.

V. CONCLUSION

We presented a single-chip array of 100 biologically-based
electronic neuron models interconnected to each other and
the outside environment through 30,000 synapses. The chip
was fabricated in a standard 350 nm CMOS IC process. Our
approach used dense circuit models of synaptic behavior,
including biological computation and learning, as well as tran-
sistor channel models. We used Address-Event Representation
(AER) spike communication for inputs and outputs to this IC.
We presented the IC architecture and infrastructure, including
IC chip, configuration tools, and testing platform. We presented
measurement of small network of neurons, measurement of
STDP neuron dynamics, and measurement from a compiled
spiking neuron WTA topology, all compiled into this IC.

Table II shows the structure presented in this paper results in
the best synaptic density over other ICs built to date [29]-[32].
We define synapse density as the synapse area normalized by
the square of the process node. Further, we achieve this synapse
density in a working neural array with synapse complexity ca-
pable of high storage as well as STDP behavior; these tech-
niques will scale down and have relatively similar density to
EEPROM density at a given process node. These results demon-
strate the resulting advantage of floating-gate approaches for
neuromorphic engineering applications.

REFERENCES

[1] E. Farquhar, D. Abramson, and P. Hasler, “A reconfigurable bidirec-
tional active 2 dimensional dendrite model,” in Proc. Int. Symp. Circuits
and Systems, May 2004, vol. 1, pp. 313-316.

[2] S.Nease, S. George, P. Hasler, S. Koziol, and S. Brink, “Modeling and

implementation of voltage-mode CMOS dendrites on a reconfigurable

analog platform,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 1, pp.

76-84, Feb. 2012.

S. Saighi, Y. Bornat, J. Tomas, and S. Renaud, “A library of analog op-

erators based on the Hodgkin-Huxley formalism for the design of tun-

able, real-time, silicon neurons,” IEEE Trans. Biomed. Circuits Syst.,

vol. 5, no. 1, pp. 3—-19, Feb. 2011.

[4] J. Lin, P. Merolla, J. Arthur, and K. Boahen, “Programmable connec-
tions in neuromorphic grids,” in Proc. IEEE Midwest Symp. Circuits
and Symtems, 2006, pp. 80-84.

[5] J. Schemmel, J. Fieres, and K. Meier, “Realizing biological spiking net-
work models in a configurable wafer-scale hardware system,” in Proc.
IEEE Int. Joint Conf. Neural Networks, 2008, pp. 969-976.

[6] P.Hasler, C. Diorio, B. Minch, and C. Mead, “Single transistor learning
synapse with long term storage,” in Proc. IEEE Int. Symp. Circuits and
Systems, May 1995, vol. 3, pp. 1660-1663.

[7]1 C. Gordon, E. Farquhar, and P. Hasler, “A family of floating-gate
adapting synapses based upon transistor channel models,” in Proc. Int.
Symp Circuits and Systems, May 2004, vol. 1, pp. 317-320.

[8] S.Ramakrishnan, P. E. Hasler, and C. Gordon, “Floating gate synapses
with spike time dependent plasticity,” IEEE Trans. Biomed. Circuits
Syst., vol. 5, no. 3, pp. 244-252, Jun. 2011.

[9] E. Farquhar and P. Hasler, “A bio-physically inspired silicon neuron,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 3, pp. 477-488,
Mar. 2005.

[10] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S.
Koziol, F. Baskaya, C. M. Twigg, and P. Hasler, “A floating-gate
based field programmable analog array,” IEEE J. Solid State Circuits,
vol. 45, no. 9, pp. 1781-1794, Sep. 2010.

W
=

11

[11] A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, and P. E.
Hasler, “Neural dynamics in reconfigurable silicon,” IEEE Trans.
Biomed. Circuits Syst., vol. 4, no. 5, pp. 311-319, Oct. 2010.

[12] A. Basu and P. E. Hasler, “Nullcline based design of a silicon
neuron,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp.
2938-2947, Nov. 2010.

[13] C. Twigg, J. Gray, and P. Hasler, “Programmable floating-gate FPAA
switches are not dead weight,” in Proc. Int. Symp. Circuits Syst., May
2007, pp. 169-72.

[14] D. Abramson, C. Schottmann, and P. Hasler, “Programmable and
configurable MITE systems enabled through precise floating-gate
programming,” IEEE Trans. Circuits Syst. I, Reg. Papers, submitted
for publication.

[15] A. Basu and P. E. Hasler, “A fully integrated architecture for fast and
accurate programming of floating gates over six decades of current,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp.
953-962, 2011.

[16] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, S. Ramakr-
ishnan, and P. Hasler, “Hardware and software infrastructure for a
family of floating-gate FPAASs,” in Proc. IEEE Int. Symp. Circuits and
Systems , 2010.

[17] C. R. Schlottmann, C. Petre, and P. E. Hasler, “Simulink framework
for design to and automated conversion on large-scale FPAA devices,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., submitted for pub-
lication.

[18] F. Baskaya, D. V. Anderson, P. Hasler, and S. K. Lim, “A generic
reconfigurable array specification and programming environment
(GRASPER),” in Proc. Eur. Conf. Circuit Theory and Design, Aug.
2009, pp. 619-622.

[19] C. Twigg and P. Hasler, “Incorporating large-scale FPAAs into analog
design and test courses,” IEEE Trans. Educ., vol. 51, no. 3, pp.
319-324, Aug. 2008.

[20] A. P. Davison, D. Briiderle, J. M. Eppler, J. Kremkow, E. Muller, D.
A. Pecevski, L. Perrinet, and P. Yger, “PyNN: A common interface for
neuronal network simulators,” Front. Neuroinform, 2008.

[21] G. Indiveri, T. Horiuchi, E. Niebur, and R. Douglas, “A competitive
network of spiking VLSI neurons,” in Proc. World Congress Neuroin-
formatics, Vienna, Austria, Sep. 2001.

[22] C.Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[23] G.-Q. Bi and M. M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength and
post-synaptic cell type,” J. Neurosci., vol. 18, pp. 10464-10472, 1998.

[24] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation of
synaptic efficacy by coincidence of postsynaptic aps and epsps,” Sci-
ence, vol. 275, pp. 213-215, 1997.

[25] L. Watts, D. Kerns, R. Lyon, and C. Mead, “Improved implementation
of the silicon cochlea,” IEEE J. Solid-State Circuits, vol. 27, no. 5,
1992.

[26] E. Neftci, E. Chicca, G. Indiveri, and R. Douglas, “A systematic
method for configuring VLSI networks of spiking neurons,” Neural
Comput., vol. 23, no. 10, pp. 2457-2497, 2011.

[27] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead,
“Winner-take-all networks of O(N) complexity,” in Advances in
Neural Information Processing Systems 1. San Mateo, CA: Morgan
Kaufmann, 1989.

[28] H. B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Minimization of
energy per Op in an asynchronous pipeline above and below threshold,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be published.

[29] J. Schemmel, A. Griibl, K. Meier, and E. Muller, “Implementing
synaptic plasticity in a VLSI spiking neural network model,” in Proc.
Int. Joint Conf. Neural Networks, Vancouver, BC, Canada, 2006, pp.
1-6.

[30] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in Proc. IEEE Int. Joint Conf. Neural Net-
works, Hong Kong, pp. 431-438.

[31] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity,” IEEE Trans. Neural Networks, vol. 17, no. 1, pp. 211-211,
Jan. 2006.

[32] P. Camilleri, M. Giulioni, V. Dante, D. Badoni, G. Indiveri, B.
Michaelis, J. Braun, and P. del Giudice, “A Neuromorphic aVLSI
network chip with configurable plastic synapses,” in Proc. 7th Int.
Conf. Hybrid Intelligent Systems, 2007, pp. 296-301.

