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Modeling and Implementation of Voltage-Mode
CMOS Dendrites on a Reconfigurable
Analog Platform

Stephen Nease, Suma George, Paul Hasler, Senior Member, IEEE, Scott Koziol, and Stephen Brink

Abstract—Many decades ago, Wilfrid Rall and others laid the
foundations for mathematical modeling of dendrites using cable
theory. With reconfigurable analog architectures, we are now able
to accurately program different circuit architectures to emulate
dendrites. OQur work has shown that these circuits accurately re-
produce results predicted from cable theory when inputs to the
system are small. For large inputs, interesting nonlinear effects
begin to take hold.

Index Terms—Dendrite, field programmable analog array
(FPAA), neuromorphic.

I. THE NEUROMORPHIC ENGINEER’S THESIS:
SILICON EMULATES BIOLOGY

EUROMORPHIC engineering has garnered ever-in-
N creasing interest since Carver Mead’s early explorations
of the field [1]. Neuromorphic engineers claim that transistors
can be used to emulate biological processes. Silicon devices
and biological structures operate based on similar physical
principles, so it is possible to make circuits which share many
of the computational properties of neurobiological systems.
There are two consequences of this statement: neuromorphic
circuits can be used to natively simulate biological systems,
and they can also be used to perform bio-inspired computation.

Although dendrites have typically been overlooked in terms
of computation, recent results have hypothesized computational
possibilities for dendritic components [2], [3]. Fig. 1 shows
dendrites as the region of a neuron that connects the neuron’s
synapses to its soma. In order to begin to take advantage of
this computation, we have verified that some of the most basic
properties of dendrites can be observed using analog CMOS
circuit models.

This paper explores how neuromorphic technology can be
applied towards emulation of dendritic behavior. Our previous
work showed the basic structure of a transistor-channel imple-
mentation [4] of a dendritic circuit [5] that has been proposed
as a key component for hardware-enabled biologically-inspired
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Fig. 1. When operated in the correct regime, a VLSI dendrite model produces
the behavior predicted by canonical linear models. (a) Dendrites are the struc-
tures which connect synapses to the cell body. They perform linear (and some-
times nonlinear) summations of input currents. (b) Neuroscientists typically
model these structures as passive linear cables. (c¢) The classical model for this
linear cable is an equivalent RC delay line. The major predictions of linear cable
theory are based on this model. (d) An alternative model for the linear cable is
anetwork of aVLSI elements, primarily MOSFETS and capacitors, where input
currents are translated into small voltage signals which swing around a DC op-
erating point. If (c) and (d) are equivalent, they should behave similarly. (e) The
steady-state behavior of both models is expected to be an exponential decay in
voltage, where the amount of decay depends on physical parameters. (f) The
dynamic behavior of both models is expected to be exponential decay in space
and a delay in time.

classifiers [6]. To make these approaches practically usable in
both neurobiological modeling as well as classification systems,
we require building these systems to have careful modeling
of these approaches. The classic computational model for
dendritic structures comes from the work of Wilfrid Rall [7],
which has been the classic model of linearized passive dendrites
for decades. We present in this paper a Si transistor channel
dendritic model that displays similar behavior to Rall’s model
of passive dendritic structures, both in the steady-state response
and the dynamic response. Further, with the emergence of
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large-scale Field Programmable Analog Array (FPAA) ap-
proaches [8], we need the opportunity to compile such systems,
to make these approaches widely accessible to others besides
ASIC designers.

There is a long history of dendritic emulation of Rall’s equa-
tions in the neuromorphic community. Elias [9] built passive
compartmental models using multiple fixed IC resistors, ca-
pacitors, and MOSFET current sources, demonstrating spatial
weighting of inputs, sublinear summation of nearby synapses,
and tonic summation of inputs. Rasche and Douglas [10] mod-
eled neural cable using switched capacitors and OTA leakage
conductances, enabling some programmability (through clock
rate, biases). They could observe changes due to these pa-
rameters, and observed propagation of action potentials down
a cable. Recently, Wang and Liu [11] described a dendritic
system with NMDA channels, nonlinearities, and a dendritic
cable. They showed how activating NMDA channels leads to
superlinear responses in the system and that these nonlinearities
allow the dendrite to discriminate between input patterns with
different spatial extents.

We present work on careful modeling of the dendrites on
FPAA structures over the next few sections. Section II dis-
cusses the fundamental unit of computation in neuromorphic
systems—the silicon channel—and states that it can be used
to model biological channels. Section III overviews the hard-
ware platform for connecting silicon channels to create more
complex biological structures. Section IV discusses using this
platform to bias silicon channels in a way that simulates the
voltage-mode behavior of dendrites, and makes the connection
to Rall’s linear cable model where his model is appropriate.
Section V discusses tools developed to aid in the design of
dendritic circuits in an FPAA framework. Section VI overviews
possible behaviors seen in the Si dendrite model that are outside
the region of validity of Rall’s model, but which we hypothesize
are useful properties.

II. THE SILICON CHANNEL

Neuromorphic engineering begins with the principle that the
transistor acts as a biological analog. Carver Mead recognized
that this is true because both silicon and biological channels
behave according to the same natural principle. The channel of
a transistor operated in its subthreshold regime is governed by
the diffusion equation, as are many biological processes [1].

The channel of a transistor is a region of silicon that sepa-
rates the drain from the source [see Fig. 2(a)]. This area forms
an energy barrier to charge carriers at the source and at the drain.
The number of charge carriers at the source or drain end of the
channel is determined by the size of this barrier, which is mod-
ulated by the difference between the gate voltage and the source
or drain voltage. Since the source is operated at a higher po-
tential than the drain in the P-channel device, the barrier at the
source end of the channel is lower, so there are more charge car-
riers at the source end of the channel than at the drain end. There-
fore we have a gradient of charge carriers from the source end of
the channel to the drain end. This is illustrated in Fig. 2(c). This
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Fig. 2. (a) The physical structure of a MOSFET consists of polysilicon, silicon
dioxide, and doped n-type silicon. A channel is formed between the source and
the drain. (b) The physical structure of a biological channel consists of an insu-
lating phospholipid bilayer and a protein which stretches across the barrier. The
protein is the channel in this case. (c) The band diagram of silicon (solid line)
has a similar shape to the classical model of membrane permeability proposed
by Danielli [12] (dashed line). In both cases, carriers must overcome energy bar-
riers in order to travel from one side of the device to the other.

means that carriers must diffuse from the source to the drain ac-
cording to the diffusion equation from [1]:

1 dN
PNan

where v4; f fusion 15 the velocity of carriers, D is the diffusion
constant, N is the number of charge carriers per unit volume,
and h is distance. When the diffusion equation is applied in the
case of a gradient of charge carriers from the source to the drain
of a pFET channel, the current is given in [13] as

ey

Vdif fusion =

I = Tyer(Vaa=Vy)/Ur (e—(vdd—v.J/Uw _ e—(Vdd—Vd/U'r))
— [leVa/Ur (GVS/UT —e ’d/UT) . 2)

Vaa is the well potential of the pFET, V is the gate voltage, V
is the source voltage, and V; is the drain voltage, all referenced
to ground. I is a collection of physical constants which is in-
tuitively the saturation current when V, = V, = V. kis a
measure of how well the gate voltage modulates the potential
at the channel’s surface. Ur is the thermal voltage (typically
around 26 mV at room temperature). To simplify the nomen-
clature, we can reference the terminal voltages to V4, in which
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Fig. 3. Various models of a dendrite. A biological dendrite is modeled as a conductive cylinder surrounded by an insulating layer. A cross section of this model
is shown in (a), where I, represents the current flowing along the axial direction of the dendrite, I, represents current from the dendrite to extracellular fluid
through a leak channel, and the internal and external potentials are V., and E,, respectively. When we translate channels into transistors, we get the model shown
in (b), where both the axial and leakage current flow through transistors. The external voltage is set by a voltage source Ey., and V,,, ..., is set by the bias structure.
When we linearize the transistor model, the result is shown in (c) and (d). Current sources can be reduced simply to small-signal conductances. (e) Schematic for
taking measurements from the cable. Each block representing a stage consists of one bias, axial, and leakage transistor as shown in Fig. 3(b). At the output of each
stage, two amplifiers relay the signal to a mux. The first is an open-loop floating-gate OTA which is used to measure step responses at each stage of the dendrite.
The second amplifier is a buffer-connected OTA which is used to accurately read DC voltages for steady-state experiments.

case I = Iy. To reference everything to ground, we let I, =
Ioe'ind/UT e~ Vaa/Ur

The idea of overcoming energy barriers to produce current
is also seen in biological channels. In Fig. 2(b), we show the
structure of a channel embedded in a membrane. Fig. 2(c) shows
how both biological and silicon channels generate barriers to
current, where the barrier is shown as a change in membrane
permeability in the case of biological channels and a change in
potential energy in the case of silicon channels.

III. A RECONFIGURABLE DEVELOPMENT PLATFORM FOR
NEUROMORPHIC SYSTEMS

All of the data presented in this paper comes from a reconfig-
urable hardware platform that can be used to develop neuromor-
phic models. The Field-Programmable Analog Array (FPAA) is
a mixed-signal CMOS chip which allows analog components to
be connected together in an arbitrary fashion, allowing for rapid
testing and measurement of many different circuit designs. The
specific chip used for this paper is the RASP 2.8a [8].

The FPAA is organized into three functional blocks. The
first is the Computational Analog Block (CAB), which is a
physical grouping of analog circuits which act as computational
elements. These elements include nFETs, pFETSs, Operational
Transconductance Amplifiers, capacitors, Gilbert multipliers,
and others.

The interconnection of CAB components is accomplished
with the FPAA’s second functional block, the switch matrix.
This is a collection of floating-gate pFETs which connect to-
gether rows and columns of routing lines. A floating-gate pFET
is one whose gate has no DC path to ground. Voltage is applied
to the gate through a capacitive divider. The lack of a DC path
to ground means that once charge is stored on the gate, it will
remain there without the need for a directly-applied potential.
We are able to place charge on the gate and remove charge from
it using the quantum mechanical processes of Fowler-Nordheim
tunneling and hot electron injection.

The third functional block is the programmer, which selects
a floating-gate device in the switch matrix and controls the pro-
cesses of tunneling and injection to add or remove charge to

the floating gate. This allows each device to be turned com-
pletely on, turned completely off, or operated somewhere in-be-
tween. This flexibility means that switch elements can be used
for computation as well as routing, a benefit seen in other effi-
cient routing applications [14], [15]. One example of a useful
computational element created from floating-gates is a constant
current source.

IV. IMPLEMENTING THE LINEAR CABLE MODEL WITH
ANALOG CMOS CIRCUITS

Our basic thesis is shown in Fig. 3. We begin with the bi-
ological dendrite and model both the conductive medium and
the leak channel using a silicon channel. We also provide a bias
current to set the resting membrane potential, V,..s;. We then as-
sume small signals are applied as inputs, and our circuit reduces
to a linear model.

A. Introduction to Linear Cable Theory

The simplest model neuroscientists use to describe the func-
tion of dendrites is known as the Linear Cable Model. The den-
drite is treated as a conductive core surrounded by an insulating
layer. The core is modeled as a long piece of resistive mate-
rial, which can be discretized into many incremental resistances
R 4,. The insulating layer is a phospholipid bilayer, and it is
modeled as a capacitance C' because it separates the internal
membrane potential from the extracellular potential. However,
there is leakage current from the intracellular solution to the out-
side of the cell, so a leakage resistance Ry is also included in
the model.

Koch gives a simple derivation of the mathematical cable
model for this circuit in [16]. If one writes down Kirchhoff’s
Current Law (KCL) at the nodes V¢, and uses Ohm’s Law
V = IR and the capacitor equation I = C(dV/dt), then the
following differential equation describes the system:

82Vmem ansm
22 =T
0x? ot
where I;,,; is current injected into the dendrite, 7 = Rp;C and
A = /Rpr/Ra.. 7 and A are called the time constant and

+ Vmem - RmIzng (3)
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the space constant. Intuitively, 7 determines how voltages along
the dendrite change with time, and A determines how voltages
change with distance down the dendrite. If we only care about
the steady-state solution, we can set the differential with respect
to time equal to zero. This results in a solution for the steady-
state behavior given in (4)

V(z) = Voe™1#1/2, 4)

B. Using Silicon Channels to Implement the Linear Cable
Model

Our goal is to replace the resistances in the linear cable model
with silicon channels. The most intuitive way to do this is to
simply replace each resistance with a single pFET. The axial
resistances are replaced with a pFET whose gate is set at a fixed
potential, V4,.. Similarly, the membrane resistances are replaced
with pFETs whose gates are set at a fixed potential V7. On an
intuitive level, the conductance of the pFETs is set by their gate
voltage. We will need to bias the dendrite at a fixed membrane
potential, so a transistor which provides a DC bias current is
inserted into each node of the dendrite. It has a gate voltage
Viias, and it sets the DC point V;,..,,. The final piece of the
dendrite to consider is the capacitance. It is a fact of analog
circuits that every node has some capacitance associated with
it. So we do not have to place an explicit capacitance at each
node to simulate a dendrite. If we so desire, the FPAA has the
ability to compile 500 fF capacitances into the nodes. The final
circuit is as shown in Fig. 3(b).

In order to model an equivalence to the linear cable model,
we can simplify the full circuit into a linear one. Each transistor
is replaced with a small-signal, linearized model. To do this, we
take partial derivatives of the current equation for a pFET as
formulated in (2).

Linear Model of Axial FET: In the operation of the circuit, we
will leave the gate fixed at a DC bias, so we can simplify (2) by
incorporating the gate voltage term into Iy, = Ihe™"Ve/Ur,
Therefore, the current through the axial and leakage pFETS can
be expressed as follows:

1 =y (V05 — o).

Traditionally, we form a linear model for this device by taking
the partial derivative of the current with respect to a changing
terminal voltage. Since a signal is traveling in the axial direc-
tion of our dendrite, both the source and the drain of the axial
FET are changing. We model this with two current sources in
parallel pointing in opposite directions, with the values g;AVy
and g4 AVy. Ignoring channel length modulation, the values for
gs and g4 are given in [13] as

O,

Iias ol x I’ias J
95= 5y — Zbias V,/Ur _ Az _ Lbias V,/Ur

- Ur oVy Ur

Note that, at rest, the dendrite will be biased such that all source
and drain nodes of the axial pFETs will be at the same rest po-
tential, V}..s¢. This means that g; = g4. We can combine the two
current sources into one source with the value

I = ga:AVs — gaa.AVg = gaAVsq.
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Fig. 4. Demonstration that the ratio of source conductances is a function of the
difference between gate voltages. We took a CAB pFET and measured a refer-
ence source conductance by fixing the DC potential at all of its terminals (V,
Vo and V), and measuring the DC current. We then swept its source voltage
through a very small range (szee p) and measured the change in current. The
reference conductance was the slope of change in current with respect to change
in source voltage. We performed this same experiment for ten different values
of the gate voltage (V,, — AV, ). We then plotted the square root of the ratio
of source conductances as a function of the gate voltage. We used the difference
in gate voltages to create a theoretical value of the conductance ratio from Eq.
(7), and the two match very closely.

So this is simply a small-signal conductance,
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Linear Model of Leakage FET: Modeling the leakage tran-
sistor is much easier. Both the gate and the drain are fixed to
DC voltages. So any change in voltage across the device is com-
pletely due to a change in the source. Therefore, the small-signal
conductance of the leakage FET is just the source conductance,
as given above

JAzx

Iy; ,
9Lk = bz[;sm eVmen/Ur. (6)
T

Deriving the Space and Time Constants: The space constant
is the parameter ) in the linear cable equation which describes
how voltage in the dendrite decays with position along the den-
drite. It is related to the ratio of the axial and leakage conduc-
tances. Now that we have linearized our model, we can define a
space constant A by taking the ratio of our conductances

1/2 2
)\ = (RLk) _ <Ibias,”> . <vL2kUTvAm). -

Ry, TyiasLk

Fig. 4 verifies this expression experimentally using the FPAA.
We measured how the conductance of a pFET changes as a func-
tion of its DC gate potential. To relate this back to (7), we mea-
sure a reference conductance and see how changing the gate
voltage affects the square root of the ratio of the new conduc-
tance to the reference.

The time constant 7 describes how voltages decay with time.
It is defined as the product of the leakage resistance and the
capacitance, or

c CUr
T=—=

_ e—Vum/U'r. (8)
9rk  Tvias,,
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Fig.5. (a)and (b) Steady-state decay of dendrite voltage. For five different values of A, a ten-stage dendrite was biased at DC such that the V,,,..,, nodes were about
20-50 mV above E; = 1. Then a small DC current was injected into the first node. We then measured AV; = Vmemi - Vresii for every node in the dendrite.
Then AV; was normalized. The dots are experimental measurements, and the lines represent how the voltages should decay if A matches the theoretical value
perfectly. The theoretical values essentially predict the “slope” of the logarithmic response, and not the actual DC offset. This is why the normalized predictions
are accurate for low values of stage number and seem to deviate as stage number increases. We’re seeing error in the slope but not DC offset. The linear plot gives
an intuitive physical feel for how the dendrite behaves, while the logarithmic plot demonstrates how these are approximately exponential responses. The log plot
also shows how error in slope accumulates. Please note that any changes which were negative (all of which were small) are not shown on the log plot. (c) This
plot shows how input resistance changes as dendrite length is increased. A fixed input current was injected into Node 1 of the diffusor, and the membrane voltage
at that node was measured before and after injection. We then calculated the difference between these two (Vieita = Vinem — Viest). This was done for many
different dendrite lengths. To calculate R;,, /R, we divided all values of V.14, by the value for L = 1. Since the injected current was the same for all tests, the
ratio of resistances is therefore the ratio of the voltage responses. The response did not follow the quantitatively predicted curve, but it does demonstrate qualitative
behavior similar to what we expect, as shown by the dashed curve, which is a curve fitto a + b X coth(L).

Sources of Error: The above expressions hinge on perfect
matching among all pFET devices. This unfortunately is rarely
achieved. We measured the values of x and I for a sample of 15
pFET CABs in the FPAA and measured the statistical variation
for these two parameters. This information is shown below

slightly different form than that given earlier. From [16], the
solution is

_ ., cosh(L — X)

ViX) = cosh(L) ©)

where X = x/\ and L = 1/\. For this experiment, we defined

m o the steady-state voltage of a particular node as the difference be-
K 0.8393 0.0021 tween its measured rest voltage and its voltage after applying an
I 4.5740f A 0.77549f A input. The results for this dendrite are given in Fig. 5(a) and (b).

The input resistance of a semi-infinite, sealed-end cable is

The above analysis assumes the system is processing “small” also well-known. Its expression is given in [16] as

signals. We can no longer assume that the linear models behave
if they are perturbed far from the DC bias. We limited inputs
to the system such that the source nodes of the vertical pFETs
never changed by more than 25 mV.

R;,, = Ry coth(L). (10)

As L increases, R, approaches R.,. To test whether our den-
drite follows this model, we applied a step input current of I to
our dendrite and varied the value of \. For a fixed input current
but variable dendrite length, we can predict what the voltage
should be at various points along the dendrite. Our results are
shown in Fig. 5(c).

Our theoretical results do not perfectly match the data, and
there are a few possible reasons for this. Probably the largest
contributor to the problem is biasing the dendrite correctly. For
the experiments in Fig. 5(b) and (c), the resting membrane po-
tentials were as much as 30 mV away from each other. The ratio
of small-signal conductances is e(AV/Ur) g6 this means that
the ratio of two ideally matched conductances could be as high
as 3.32. It should also be noted that s changes with the source
voltage, so a 30 mV mismatch in source voltage could also af-
fect k.

Dynamic Experiments: Cable theory provides us with a pre-
diction for what the shape of the step response should look like
at the site of current injection. The form is given in [16] as

V. DEMONSTRATING EQUIVALENCE TO THE
LINEAR CABLE MODEL

We now wish to demonstrate that our voltage-mode circuit
retains many of the behaviors of a passive dendrite. We set up
our cable using the system shown in Fig. 3(e).

Steady-State Experiments: The first test to perform is
a steady-state analysis. In our experiment, we compiled a
10-stage dendrite onto the FPAA. We set I, = 1 V and biased
the membrane voltage to around 20 mV above FEj. Due to
mismatch among the bias transistors and leak transistors, not all
membrane voltages were exactly the same, and they could vary
by as much as tens of mV. We attempted to compensate for
some of the mismatch by an iterative process of measuring and
changing the bias voltages on the gates of the I;;, 5 transistors,
but this did not remove all of the mismatch. Since this is a
dendrite of finite length, the steady-state solution takes on a

IR
> (11)

Vstep(0,T) = erf(VT).
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Fig. 6. (a) Step response for the first node of a diffusor, along with the best fit to the error function and an exponential function. The step response was obtained
by setting the value of V... ; on the first node’s floating-gate OTA such that V,,,, was midrail. Then the input current was pulsed, and the waveform was captured.
We experimentally determined how much to pulse V;,, by alternatively pulsing it, measuring how much the first node’s voltage changed, and adjusting the gate
until the first node’s voltage changed by less than Uy, or 25 mV. We chose this value since the FETs would leave saturation if the source voltage changed by much
more. We normalized the result by subtracting the DC offset and dividing by the maximum value reached. Linear cable theory predicts that the error function will
be a closer fit than the exponential, but the data for our system mirrors an exponential response much more closely. It is possible that our step size was greater than
needed to keep all devices in their linear regimes. (b) Step responses for four taps of the dendrite were taken for two different values of A. For a small value of
A, the velocity of propagation is small, so one can see delays of the response as they travel down the dendrite. For higher values of A, the velocity of propagation
is very fast, so very little delay can be seen. Fig. 6(c) shows parasitic transients not visible in this figure. (c) Two parasitic effects seen at once for one particular
step response. When the gate of the pFET is pulsed down, some of that voltage change is coupled into the input node of the dendrite, and therefore initially the
voltage at the membrane decreases. This change can be seen propagating along the system. For this step response, we also see a spike upwards. This is likely due
to capacitive coupling into the instrumentation amplifier (a floating-gate input OTA), because this change is not seen propagating down the dendrite in other plots.

We have plotted a representative step response for x = 0 along
with a best-fit line to this theoretical function in Fig. 6(a).

Since the cable model is basically an RC network, we expect
to see delay down the line. The propagation velocity of a step
input down the line is given in [16] as

v=2—. (12)
T

This means that we can increase the delay down the line (de-

crease the velocity of propagation) by decreasing A or increasing

7. In our experiment, we changed A\ and looked at how the ve-

locity of propagation was affected. The results are shown in

Fig. 6(b).

In both the steady-state and dynamic experiments, we have
seen a trend in our results. Namely, they agree with cable theory
qualitatively but do not match it precisely, quantitatively. We do
not expect these nonidealities to affect usability of the dendrites
greatly. This is because we believe the computation in dendrites
is not governed by precise tuning of every parameter. Neural
computation is inherently different from the von-Neumann ar-
chitectures in which precision is key. They exhibit high levels
of stochastic behavior, redundancy, and recurrent connections.
Rather, for us it was more more important to see that the basic
dendritic properties can be varied over a wide range, allowing
gross tuning of parameters.

Effects of a Reconfigurable Testbed: A reality of working in
a reconfigurable environment is that parasitics can cause non-
idealities to crop up when experiments are run. Fig. 6(c) demon-
strates this. To apply an input current to our system, the gate of a
pFET is pulsed low. This pulse can capacitively couple both into
the system and into the instrumentation measuring the system’s
response. The amount of coupling depends on how the system
is routed, so certain care should be made to ensure that system
components are routed to minimize such effects. For instance,

the routing lines for the voltage measurement circuitry should
not be physically close to the digital pulse on the gate of the
input current source. Additionally, a cascode should be used on
the input current source.

VI. SIMULINK MODEL FOR SIMULATING CMOS DENDRITES
AND FPAA CONFIGURATION

For DSP and neuromorphic engineers with little or no hard-
ware experience, it is beneficial to have a software tool that
can provide an easy interface with the hardware. MATLAB
Simulink allows users to add new blocks with user-defined
functionality, providing the user an interactive graphical in-
terface. DSP engineers are familiar with this tool to a large
extent. Keeping this in mind, we developed a Simulink model
for dendrites. The Dendrite Simulink block provides users with
a block-level interface. Sim2spice [17] is the compiling tool
we used to convert the block-level implementation to a Spice
netlist. The GRASPER tool [18] is then used to configure
the FPAA and the RAT tool [19] is used to view and edit the
routing. The user can also simulate the behavior of dendrites.

Dendrite Simulink Block: The dendrite Simulink block is de-
fined by level-2 M file S-funcions and corresponding netlist el-
ements. The elements used to model the block are the CAB ele-
ments on the FPAA. The input parameters for the block are con-
figurable. The Simulink block can be used to run a behavioral
simulation of the CMOS dendrites and also generate a Spice
netlist to configure the FPAA. It consists of mainly four files.

1) S-function Simulink block: Consists of the physical den-

drite block with its inputs, outputs and other input parame-
ters that need to be defined. It is the user-interface block as
illustrated in Fig. 7(a). The input parameters that the user
can specify are given in Fig. 7(b).

2) Matlab(.m) build script: Builds the spice netlist for the

block.
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Fig. 7. (a) Dendrite Simulink Block. This is a fully connected block with five
inputs, which are the biasing voltages required for the dendritic line and the
output port which denotes the voltage at every tap. (b) Block parameter window
for the Dendrite Simulink Block. The window asks users to specify input param-
eters needed for the block. The user is asked to specify the number of stages,
the type of FET used (PFET/FG-PFET), if the output should be buffered or not,
and the biasing voltages required for the circuit.

3) Description file(.desc): Defines list of paramters needed by
the parser.

4) Simulink(.m) behavior file: Simulates dendrites in
Simulink using the mathematical model based on the
device physics of the silicon devices.

Behavioral Modeling: The Simulink block simulates the be-
havioural characteristics of the dendrite structure. This provides
the user an insight to the working of the dendritic circuit when
implemented using the FPAA. The MOSFET parameters used
are based on the MOSFETS present on the FPAA. It is char-
acterized by coupled Ordinary Differential Equations (ODE)
and solved using the ODE solver ode-45. The model has been
tested for both static as well as time-varying inputs and has given
reasonable results. We present below a detailed analysis of the
mathematical model used, based on the device physics of sil-
icon.

Consider a dendritic line as given in Fig. 3, with n number
of nodes. Current is injected only at the first node and the axial
and leakage conductances are the same throughout. Applying
KCL at node 1, the injected current and the bias current are the
sum of the axial and the leakage currents. The leakage current
comprises of the current through the leakage capacitor and the
leakage transistor. Applying KCL at node 2; the current through
the first axial conductance equals the current through the second
axial conductance, the leakage conductance, and the leakage ca-
pacitance.

Taking into account the boundary conditions, we can write a
general expression for the node voltage in a vector form as,

(Z_‘Z = é(al “Aing + ky (22 V/UT —

(e IO
+ k2(eﬂ'6-‘7/UT - eEk/UT) + Ibias)

o3 V/Ur )

075 V/Ur )

(13)
where,

V= V» V4 Vil

ai, a9, a3, a4, as and ag are constant matrices whose size is de-
pendent on the number of stages of the dendrite, C is the leakage
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Fig. 8. Comparing Simulation results to data obtained using the FPAA. After
modifying the I, parameter, injected current, and node capacitance, the two
normalized curves have similar qualitative behavior.

capacitance and k; and ko are variables that are dependant on
the axial and leakage conductances. In our experiments V.,
and V7, are the same for all nodes, so k1 and ko are the same
for all nodes. Writing the equations in vector form is useful as it
reduces the time required for Matlab computation. We define all
the constants in the equations based on the MOSFETS used on
the FPAA (k, Iy, C) along with the input parameters as defined
for the block (Vik, Vaz, Ek).

Results: We simulated a 10-stage dendrite using the Simulink
Dendrite block. The nodes are biased at 1.02 V and a current is
injected into the first node. The parameters used for the axial
and leakage transistors are x = 0.8464 and I, = 0.05 fA. For
the bias transistors, x = 0.72 and Iy = 0.45 fA. The node
capacitance was 70 pF, and the injected current was 5 pA. These
simulation settings differ from our steady-state experiment in
three ways. The input current is different from experiment, the
node capacitance is higher than in experiment, and I, differs
from the experimental I, by one or two orders of magnitude. We
believe the higher capacitance was needed in order to allow the
simulation to reach its steady-state results more quickly. Once
the above parameters have been changed for best agreement, the
average error between the normalized data and the simulation is
16.8%. The results are shown in Fig. 8.

VII. NONLINEAR BEHAVIOR OF DENDRITES

Most of this paper has concerned the behavior of the den-
dritic circuit operated in its linear regime. When the input cur-
rent becomes large, however, the qualitative behavior of the cir-
cuit changes, and nonlinear effects begin to take hold. Typically,
a difference between drain and source of about 4Ur, or 100 mV
is typically considered the nonlinear regime of the dendrite. In
order to get a qualitative understanding of the nonlinear effects,
we will analyze one “section” of dendrite, shown in Fig. 9(a).

A. Math Modeling

Applying KCL and the current equations for a capacitor and
a saturated transistor,

d‘/s _ Iin . Ibias eVs/UT
i  C C ’

(14)
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Fig. 9. (a) Ilustration of nonlinear dynamics in dendrite circuit. A large-signal
input current is sent into a node which sees a transistor and capacitor in parallel.
(b) Ilustration of the phase portrait resulting from the circuit in Fig. 9(a). The
input current moves the line vertically, which changes the qualitative behavior
of the system.

We can use (14) to plot a phase portrait. The basic shape is a
negative exponential with a vertical offset, shown in Fig. 9(b).

This portrait gives us quantitative and qualitative information
about our circuit’s voltage response to an input current. First, it
gives us the voltage where we expect V; to settle:

Ii n

bias

Ve=Urln

15)

Second, the picture tells us that we will get small time constants
for large values of I;,,. Note from (14) that the vertical offset of
this plot is determined by the value of I;,,. As I;,, increases, the
plot is shifted up, and the rate at which V; changes for a given
value of V; will be increased, thus decreasing the time constant.
It is also important to point out that the slope of the actual phase
portrait is much steeper than what we drew in Fig. 9(b). This
means that a shift up in the plot won’t affect the steady-state
value of V; as much as it will affect the time constant.

B. Demonstration of Impact on Dendrite Circuit Behavior

If we apply a large enough input current such that the mem-
brane voltage changes by more than 100 mV, we can measure
the effects of nonlinear input currents on the dendrite.

Our first experiment was to see how the steady-state voltage
decays, as shown in Fig. 10(a). The result is that the voltage
decays linearly with space. This is a desirable effect, since it
is essentially a compression operation. Recall that, for small
inputs, the steady-state voltage decayed exponentially. If this
trend were to continue for large inputs, the dynamic range of
available voltages would be severely limited. However, for a
large input, the FETSs are no longer operating as resistors; they
are in saturation, so we merely require linear changes in voltage
to achieve exponential changes in current. Therefore the den-
drite is using nonlinearity to increase its dynamic range.

Our second experiment is to see how the shape of the step re-
sponse changes with an increase in input current. We can rewrite
(16) in the current domain. Defining [; = TpiaseVs/UT  we can
differentiate with respect to time to get I 1=1/ UTVS. Substi-
tuting into (14),

CUy I,
=Lt
L, ot o h
oL _ L (Iin — I1). (16)
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Fig. 10. (a) When the steady-state response of a 10-stage dendrite is measured
with a large input current (causing a change of about 200 mV at the first node),
the response is a linear degradation in voltage. (b) Comparing shapes of small
step and large step response. The step response was normalized in voltage by
dividing by the steady-state value, and time was normalized by finding the point
at which the voltage rises to 95% of its steady-state value. The initial response of
the small step is more of an RC response, while the large step shows a sigmoidal
behavior. See Fig. 6(c) for a discussion of the transient at the beginning of the
small step.

When (16) is solved, it behaves like a tanh function, so we expect
the shape of our dendrite’s step response to be sigmoidal for
large current steps. Our results in Fig. 10 bear this out.

VIII. IMPLEMENTING DENDRITES IN LARGE
RECONFIGURABLE SYSTEMS

A. Difficulties of Floating-Gate Diffusors

Modeling floating-gate dendritic circuits is more complicated
than with regular FETs because the capacitive coupling from the
source and drain to the floating-gate is more pronounced than
with regular pFETSs. In order to design a floating-gate dendrite,
characterizing these coupling ratios is necessary. We need to
know coupling ratios because floating-gate transistors are pro-
grammed with their terminal voltages at one potential in “pro-
gram mode” and then undergo a change in “run mode,” when
the circuit is operating. An example of a floating-gate diffusor
not behaving as expected is shown in Fig. 11(a).

The simplest way to characterize the capacitive coupling is
to perform sweeps of each terminal and extract an “effective x”
for that terminal. Then if we have a desired membrane potential,
we know how the floating-gate voltage will be affected. Once we
know that floating-gate voltage, we can attempt to program the
bias transistor to match the current it is drawing.

A second nonideality is due to the FPAA’s “indirect program-
ming” scheme. Methods to characterize these effects are dis-
cussed in detail in [20].

B. Benefits of Floating-Gate Diffusors

The most exciting aspect of dendritic circuits is that they
can be made in an extremely compact manner. As we stated
above, the switch matrix of the RASP 2.8a FPAA is made up of
floating-gate switches. So there is potential to make huge arrays
of dendrites using the switch matrix. Fig. 11(b) is an example of
how such a diffusor might be made. Partitioning of the switch
matrix allows for a large number of dendrites to be created.

‘We can estimate how large these dendrites can be based on the
FPAA routing structure. Each CAB has an associated floating-
gate switch matrix. The equivalent number of useful columns
per CAB is 14. For CAB types 1 and 2, the number of available
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Fig. 11. (a) Illustration of offsets introduced by capacitive coupling from the
drain of the diffusor. (b) Possible method of placing dendrite in switch ma-
trix. In a switch matrix, a floating-gate transistor exists at every intersection
of two wires which can short a horizontal line and vertical line. In this repre-
sentation, an intersection with a black dot represents wires which have been
shorted together with a floating-gate transistor. A picture of a transistor repre-
sents a floating-gate which is part of the diffusor structure and is programmed
somewhere between open and closed circuit. No graphic at an intersection rep-
resents a floating-gate which has been programmed open-circuit. The leftmost
column has been shorted to ground, and all the transistors connected to it are
the vertical devices in the diffusor. The rightmost column has been shorted to
Vb, and all the transistors connected to it are the biasing devices. The pairs
of two floating-gates in the middle are the horizontal transistors which connect
the vertical legs together.

rows is 24 and 34. If we make a dendrite as shown in Fig. 11(b),
each row connects to one vertical transistor, and each column
connects to two horizontal transistors. We estimate that CAB
types 1 and 2 can implement dendrites of approximately 24 and
28 stages.

It is also important to point out that neural systems are inher-
ently imprecise. So the disadvantages listed above are not neces-
sarily detriments. Some amount of variability from dendrite-to-
dendrite caused by floating-gate transistor mismatch could be
seen as a good thing. In fact, the inability to precisely model the
behavior could be an asset, for it requires designers to get an
intuitive feel for what parameters work well for a given system.

IX. CONCLUSION

We have seen mathematical modeling and behaviors that con-
nect, for small inputs, to Rall’s modeling for passive dendritic
structures. For large inputs, we see deviations from Rall’s model
that we hypothesize could be useful properties. We experimen-
tally demonstrated these results on an FPAA to create a voltage-
mode CMOS dendrite.

This research builds a foundation to utilize these dendritic
structures as computational primitives. Simple dendritic compu-
tations have been proposed for a long time, such as coincidence
detection and boolean operations [2], [3]. Previously, we gave
an early proposal that dendrites could be used to aid HMM-like
classification [6]. We hope to leverage these units for useful clas-
sification and discrimination systems. Further, the inclusion of

active channels, such as NMDA synapses and Na or Ca chan-
nels, enables dendrites to respond more strongly to a sequence
of input events, which should have a powerful effect on under-
standing the computation of dendritic structures [21], [22].
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