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Abstract—The physical principles governing ion flow in biolog-
ical neurons share interesting similarities to electron flow through
the channels of MOSFET transistors. Here, is described a circuit
which exploits the similarities better than previous approaches to
build an elegant circuit with electrical properties similar to real
biological neurons. A two-channel model is discussed including
sodium Na and potassium K . The Na channel uses four
transistors and two capacitors. The K channel uses two transis-
tors and one capacitor. One more capacitor simulates the neuron
membrane capacitance yielding a total circuit of four capacitors
and six transistors. This circuit operates in real-time, is fabricated
on standard CMOS processes, runs in subthreshold, and has a
power supply similar to that of real biology. Voltage and current
responses of this circuit correspond well with biology in terms of
shape, magnitude, and time.

Index Terms—Analog circuits, bioelectric potentials, biological
cells, nervous system.

THE discussion in this paper describes what we believe is a
very new way of looking at the electrical properties of bio-

logical neurons. Much work has been accomplished in the field
of neuroscience since the early 1950’s with the pioneering work
of Hodgkin and Huxley [1]. Advances have also been made in
the field of semiconductors, however, little of our understanding
of the physics of semiconductors has carried across to models
of ion flow in biology. Here, we show a model of a two-channel
type [sodium (Na ) and potassium (K )] neuron circuit which
is capable of generating action potentials, and elegantly accom-
plishes this with just six transistors.

Fig. 1 shows two parallel views for understanding and
modeling ion flow in biology. Both views start from the bio-
logical action potential. Underlying the action potential is ion
flow through channels. From this point the two views begin
to diverge. The classical view (left path) seeks to model the
system by empirically deriving equations describing the current
through a population of channels. While these equations do
capture many of the important dynamics present in channels,
they are not physically based. That is, they are not derived from
a set of fundamental forces underlying the ionic motion. They
are, instead, curve fit approximations to data that was taken.
As is the case with any equations that are not directly tied to
physical properties, they are difficult to implement in the real
world, and frequently lead to large, convoluted circuits.

In contrast to the above approach, we sought to use the nu-
merous similarities between biological channels and semicon-
ductor channels to develop a circuit which behaves as a neuron
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Fig. 1. Two parallel views for modeling electrical activity in neurons. The
path down the left side describes the classical path taken by neuroscientists.
The right shows the path that we have chosen, and shows the progression from
bio-physics to the corresponding silicon physics. Both views start with an
action potential (in this case from the particular snail helisoma trivolvis). Both
views also acknowledge the ionic currents and their underlying macro-transport
phenomenon. However, the classical view seeks to extrapolate equations from
the data and develop a model of the system based off of these equations.
This, we term the empirical method. The other method requires one to look
at the numerous direct analogies between biological channels and MOSFET
transistor channels. We believe this leads to a totally new way of looking at the
biology. Both methods can lead us to an action potential, however, the path on
the right not only gives results consistent with biological data, but also can be
directly realized.

does (right path). The remainder of this document seeks to de-
velop further the reasoning and method behind the development
of this circuit and the path down the right side of Fig. 1. We start
with a description of the underlying biological mechanisms to
compare them with the corresponding transistor ones.

I. BIOLOGICAL PRIMER

In 1952, Hodgkin and Huxley described the electrical activity
of squid axons in a series of papers that eventually won them the
Nobel Prize in 1963 [1]. They showed that two types of channels
are essential to generate an action potential (neuronal voltage
response), and they developed an electrical model to describe
them. This model (shown in Fig. 2) has become the cannonical
circuit model, but it has one large fault for the circuit designer. It
lacks the ability to be directly realized physically due to the fact
that the variable resistor (or conductance) given by and
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Fig. 2. Original circuit model of neural electrical conductivity as devised by
Hodgkin and Huxley. This circuit looks simple, but hidden in the details is a
very complex model for the variable conductances.

requires an unknown circuit element. Note that the authors con-
cede that physical implementations of the Hodgkin and Huxley
model do exist in which the designer has implemented the equa-
tions, however no one has every built the circuit shown in Fig. 2.
Let us quickly review how these channels operate, in the next
three subsections.

A. Neuron Physics

Neurons are the active part of a nervous system. They
are electrically excitable and conductive. These cells have a
semi-permeable membrane which separates many different
charge carriers; the charge separation qualities of the mem-
brane are nicely modeled by a simple capacitor labeled
in Fig. 2. All charge is carried by electrically charged ions, that
is, molecules which have either gained or lost an electron from
their valence shell. There are many different ions that affect
neural activity, but for the purpose of this discussion, we will
focus only on Na ions and K ions as Hodgkin and Huxley
showed that these are the only two required for action potential
generation. Both ions carry a 1 charge.

These electrically charged ions are available in certain limited
concentrations both inside and outside the cell. Na has a high
concentration outside with respect to the inside, and K has a
high concentration inside the cell with respect to the outside.
The channels do not have a mechanical means of forcing ions
across the membrane (neglecting such things as the Na K
pump which does not figure into this discussion). Instead, ion
flow is governed by two fundamental forces: drift and diffusion.
Diffusion (the primary current) and drift currents are in opposi-
tion to each other. The batteries in Fig. 2 indicate at what point
they are equal. This point, known as the reversal or Nernst po-
tential, is calculated using the Nernst equation

(1)

with and being the outside or inside concentrations
of the ions respectively. is equal to the thermal voltage
( or 25.8 mV) and is hereafter termed . Using this
equation mV and mV. These values
assume the use of ion concentrations for the squid that Hodgkin
and Huxley used. These numbers will vary for different animals
with different concentrations.

At rest the cell sits at a voltage termed . This voltage is
also related to the concentration of particular ions both inside
and outside the cell, and the relative permeability of the cell

Fig. 3. Upper plot shows the voltage step forced across the membrane during
a voltage clamp experiment. Lower plot shows the current through the Na
channel (step response) [1].

to that ion. Specifically, is defined by the Goldman–Katz
equation

K Na
K Na

(2)

where is the permeability of the respective ion. When evalu-
ated, this equation yields a resting voltage near 60 mV. Values
for calculations of (1), (2) from [2].

B. Na Channel

Using the above facts, Hodgkin and Huxley developed a se-
ries of experimental procedures which enabling them to study
the different pieces of the squid neuron. The voltage clamp tech-
nique steps the voltage from one voltage to another (step re-
sponse), and measures the current flowing through the channels.
They realized the current they measured was actually the sum
of more than one current. Using pharmacological agents, they
selectively blocked certain ionic currents, thereby allowing the
study of a single type of channel.

The Na channel is one of the two channels essential to gen-
erate an action potential. This channel is voltage gated meaning
that it responds to changes in voltage across the membrane

. It has both an activating and inactivating mechanism
causing current magnitude to increase and then decrease as
time progresses. The step response of the Na channel shown
in Fig. 3 is derived from their paper [1]. Electrical engineers
should recognize this response as that of a bandpass filter,
although it has not classically been described as such. The Na
channel has two time constants, called and for the fast
and slow time constants respectively. Data from this channel
was curve fit by Hodgkin and Huxley with the following:

Na Equations:
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Fig. 4. Upper plot shows the voltage step forced across the membrane during a
voltage clamp experiment. Lower plot shows the current through the K channel
(step response) [1].

(3)

C. K Channel

The K channel is also voltage gated. However, unlike the
Na channel, it is only activating. The step response shown in
Fig. 4 is also derived from their paper [1]. This has the very
characteristic low pass response to a step input. While the time
constant is still quite fast, it is clear from comparing Figs. 3 and
4 that the time constant for is much slower than either
of the time constants found in . Similar to the Na channel,
data was curve fit with the following:

K Equations:

(4)

D. Combined Currents Produce Action Potential

An action potential is the product of many different types of
currents interacting with each other. The two previously dis-
cussed are the minimum to generate a response, while others

Fig. 5. Real action potential from the invertebrate snail (helisoma trivolvis).
Note that omitted from this graph is the rise from resting potential to threshold
voltage, although threshold can be clearly seen. Also note that Hodgkin and
Huxley used a squid for their preparation. The concentrations of the various
ions are different in the squid than for this snail. Due to this, various voltages
(i.e. , , , etc.) are different, but the theory is the same.

(beyond this paper) modulate it in some way. A typical action
potential from the snail helisoma trivolvis is shown in Fig. 5.

Spontaneous activity is not found in typical neurons. An out-
side force acts on the cell (whether it be an input synapse, current
injection, or some other mechanical means beyond the scope of
this paper) causing the voltage across the cell membrane to rise.
If the input is not strong enough to cause the cell to reach to
the threshold potential, the cell will simply return to its resting
voltage. However, at the threshold voltage , the Na chan-
nels open very rapidly allowing Na ions to flow into the cell.
This increases the cell’s voltage (depolarization) quite quickly.
This can be seen in the sharp rise in voltage in Fig. 5. In time,
these channels start to close (due to the slower pole)causing the
voltage rise to slow down and eventually stop. While the Na
channels are closing, the slower responding K channels start to
respond and source current out of the cell causing a decrease in
cell voltage (re-polarization). The K channel has such a slow
time constant it will actually overshoot the desired voltage and
hyperpolarize the cell for a period of time.

II. PREVIOUS WORK

Since one can show voltage versus current relationships for
these channels, one might be tempted to model these channels
as variable conductances. In fact, starting with Hodgkin and
Huxley, this is exactly the method that has been employed to
date. Hodgkin and Huxley used a variable resistor to model this
behavior. The resistor they chose has the dynamics shown in (3),
(4) [Fig. 6(b)]. This element, however, is a linearized conduc-
tance model of the channel.

Maholwald and Douglas employed a similar technique [4].
They have developed a circuit which is realizable in current
technology. However, they seem to have used a very large-scale
integration (VLSI) approximation of the linearized conductance
that Hodgkin and Huxley postulated. In their paper [4, p. 516],
they state that the geometry of the conductance transistor was
modulated to make it behave more ohmically than regular de-
vices, indicating the use of a short channel device. Fig. 6(c)
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Fig. 6. (a) Hodgkin and Huxley recorded data from ion channels to create their model. (b) Their model utilizes a linearized conductance to model the channel.
True, the conductance can be modified, but it is always linear. Note that in their paper [1] it is clear that their model does not fit the data very well. (c) Other VLSI
models have relied on their equations (or some other set of equations) and have used VLSI techniques to approximate the linear conductance that Hodgkin and
Huxley first proposed. For instance, a short channel length transistor in saturation can be used to approximate this conductance as was done in [4]. (d) In contrast
to this is our model which relies on the physical similarities of MOSFETs and ion channels. (e) In a true – plot of a channel, one would expect a figure similar
to that shown here. For some small operating range, the conductance can be modeled linearly. However, the conductance clearly is not linear. A transistor and
ion channel should have this same type of curve since the same macro-transport phenomenon exists in both technologies. (f) This gives rise to a simplified circuit
model. The transistor is not a linear model of a conductance, but rather is a model of the channel itself.

clearly shows that such a device can approximate the conduc-
tances that Hodgkin and Huxley postulated. The and
voltages they used clearly put the device into saturation, but the
conductance of the transistor can still be tuned by modifying the
gate voltage.

Obviously, a control circuit to modulate the gate voltage
needed to be developed. For this control, they sought to imple-
ment the Hodgkin and Huxley equations. They realized that
the rate equations (3) and (4) had the same shape as a tanh
curve. A simple diff pair circuit also has a tanh curve, and was
therefore used to implement them. The results of this circuit
are admirable, but the actual implementation of the equations
was not perfect. For example, instead of implementing
as Hodgkin and Huxley specified, they implemented .
This circuit model also is very large due to the large number of
transistors. This does not allow for many of these circuits to be
implemented on a reasonably sized chip.

Simoni and Deweerth took this concept further [5]. They
added adaptation to their circuit model thereby reducing the
sensitivity to mismatch, and they chose a different set of
equations to model (see [6]). Adaptation is a large jump in
progress as it lends itself to investigation of interesting neural
behaviors. However, the basic design procedure of this circuit
remains the same as the Maholwald and Douglas case. They
used differential pairs to implement the needed curves found in

the equations. Again, the results of this work are admirable, but
implementing equations leads to large circuits.

Georgiou et al. developed another Hodgkin Huxley circuit
implementing the equations [10]. The authors uses a subcircuit
termed a Bernoulli Cell which is capable of implementing
Bernoulli differential equations. They translate the Hodgkin
Huxley equations to the form capable of being implemented in
a Bernoulli cell, and then plug in the appropriate cell for that
equation. Results from the simulated circuit show the concept
works, but again, the resulting circuit is quite large.

III. CIRCUIT OVERVIEW

It is our contention that the implementation of equations, par-
ticularly the Hodgkin Huxley equations, is not the best method
of modeling neurons in VLSI. We have discussed these equa-
tions because they are the cannonical set. Others have devel-
oped equations which are more correct at predicting actual bi-
ological behavior than the Hodgkin and Huxley equations [3].
This shortcoming was noted by Hodgkin himself [7]. It is impor-
tant to note that equations with variables converted to numbers
represent the equations for a specific animal (e.g. Hodgkin and
Huxley’s equations only describe the squid). The basic physical
forces remain the same for every animal while the particulars
(concentrations of ions, etc.) are different.
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Instead, we believe many similarities between the physics of
neurons and the physics of silicon exist. It is the goal here to de-
scribe a circuit which makes use of these similarities instead of
relying on equation implementation. Certainly differences exist
in the physics. As pointed out in [8] one is dealing with ions
moving in a fluid (bosons), while the other electrons in sub-
strate (fermions). Due to this difference the MOSFET can only
asymptotically approach a slope of per e-fold of current
change, while the biology is not limited to this [9, Fig. 4.6]. Our
claim is not that the physics are equivalent, but that they are good
approximation of each other. Ask yourself, if the MOSFET had
been around in 1952, and Hodgkin and Huxley had understood
it, would they have used a different circuit model?

Biological channels allow current to flow through a mem-
brane. They have a nonlinear exponential current relationship to
the voltage on the membrane. This relationship simply cannot be
accomplished using a resistor. One would ideally like to replace
them with elements which also have an exponential relationship
between voltage and current. This brings to mind two types of
devices: a bipola junction transistor (BJT), and a subthreshold
MOSFET transistor. We chose to use the MOSFET transistor
for several reasons: the extremely low amounts of power dissi-
pated by it in subthreshold, current levels from it are naturally
comparable in magnitude to those seen in biology, it is smaller,
available in standard CMOS processes, and we don’t have to
deal with base currents. Fig. 6(b) shows the model as described
by Hodgkin and Huxley while Fig. 6(d)–(f) shows our new con-
ception.

As stated before, the primary driving force in ionic channels
is diffusion. This same fact is true in a subthreshold MOSFET.
This accounts for the exponential I-V relationship. Since the
driving force is the same type of force, we have replaced
the ionic channel with a silicon channel (the channel of the
MOSFET, Fig. 6(d)). Biasing the transistor so that it operates
in the ohmic regime [Fig. 6(e)] allows the transistor to naturally
operate in a nonlinear regime closely related to biology. The
natural range between and of 150 mV naturally
biases them in the ohmic regime.

Biological channels are really made up of two high level
parts: the pore (the physical structure that ions flow through) and
the gating mechanism which controls the opening and closing
of the pore. Sub-threshold MOSFETs have this same idea. The
channel of the MOSFET is a piece of silicon between the drain
and the source (Fig. 1), and the voltage gating mechanism mod-
ulates the channel. A MOSFET’s gating mechanism comes out
to a wire and does not have dynamical control built into it. If one
could develop a circuit with same dynamics as the gating mech-
anisms of the biological channel to be modeled, it could simply
be connected to this wire; resulting in the same high level struc-
ture being preserved, Fig. 6(f).

The current through ion channels has an exponential –
relationship if one looks at a population of channels. Current
through an individual channel is stochastic. This fact also holds
true for MOSFETs. Imagine the existence of a MOSFET of ex-
tremely small width ( 1 nm). If one could measure the cur-
rent through the channel it would also be stochastic in nature.
If many of these transistors were connected in parallel, the re-
sulting current would be the familiar smooth exponential curves.

Fig. 7. This discussion of biological channels, modeled by transistors, actually
refers to models of channel populations. (a) A single biological channel is
stochastic in nature. That is current through it shows a on/off behavior, not the
smooth current curves that have been discussed to this point. Smooth currents
require a large population of channels to be present. The same phenomenon
can be observed with an extremely small width transistor ( 1 nm in width).
(b) However, when a transistor of reasonable width is used (as in our case),
smooth currents can be generated in much the same way that a large population
of biological channels can generate smooth currents.

Obviously, the process is different (bosons versus fermions) be-
tween the technologies, but the same stochastic phenomenon
is present. Many small parallel MOSFETs are equivalent to a
single MOSFET of width equal to the sum of the smaller tran-
sistors. Therefore, a MOSFET with reasonable width actually
models a population of biological channels, Fig. 7.

A. Na Circuit

Having established the use of a MOSFET as an analog to
an ion channel, now the design of the control circuitry can be
undertaken.

The step response of the biological Na channel has already
been described as a bandpass filter. Looking at Fig. 8 certain
parameters in the design of this circuit become apparent. This
figure shows voltage data taken from Hodgkin and Huxley’s
paper [1] on the -axis, while the -axis shows us the voltage
needed on the gate of a MOSFET transistor to get the needed
current out of it. In other words, take a voltage step on a biolog-
ical channel and measure the resulting peak current; then relate
that value to the voltage needed on the gate of a MOSFET to
get an equivalent current flowing through it. It is easy to see
several regions of operation in this curve, with the first region
showing a definite gain in the system. Since the gain parameter,
determined to be 8, was so obviously important, any amplifier
design had to incorporate this value. This gain parameter aids in
overcoming the natural limitation described in [8].



482 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 3, MARCH 2005

Fig. 8. The Na channel has a set of complex dynamics that seem hard to
model. However, looking at the step response data shown in Fig. 3, it should
become clear that this channel is a bandpass filter. The above plot shows that this
channel is also a linear amplifier (with a gain of approximately 8) that saturates,
and then eventually rolls off. We know that we get a current out of the channel
when we place a voltage across it, and we know that the same is true for a
MOSFET. This plot shows the voltage placed across the biological membrane
on the -axis, and the voltage needed on the gate of a transistor to get the same
current out of it on the -axis.

This gain value was the only concrete value which was used
in the design of this amplifier. There was a strong desire to make
the poles of this circuit adjustable since it is our belief that many
different channel types can be modeled by changing this gain
term and the pole locations [11]. With that in mind, Fig. 9 shows
the Na amplifier circuit and the controlled channel transistor.
This tunable bandpass filter has poles which can be moved based
on voltages placed on the nodes and . This feature will
enable the circuit to respond as quickly as the biological circuit
does by setting the biases. The following equations are derived
to relate the time constants to the currents in the transistors, and
the capacitor sizes.

B. Na Bias Voltage Calculations

The Na circuit shown is a modified bandpass amplifier. Con-
sequently, there are several regions of operation for this partic-
ular circuit. Two areas of interest for this application include the
low- and high-frequency regions. The really high-frequency re-
gion (capacitive feedthrough) is outside the range of operation
for this application, although the derivation of its time constant,

, is shown as it naturally flows from the other derivations.
1) Low-Frequency Model: To find the low-frequency

corner, an important assumption is made. Assume that the cur-
rent through is large enough to keep up with any changes
to . Therefore, the voltage is held constant.

Start with the following node equation:

(5)

However, does not change (as it is a fixed voltage) and
is being held constant. As a result, the above equation simplifies
to

(6)

Next, define a new term and
and plug these into the above equa-

tion to get:

(7)

The low-frequency cutoff is defined by

(8)

Note that the subscript does not refer to the word “high,”
but rather to the term used by Hodgkin and Huxley actually
making it the low-frequency pole.

2) High-Frequency Model: To solve for the high-frequency
corner, again an assumption must be made. Assume the capaci-
tive currents are much greater than the currents flowing through
the feedback transistor . The following equation results:

(9)

At extremely high frequencies, the currents through the tran-
sistors are negligible as compared with the currents through the
capacitors. Thus a capacitive feed-through regime will eventu-
ally be observed with the following equations holding:

(10)

(11)

However, what happens between the low-frequency cutoff
and the capacitive feedthrough regime? A composite circuit
combing traits of the low-frequency and high-frequency cir-
cuit results. This circuit has an initial jump (for voltage step)
due to capacitive feedthrough which is counteracted by the
pseudo-floating-gate voltage . This voltage settles back
to equilibrium due to current through the feedback transistor

. To derive this equation the equation for the low-fre-
quency model is combined with the high-frequency model
resulting in the following equation:

(12)

After substitution

(13)

Once again a variable substitution is utilized with
and . This

yields the following:

(14)

where which de-
notes the starting point of capacitive feedthrough and
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Fig. 9. (a) The Na circuit. One can easily see the channel transistor and membrane capacitor. Connected to the channel transistor is the circuit which controls
its dynamics. It is a bandpass filter with a gain term (set by the relationship between and ). (b) Data from the Na voltage clamp experiments performed
in lab. These responses are indicative of the bandpass filter that was implemented. Notice that as the input voltage approaches the max current decreases and
starts to approach 0 again. Although, not shown here, when the input step voltage exceeds , the current will start to flow in the opposite direction, as one would
expect. (c) Selected data from (b) for clarity.

is the high-frequency cutoff time constant of interest. This
neuron circuit should never run at frequencies that would place
it in the capacitive feedthrough regime.

The gain for this circuit can be shown to be .
From the previously mentioned data (Fig. 8), this value needs to
be 8. The capacitors are chosen by this ratio.

Step response data from this circuit is shown in Fig. 9. Se-
lect data from the left is blown up on the right for clarity. This
data shows resulting currents for input steps up to 100 mV. The
current magnitude increases as expected until the input step ap-
proaches (the reversal potential) at which point the magni-
tude starts to decrease, as can be seen in the data.

C. K Circuit

Similar to the terms and , Hodgkin and Huxley used the
term . This term described the time constant of the activation
of the K channel. A similarly named , is the bias control-
ling the activation time constant of the K channel. In other
words, it controls where is. The following equation gives the
equation for current through this transistor:

(15)

The conductance of this transistor at any given value of
can be found by taking the partial derivative of the current with
respect to . In our case, is This yields

(16)

At steady state, since the voltage and equal each other,
we know that the difference between the source and drain
voltage is 0. So, if we plug this into the above equation
we get

(17)

We rename to because this is the same equa-
tion for a subthreshold transistor that is in saturation. We know
that the time constant of a node is equal to the resistance seen at
that node times the capacitance seen there (or ). Therefore
with , we multiply and get the
following:
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Fig. 10. (a) The K circuit. Again, it is easy to see the channel transistor and the membrane capacitor. The circuit connected to the channel transistor is a low-pass
filter, as is needed from observing the step response for a biological channel shown in Fig. 4. (b) Data from the K voltage clamp experiments performed in the
lab. Note that all show a low pass response. Note also an instantaneous jump in current at onset. In our circuit this is due to capacitive coupling from to .
This is expected, and if one closely examines Hodgkin and Huxley’s data, this same step is apparent, and therefore desirable. (c) Selected data from (c) for clarity.

However, the substituted current is actually the desired cur-
rent and is therefore renamed . Thus, the following equation:

(18)

Knowing the needed time constant for this node determines
the amount of current needed given a particular capacitor size.
Using Hodgkin and Huxley’s data it was determined that this
time constant should be in the neighborhood of 5 ms. At steady
state, the nodes and are the same value so 0 current will
flow through this transistor. An input step causes a difference
between the two nodes causing current to flow. Most input steps
do not cause a depolarization enough to put the transistor in sat-
uration, with different step sizes causing different conductances.
This means that the time constant for this low-pass filter will be
slower for smaller input steps and faster for larger ones. This
correlates to what Hodgkin and Huxley actually measured, and
is therefore desirable. The use of this transistor also makes the
conductance in the channel nonlinear. This helps to preserve the
“S-shaped” curve seen in Fig. 4.

Voltage step data is shown for this circuit in Fig. 10. Select
data from the left is blown up on the right for clarity. Notice
the step in current at the onset of the pulse. This is due to the
capacitive coupling from to . This phenomenon was
desirable, as the same step can be seen in Hodgkin and Huxley’s

Fig. 11. The maximum currents reached for both and under voltage
clamp conditions. Notice the reversal in sign for the Na channel. This is due to
the input step being larger than . Results are consistent with biology. This
is experimental data.

data. Note also that the current magnitude keeps increasing as
the voltage step keeps increasing. This is due to the fact that

is below the resting voltage so the input steps never cross it.
These voltage clamp experiments (performed on the Na and
K channels) were meant to emulate those done by Hodgkin
and Huxley.
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Fig. 12. (a) Complete neuron model circuit as a combination of Na and K transistor channels. Notice that in terms of size, it is roughly that of an AND gate. (b)
Action potential generated by the circuit. Due to the tunability of the circuit, there can be significant variation in shape from one action potential under a certain set
of bias conditions to the next. However, within a fixed set of biases, the action potentials all look alike regardless of the input current magnitude (obviously within
the boundary conditions of the circuit). The voltage shows the voltage of the spike minus the voltage of the circuit at rest. This was done to show the relative pulse
size of an action potential from this circuit. (c) Current through the Na channel during an action potential. Notice the kink as time approaches 1 msec. Notice
that in Fig. 12(b) that the action potential is at its peak around 1 msec. This peak is very close to the reversal potential for Na , and therefore causes the current
magnitude to decrease (less driving force). This can also be seen in biological Na channels. (d) The current in the K channel during an action potential. Its
shape also models the biology. All three of these plots show experimental data from the same action potential.

The maximum currents reached for each input voltage step is
shown in Fig. 11. This clearly illustrates that as the input step
increases, also increases to a point. But as the input step
gets close to the maximum starts to decrease, to the point
where it actually changes direction. is below the input step
so it never turns around. The shape of both of these curves is
consistent with biology, [12, Fig. 6.3 ].

D. Neuron Circuit

The spiking neuron is created by tying these two circuits to-
gether. Much like the biology, the interplay between the two cur-
rents on the membrane node yields the desired behavior. Tying
these circuits together gives us another point to consider, the
resting voltage . A resting voltage where nothing will ever
happen can be observed. This is expected, and is tied to the
steady state conductance of each of the channel transistors.

In one case, the K conductance is too high causing
to sit at some low voltage . The K circuit easily sinks
any current the Na circuit may try to source, thus keeping the
charge on steady. The resting current through the K
transistor can be tuned by the node. At dc, the gate on
will equal the voltage . By moving , the steady state con-
ductance of can be brought into balance.

In the second case, the Na conductance is too high causing
to move to a high voltage . The Na circuit can

source much more current than K channel can sink. This is
an equally undesirable case, as no action potentials can be cre-
ated. Tuning of this parameter is a bit more difficult. It involves
changing . This can be tuned by a combination of raising or
lowering , (which in our case was tied to ), ,
or . However, notice that moving any of these values causes
a change in the time constants. Therefore, care must be taken
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Fig. 13. Using the EKV model, the circuit can be accurately simulated. Spike
frequency change for different input currents (2 , 6.4 , and 21
respectively) can clearly be seen.

not to tune the parameters out of the desired range when tuning
this part of the circuit.

In the case of the whole neuron circuit, voltage clamp exper-
iments are not particularly useful. A current clamp experiment,
however, will allow us to see an action potential. For this type of
experiment, a known current is injected onto the node, and the
voltage response is observed. For low amplitudes of input cur-
rent, an action potential is not generated. A depolarization can
be observed, but the voltage never reaches the threshold voltage
where the Na channel fully activates. However, once a large
enough current is injected, action potentials are generated and
can be observed as in Fig. 12(b). Currents in the particular chan-
nels during the action potential are shown in Fig. 12(c) and (d).

It is worth noting here that all of the currents seen here are
quite high compared to biological channels and neurons. This
is due to the fact that the devices used in this system had
ratios of near 1500. They are, however, on chip fabricated with
a 0.5- m process available through MOSIS. Capacitors were
discrete, so they were much larger than biology and the sizes that
would be used on chip. Simulation results with more reasonable

ratios and capacitor sizes ( 100’s fF), as well
as experimental results, have also shown that the concept works
for smaller circuits.

We also simulated this circuit in SPICE using Enz–Krumme-
nacher–Vittoz (EKV) models [13]. Since this circuit is running
in the subthreshold regime, common models such as BSIM can
not be used to accurately predict experimental measurements.
Using the EKV model, simulation results closely matched ex-
perimental measurements. Simulation data for several different
input currents is shown in Fig. 13. Simulation parameters are
shown in Table I. Notice that the spikes look very similar from
one to the next, save that the approach to the threshold voltage
is much faster. The spikes in the third graph have decreased in
size, but the input current is 21 which is huge for this circuit,
and has a good chance of killing a real cell. An input of this size
causes a significant change on charge stored on causing
an increase in the resting potential.

TABLE I
BIAS VALUES FOR ONE PARTICULAR SIMULATION PARADIGM. NOTICE THAT

THE DIFFERENCE BETWEEN AND IS 150 mV

Fig. 14. Frequency versus current for EKV model simulation of complete
neuron model. The result is consistent with Hodgkin and Huxley type neurons.

Due to the fact that this circuit can be tuned to operate in
many different regions, certain action potentials can look quite
different from each other. However, for a fixed set of biases, the
action potentials will look very similar to each other regardless
of the magnitude of the input current with only the frequency of
action potentials changing. The dynamics of the action poten-
tial are not affected (for reasonable current magnitudes) since
the control circuitry of both channels is current isolated due to
the capacitors. If the voltage on never changes, the cur-
rent through the channel transistors will also not change. The
size of the input current builds up charge on (and there-
fore voltage on ) with a rate that is in proportion to the
magnitude of that input current. Higher current means faster
charge rate, which means that reaches threshold voltage
that much quicker.

A frequency versus current plot can be seen in Fig. 14. The
shape as well as the frequencies correspond well to data from
real neurons [4, Fig. 4d ]. This is simulated data. Real data of
this type proved to be quite problematic to attain due to high-fre-
quency ambient noise, and instrument difficulties. As illustrated
in Fig. 15, high-frequency components will pass through the
Na amplifier and cause an action potential. The experiment
here shows the neuron circuit response to a large hyperpolar-
izing input that is suddenly released. It causes an action poten-
tial to be generated. This result is expected from the biology and
is referred to a postinhibitory rebound. For an example, see [14].
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Fig. 15. Response of the Na circuit to a large hyperpolarizing event. An
action potential is generated after the release of the hyperpolarizing event. This
response is consistent with biology and is referred to a postinhibitory rebound.

Fig. 16. Experimental measurements of the neuron circuit with the input
current biased just below the threshold of firing. The activity seen is in response
to ambient noise. This noise adds to the input current signal to push the circuit
past the threshold voltage and cause firing to occur.

During the frequency versus current test, a particular current
would be input which theoretically should cause a steady firing
frequency. However, high-frequency ambient noise sources
would cause the spike frequency from one sample frame to the
next to change significantly. Therefore a reliable data set was
not aquired.

As a final illustration of this point, look at the real data shown
in Fig. 16. A constant, below spiking threshold current was
placed on the membrane node. The aforementioned high-fre-
quency ambient noise sources cause the circuit to spike ran-
domly (with 0 input current, the currents generated by the noise
sources are not large enough to generate spikes). This data,
shown in Fig. 16, was taken over a period of 90 s. This is not
meant to be a rigorous noise characterization of the chip. Rather
it illustrates the difficulty in aquiring the actual frequency versus
current curves.

IV. CONCLUSION

We have shown a new circuit model which accurately models
action potentials and channel currents of real neurons. It gener-
ates this waveform by taking advantage of the numerous phys-
ical similarities between biological channels and silicon chan-
nels.

As with any circuit, there are some considerations to think
about when using this circuit. Since these time constants are
slow compared to the normal time constants in silicon tech-
nology, there is a trade off between low current levels (in the bias
circuitry) and large capacitors. This is not limiting though. The
size of the capacitors can be large enough without being overly
huge ( 100’s fF) and still have current levels large enough to
be accurately measured. We hope to one day fit thousands of
these channel models on a single chip to approximate a coritcal
cell (obviously other circuits will be involved including synapse
models, dendrite models, and even other channels). Therefore,
we need to optimize for space. Already more than 100 of these
circuits have been placed on a chip 1.5 mm 1.5 mm in a
0.5- m process. As processes get smaller, and die sizes larger,
thousands of models on a single die is not an unattainable goal.

There are five main biases for this circuit (excluding
and ). and should be global variables regardless
of the number of channels models on chip. However, due to
mismatch, presumably the other biases should not be global.
Some method of generating these biases or storing them on chip
needs to be investigated to achieve the density spoken of above,
as pin limitations will quickly become apparent.

Several benefits arise, though, from the use of this model over
other models. First, it does not attempt to model a set of equa-
tions. Recall that equations such as Hodgkin and Huxely’s are
curve fits to their data, and therefore, attempts to model these
equations adds yet another layer of abstraction. Second, the
model preserves many of the nonlinearities present in the real
neuron by utilizing the same fundemental forces that move ions
through a channel. Lastly, this model is very small and compact
allowing for large numbers of them to be placed on chip.
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