
Programmable Floating Gate FPAA Switches

Are Not Dead Weight

Christopher M. Twigg∗, Jordan D. Gray§, and Paul E. Hasler†

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332–0250

Email: ∗ctwigg@ece.gatech.edu, §jgray@ece.gatech.edu, †phasler@ece.gatech.edu

Abstract— In most reconfigurable systems, such as FPAAs and
FPGAs, the switch element and its associated memory cell is a
necessary overhead for performing computation with the active
components. However, floating gate based switches in large-scale
FPAAs can be programmed anywhere between simple “off” and
“on” connections, which allows these programmable conduc-
tances to be used as computational elements within synthesized
circuits. This decreases the notion of switches as computational
dead weight and increases the potential computational area
efficiency within FPAAs.

I. RECONFIGURABLE SYSTEMS AND SWITCHES

Reconfigurable devices, such as FPGAs and FPAAs, enable

the rapid synthesis and development of complex systems

without long fabrication cycles. However, the flexibility of

these systems generally requires a significant area overhead for

the numerous switches and the memory cells that control them,

which are used to interconnect the computational components.

For digital devices, such as FPGAs, this area overhead can

easily consume 60% to 90% of the chip [1], [2]. FPAAs, such

as the RASP 2.7 depicted in Fig. 1, have similar or sometimes

smaller routing areas. Although these switches are required to

provide reconfigurability, they are computational dead weight.

However, the floating gate transistor switches of the large-scale

FPAA discussed in [3] provide a way to utilize some of this

dead weight.

The key technology enabling reconfigurability in these

Fig. 1. RASP 2.7 die photograph. The window-like rectangles are the

computational elements, and the areas in between are composed
of routing switches.

Memory

Element

(a)

V
tun

(b)

Fig. 2. FPAA switching elements.

large-scale FPAAs is the floating gate transistor. Several

designs implement reconfigurability through programmable

circuit topologies, such as the GM cells of [4], which avoid

switch overhead but generally incur other area penalties in

the form of redundant computational components. Reconfig-

urability is commonly achieved using a transmission gate

switch, as depicted in Fig. 2a. A memory cell, such as an

SRAM, controls the transmission gate which connects a row

and column within the routing network. Since the memory

cell is digital, the switch can only operate between two states,

“on” and “off”. However, the floating gate transistor, depicted

in Fig. 2b, provides a combined switch and memory cell

capable of any arbitrary state between “on” and “off”. Using

these additional states, many useful circuits can be synthesized

within the switch fabric.

II. FLOATING GATE TRANSISTOR SWITCHES

The floating gate switch is simply a pFET with capacitive

gate coupling, as shown in Fig. 3. A double poly capacitor is

used to couple a control voltage, VC , to the floating gate, and

a MOS capacitor is used as a tunneling junction. With no DC

path to a fixed potential, charge can be stored on the floating

node. The current flowing through the floating gate pFET is

then controlled by the voltages coupled onto the floating gate

and the amount of charge stored on the floating node. By

modifying this charge, the transistor can be programmed over

a wide range of values for a given set of terminal voltages.

Fowler-Nordheim tunneling is used to globally erase the

floating gate pFET switch array, which can be viewed as

an increase in the effective threshold voltage. Hot electron

injection is then used to accurately program devices [5], which

decreases the effective threshold voltage by adding electrons

to the floating node. These two processes allow the floating

1691-4244-0921-7/07 $25.00 © 2007 IEEE.

Metal

Contact

Cap Poly

Gate Poly

P+

N-

N-well

V
tun

V
sub

V
C

V
S

V
D

V
well

P substrate

Fig. 3. Floating gate pFET layout.

0 0.5 1 1.5 2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

V
C
 (V)

I D
 (
A
)

“on” switch

“off” switch

inject

tunnel

+
-

AV
C

+
-

V
DD

Fig. 4. Injecting and tunneling floating gate switches.

gate pFET to be programmed anywhere between the “off” and

“on” states, as depicted in the VC sweeps of Fig. 4. In the

“off” state, the floating gate pFET conducts negligibly for any

control voltage. The “on” state is characterized by a switch that

conducts well for any control voltage. However, programming

the switch to conductance levels between “off” and “on” is

the key to using these devices for computation and biasing.

III. SWITCH ROUTING REFERENCES

The limited number of input/output (I/O) lines on an FPAA

can easily be consumed by the various references and biases

that synthesized circuits generally require. As the number of

biases increases, the complexity of the synthesized circuit

quickly becomes constrained by the number of inputs that can

be passed to it and the number of outputs generated by the

circuit. This situation can be slightly alleviated by including

programmable bias structures within the computational analog

blocks (CABs), but this increases the area of each individual

CAB and decreases the total number of CABs that can fit on

the chip, which reduces the computational area efficiency of

the chip. However, floating gate switches provide a means of

implementing some or all of these references and biases within

the switch fabric, which saves space and I/O lines.

A. Current Reference/Source

Fig. 5 shows an example current source synthesized within

the switch fabric. In the first case, M1 is programmed to the

desired current, and M2 is programmed as an “on” switch. As

seen in Fig. 5, the current source is strongly dependent upon

the drain voltage. This dependence is partially due to the Early

0 0.5 1 1.5 2

10
−8

V
D

 (V)

I re
f (

A
)

V
c

V
DD

V
D

M
1

M
2

M
2
 as “on” switch

M
2
 as cascode

Fig. 5. Current reference/source.

10
−9

10
−8

10
−7

10
−6

10
−5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

I
ref

 (A)

V
o

u
t (

V
)

pFET current source

Switch fabric current source

V
c

V
DD

V
ref+

-

Fig. 6. Programmable voltage reference example.

effect, but it is also caused by the drain voltage coupling into

the floating node via the drain overlap capacitance. The drain,

source, and tunneling voltages all capacitively couple into the

floating node just like the control voltage. In this case, the

drain coupling ratio is the drain overlap capacitance divided

by the total capacitance at the floating node. To increase switch

density, the coupling and tunneling capacitors are kept fairly

small, which makes the drain coupling ratio significant.

A common topology for reducing drain dependence is a

cascode, which could simply be a properly biased transistor

connected to the drain of the current source transistor. In

the normal case, this would require another I/O or biasing

structure, but in the floating gate switch routing, another

switch will do. For this case, M2 is programmed as a cascode

transistor that is biased based upon the coupling voltages and

the charge programmed on the floating node. As seen in Fig. 5,

this significantly reduces the drain dependence of the current

source. If needed, additional routing switches can also be used

for multiple cascode transistors at a cost of headroom.

170

B. Voltage Reference

On-chip voltage references can also be synthesized using

routing switches as part of the circuit topology. Fig. 6 depicts

an example voltage reference generated using the cascoded

current source and a diode connected nFET from a CAB.

When driving purely capacitive loads, this circuit is sufficient,

but an OTA from one of the CABs can also be used to

buffer the voltage for other situations. To demonstrate the

programmable range of this circuit, a pFET from one of the

CABs was initially used as the current source. Select currents

were then programmed within the switch fabric to demonstrate

conformance to this curve. Although, this topology only covers

part of the supply range, topology modifications can be made

to generate any voltage within the supply rails.

IV. SWITCH FABRIC CIRCUITS

The switch fabric can also be used for more complex circuits

beyond simple references. Relatively simple circuits may only

utilize the reference circuits as part of the computation path,

such as programmable envelope detectors. However, larger,

more complex circuits, such as diffusors and vector-matrix

multiplier (VMMs), can utilize a far greater percentage of the

routing fabric as more direct computational elements.

A. Envelope Detector

A common function in analog signal processing is envelope

detection. The CAB designs for the RASP 1.5, 2.5, and 2.7

FPAAs [6] contained dedicated envelope detectors for this

function, but they are generally not fully utilized and just

consume area. One option would be to reduce the number

of these specialized devices by only including them in select

CABs. However, this limits the number of channels that can

be processed simultaneously to some predetermined value.

Another option is to synthesize the envelope detectors using

the available CAB components and switch fabric elements, as

illustrated by the minimum detector depicted in Fig. 7.

The minimum detector uses a switch fabric current source

to set the decay rate. An OTA, a pFET, and a drawn capac-

itor from a CAB are used to track the falling edge of the

input. Since these CAB components are generally useful for

many other circuit topologies, they are not underutilized when

implementing circuits other than the envelope detector. By

using the programmable switch fabric current source instead

of a dedicated current source, CAB space is also saved for

other analog components. As seen in Fig. 7, the decay rate

can be significantly adjusted by programming the current

source. Fig. 8 shows the response of the minimum detector

to sinusoids of frequencies between 100 Hz and 800 Hz when

programmed to a single decay rate.

B. Vector-Matrix Multiplier

The VMM and similar processing circuits, such as diffusors,

are capable of utilizing large sections of the switch fabric

for computation. As depicted by the 2x2 differential VMM

structure of Fig. 9, the VMM is composed almost entirely

of programmed switch elements. The only CAB component

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (ms)

M
e

a
su

re
d

 O
u

tp
u

t
(V

)

-

+

V
in

V
out

V
c

Fig. 7. Minimum envelope detector using switch fabric current source

for adjustable decay rates.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (ms)

M
e

a
su

re
d

 O
u

tp
u

t
(V

)

Fig. 8. Minimum detector response to various frequencies. The decay
rate can be adjusted to respond appropriately for the frequency
of interest.

is the OTA used to buffer the source voltage of the input

switch element. The individual multiplier weights are set by

programming a charge difference between the input and output

switch elements. Multiplier outputs are then tied together for

current summation to perform the final computation. A two

quadrant multiplier is constructed using a second single-ended

multiplier to provide positive and negative inputs. In a similar

fashion, a four quadrant multiplier can be constructed by

duplicating the output stage of the two quadrant multiplier

to provide positive and negative weights.

For a four quadrant structure, the CAB component utiliza-

tion is dependent upon the number of inputs (#OTAs = 2*#in-

puts). The switch fabric utilization is dependent upon both the

inputs and outputs (#switch elements = 2*#inputs*[2*#outputs

+ 1]). Since there is no CAB component cost when increasing

the number of outputs, additional processing can be added

with little impact on CAB component utilization. Using this

technique, arbitrarily sized VMMs can be constructed. This

171

-

+

V
c

V
c

I
in1

+

V
c

-

+

V
c

V
c

I
in2

+

V
c

I
out2

+ I
out1

+

-

+

-

+

V
c

V
c

I
in2

-

V
c

I
out2

-I
out1

-

V
c

V
c

I
in1

-

V
c

I
out2

-

Fig. 9. Differential 2x2 VMM structure utilizing programmable switch
fabric elements (two floating gate switches in series).

eliminates the need to include presized versions of them

as CAB components, which saves a significant amount of

computational area for other components.

Data from a single multiplier is shown in Fig. 10. This

multiplier was constructed with a single floating gate switch

element as an input, an amplifier buffering the source voltage,

and another switch element as an output. The weight of the

multiplier was programmed over two orders of magnitude

from .1 to 10. The curvature apparent at higher currents is

a result of the transistors leaving the sub-threshold region of

operation. The jagged profile at sub-picoamp currents results

from limitations in the off-chip measurement equipment. For

multiplier weights ranging from .5 to 1.5, a reasonable range

for common signal processing tasks, the error was observed

to be within ±2.5% over three decades of current.

The data of Fig. 10 is analyzed in Fig. 11 to illustrate

the trade-off between accuracy and dynamic range in the

multiplier element. The three error bands represent the range

of currents over which a particular programmed multiplier

results in an output that falls within the specified error range.

As illustrated in Fig. 11, the input range is greatest for all error

bands around a unity multiplier. Since the circuit is functioning

as a current mirror in this range, the effect of offsets between

the input and output transistors is minimized.

V. CONCLUSION

Programmable floating gate based switches have been

demonstrated to provide computational power within the

switch fabric of large-scale FPAAs. This increases the potential

computation density within such devices far beyond what is

capable with standard reconfiguration technologies found in

most FPAAs and FPGAs. In simple cases, the switch fabric

can be used to generate on-chip biases and references that save

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Input Current (A)

O
u

tp
u

t
C

u
rr

e
n

t
(A

)

Ideal (unity multiplier)

Experimental (.1x−10x)

Fig. 10. Single quadrant multiplication with weights programmed be-

tween .1 and 10.

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

.1x

1x

10x

Input Current (A)

M
u
lt
ip
lie
r

2.5% error
 5% error
 10% error

Fig. 11. Plot depicting a range of multiplier values that produce outputs
within a ± 2.5%, 5%, and 10% error band.

I/O pins and CAB space for other components. In extreme

cases, large switch element circuits, such as diffusors and

VMMs, can be implemented almost entirely within the switch

fabric, thereby significantly increasing the computational area

efficiency of a reconfigurable IC. The notion of computational

dead weight does not apply to these switches.

REFERENCES

[1] H. Schmit and V. Chandra, “FPGA switch block layout and evalua-
tion,” in ACM Proceedings of the International Symposium on Field–

Programmable Gate Arrays, 2002, pp. 11–18.
[2] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field–

programmable gate arrays: the effect of logic block functionality on area
efficiency,” IEEE Journal of Solid–State Circuits, vol. 25, pp. 1217–1225,
Oct 1990.

[3] C. M. Twigg and P. Hasler, “A large–scale reconfigurable analog signal
processor (RASP) IC,” in IEEE Proceedings of the Custom Integrated

Circuits Conference, 2006, pp. 5–8.
[4] J. Becker and Y. Manoli, “A continuous–time field programmable analog

array (FPAA) consisting of digitally reconfigurable GM –cells,” in IEEE

Proceedings of the International Symposium on Circuits and Systems,
2004, pp. 1092–1095.

[5] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” in IEEE Proceedings of the International

Symposium on Circuits and Systems, 2005, pp. 2148–2151.
[6] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson,

“Large–scale field–programmable analog arrays for analog signal pro-
cessing,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 11,
pp. 2298–2307, Nov. 2005.

172

