
FPAA Empowering Cooperative Analog-Digital Signal Processing

Craig Schlottmann and Paul Hasler

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
Email: cschlott@gatech.edu, phasler@ece.gatech.edu

Abstract—Large-scale field programmable analog array
(FPAA) ICs have made analog and analog-digital signal process-
ing techniques accessible to a much wider community. Given
this opportunity, we present in this paper a framework for
considering analog signal processing techniques for low-power,
portable systems. These techniques have become more important
given the recent recognition of the power-efficiency wall for
commercial digital ICs. The discussion focuses on the framework
technique required to enable analog-digital signal processing
techniques. A framework is needed to enable system designers to
directly develop applications into these approaches that includes
considering power consumed, system complexity/area, as well as
other commercial metrics. A key part of this discussion is evolving
existing Simulink FPAA design tools to work with this framework
such that users have a similar experience one expects with digital
system design, as well as model closely experimental data at a
high-level framework. The result of these techniques is pulling
analog computation towards the system level development as seen
in digital system design over the last 30 years.

I. ANALOG SIGNAL PROCESSING WITH FPAAS

Cooperative analog-digital signal processing (CADSP) is
the design approach whereby the two domains (analog and
digital) are used in combination to achieve advanced system
performance [1]. In traditional systems, analog processing
(ASP) is used primarily for front-end amplification and data
conversion, whereas digital processing (DSP) handles the
mathematical operations. By repartitioning the boundary be-
tween the processing domains, we stand to take advantage
of extreme power and area savings. For instance, the natural
physics of the subthreshold transistor can be used to perform
many mathematical operations with a fraction of the number
of devices required for digital computation [2] and a much
lower total current draw. In terms of MMACS/mW, we have
seen analog computers achieve a 10,000x increase in power
efficiency over their digital counterpart, a 20-year leap on the
Gene’s Law curve [3], [4].

It is the efficient balancing of the analog and digital domains
that the highest performance can be achieved. A popular subset
of this concept is the notion of digitally-enhanced analog sys-
tems, whereby digital processing is utilized to add resolution to
analog blocks [5]. As a broader approach, CADSP additionally
promotes the use of analog techniques to increase the power
efficiency of digital blocks, as illustrated in the system of
Fig 1. CADSP techniques have been successfully utilized in
compressive sensing [6] and classifier systems [7]. However,
two very important hurdles have prevented the wide-spread
use of analog computation: the lack of programmability and
the absence of robust design tools.

D/AA/D DSP

Analog Processor

Fig. 1: The analog processor embedded with a digital processor
provides a power efficient platform.

The recent development of large-scale field programmable
analog arrays (FPAAs) has provided a stable platform for
programmable analog systems [8]. The reconfigurable analog
signal processor (RASP) FPAA is a VLSI system that contains
hundreds of configurable analog blocks (CABs) and tens of
thousands of programmable floating-gate transistors (FG) in
a cross-bar switch matrix (SM). This flexible architecture
allows the user to program the FG switches in such a way as
to connect the analog components in any configuration. The
RASP FPAA has demonstrated such systems as low power
vector-matrix multiplier (VMM) [9] and OFDM system [10].
Trends in FPAA development are shown in Fig. 2.

The FPAA has provided the hardware platform to develop
ASP systems, but the remaining fundamental problem is that
it is not always easy for the typical DSP engineer to utilize
analog techniques. To solve this problem, we are developing
the design tools needed to empower the non-circuit designer
to take advantage of the FPAA hardware. We have chosen
MATLAB Simulink as the top level design space for analog
systems on FPAAs [11] in order to appeal to the broadest
audience of DSP engineers. Although this design space is in-
tuitive and makes systems easy to visualize and simulate, there
is still no established framework for the proper abstraction of
analog design. The development of a high-level framework
for abstracting analog design and creating behavioral analog
blocks is necessary to bridge the analog and digital design for
the system engineer.

The goal of this paper is to define such a standard analog ab-
straction method for the purposes of high-level system design.
There are several key challenges that must be overcome in
order to make analog design accessible to the system designer,

��������������������������������������,(((,&$663�����

R A SP 2.5
(2004)

2.9: Dynamic
R econfigurable (2010)

FPA A DD
(2010)R A SP 2.8

(2008)

Next Generation:
- Short Term Memory
- Integrated Processor

Integrated V ideo /
B aseband Comm
A pplications

A udio Processing
Image Processing
R obotic Computation

R obust Tool
Infrastruture
(Simulink to
 A utomatic Targeting)
Sensor Interfaces R econfigurable R adio

Single-Chip R emote nodes

R A SP 1.5
(2002)

B asic Filtering
Operatings Integrated

 Targeting
Classroom Use

Small A udio SP
algorithms
(i.e. beamforming)

R A SP 2.9 (2009)
 (5mm x 5mm)

F
PA

A
 a

pp
ro

ac
he

s
E

na
bl

es
 A

pp
li

ca
ti

on
s

B aseband Comm
Data Conversion

- Tranceiver

(a) (b)

Fig. 2: High level viewpoint on Large-Scale FPAA devices. (a) Roadmap of the current and proposed GT FPAA IC development. Each
generation enabled another leap in potential computation and signal processing; we expect the next generation to have yet another dramatic
effect on the range of potential possible applications. Dates are when the device was first demonstrated; some devices are still in review. (b)
Plot of the Percentage of Control Path implemented versus Analog Parameter Density. Recent FPAA ICs, like the dynamically reconfigurable
FPAA or FPAADD device, begin to effectively maximize both parameters.

which we address in the remainder of this paper. Section II
covers the technique of analog abstraction and system-level
constraints. In Section III, we use a bottom-up example to
show how the circuit modeling procedures are deployed to
create a functional block. Lastly, we use Section IV for
concluding remarks.

II. ANALOG ABSTRACTION CONCEPTS

In this section, we describe several of the high-level design
choices that were made in creating the CADSP framework.
From choosing a top-level design space, to constraining the
interface between blocks, a well-planned framework facilitates
the design of large-scale systems.

A. Simulink/High-level
Simulink is used as the top-level design space for ana-

log signal processing in the RASP FPAA [12]. The use of
Simulink was important to us because it is already a familiar
tool to many DSP and control-system engineers. The intuitive
nature of high-level blocks with wires in between makes it easy
to design at the system-level. The Simulink tool has proven
to be an intuitive interface for graphical analog design and
has been used extensively in a graduate-level analog system
design course [13].

Simulink comes prepackaged with many libraries of com-
ponents, yet lacks high-level analog blocks. Therefore, we
needed to create our own libraries for custom ASP blocks.
The tool framework allows the analog engineer to easily add
new blocks to the analog libraries. The key with block design
is that the system should be modeled at the behavioral level,
so that it is easy for the system engineer to place into a larger
design. The ASP libraries promote the reuse of well-tested
circuits as well as the propagation of expertise.

The creation of high-level blocks introduces the question
of how much abstraction is required. If large mixed-mode
systems are to be simulated, we need to provide macromodels

for each analog block. Macromodels serve to reduce the
simulation time and may include options as to how many
second-order effects to include (such as noise and distortion).
Circuit abstraction also means that we should cover up the
detailed circuit parameters by fixing all of the static parameters
and presenting the user-defined parameters as they relate to the
system specifications.

B. Voltage mode systems
The first step in making analog design feel like digital

design is to define a standard protocol for the interface between
blocks. Digital design benefits from a very simple convention
of high and low voltages. Conversely, analog systems can
propagate information by means of small, large, voltage, or
current signals. In general, these operating domains create
advantages for analog systems. As illustrated in Fig. 3, current-
mode can easily sum signals, while voltage-mode can broad-
cast signals to many destinations. Although each domain has
its advantages, these choices are exactly what we want to
abstract away so that things are easy and familiar to the digital
designer.

At the expense of current-mode’s efficient summing, we
constrain the interface of our Simulink blocks to voltage-mode
operation. This constraint is more like traditional digital design
where a single block can fan out to many, but signals must be
summed through a device, not simply shorted. We can still take
full advantage of the current-mode analog processing inside
the block, but the interface is exclusively voltage.

The voltage-mode design methodology has implications on
the up-front design of each analog block. Many analog systems
have a native current-mode interface, in which case we will
embed conversion stages. The V/I or I/V stages can take
many forms, and the best choice will depend on the particular
application or specification. Within each block, we generally
characterize multiple conversion choices so that the user can
select the one they want based on the performance.

����

Out1

1

vmm_wta

In_Vector Win_vector
VMM+WTA

 Classifier

encode

In_Vector Out_VectorEncoder

bpf_sos

In_Vector Out_Vector
Second−order

 section
In1

1

w11

V/I

WTA

w12 w13

w21 w22 w23

w31 w32 w33

E
n
co

d
er

n

log2(n)

BPF

BPF

BPF
diff, V

I

I

V

Currents Voltages

S
u
m

B
ro

ad
ca

st

S
in

g
le

 e
n
d
ed

D
if

fe
re

n
ti

al

2n 2n

..

.

..

.
M1

Mn

M1

Mn

Parallel Vectorized

n n
M

M

Simulink Block System

Fig. 3: The system abstraction involves defining our signal interface. We constrain the analog processing tool to use only voltage-mode lines
between blocks because it is more similar to digital design and fits into the Simulink framework. Vectorized signals are also important because
it takes advantage of the analog processor’s parallel processing capabilities. These properties are illustrated in the classifying system at the
bottom and built into high-level blocks to the right. Each block has a GUI where the functional parameters can be set without knowledge
of the underlying circuits and biases.

C. Vectorized signals

Frequently in DSP, and in particular when using MATLAB,
the lines between blocks are vectorized. This is common in
matrix operations where the inputs are all in parallel. We have
incorporated this vectorized net aspect into the analog tool
structure. Although a size of one is often sufficient, each net
can have any size vector dimension. Rather than forcing the
user to define every size, the signals are automatically scaled
based on the blocks that are used. For example, if an M ×N
VMM is instantiated, the input vector will automatically have
a size N, and the output will have size M.

Fig. 3 illustrates the use of differential along with single-
ended vectorized lines. Often in analog design, differential sig-
nals are used to increase SNR or cancel even-order harmonics.
To keep the design simple, single-ended or differential mode
can be selected inside a block as a parameter without changing
the complexity of the blocks in the design window.

D. Biasing

A major design element of analog systems is the proper
biasing of the blocks. This is a concept that is not manifest
in digital design, and therefore must be dealt with behind the
scenes.

The RASP line of FPAAs is built in a network of floating-
gate switch elements. This is a very useful element, as it can
also store bias values for computation (one of the reasons
such high computational density is achieved). The analog
designer can store the FG bias values inside the block, without
necessitating input for the end user. Often though, the bias
value is derived from a parameter in the system’s function.
For instance, in a GmC filter, the time constant is given by
a C/Gm relation. The Gm is set through the bias current
(Ib) of the OTA such that Gm = Ibκ/ (2UT). This simple
equation can be written into the block, so that the user only

needs to specify the time constant, and the correct bias will
be programmed.

III. SYSTEM EXAMPLE: OSCILLATOR CIRCUIT MODEL

We use the oscillator design in Fig. 4 as an example to
illustrate the high-level analog modeling. To begin the analog
design process, the user should look to the available elements
in the Simulink analog libraries. Two such libraries are shown:
Level 1 and Level 2.

The Level 1 library contains the high-level system blocks.
These blocks conform to the voltage-mode protocol and
contain sufficient abstraction so that they are reasonable to
simulate in Simulink.

The Level 2 library contains the low-level blocks, typically
mapping directly to FPAA CAB elements. These blocks do
not conform to the voltage-mode protocol and might have
advanced modeling parameters. These blocks are best used by
circuit-design engineers and should be simulated in a SPICE
environment.

Additional digital libraries are not shown in the figure,
but are acceptable for use in FPAA mixed-mode design. The
RASP FPAA is capable of compiling these digital circuits if an
accurate circuit model is attached to each block. Alternatively,
if proper FPAA ports are specified, mixed-mode designs can
be divided such that the entire system is simulated in Simulink
and only the analog portions are compiled to the FPAA.

To add a functional block to the Level 1 library, an analog
designer will start with the Level 2 blocks. A second-order-
section oscillator is shown in the bottom right of Fig. 4. This
system contains two FG-input OTAs, one OTA, two capacitors,
two ground connects, and one FG element to short the feed-
back path. This last element, the FG short, demonstrates one
difficulty in performing current-mode operations Simulink.
The feedback in this circuit mixes two currents and integrates
them on the left capacitor. Although mixing currents is a

����

vdd_out

outvdd

tgate

in

sel
outT−gate

pfet

s

g
dpFET

nfet

g

s
dnFET

gnd_out

outgnd

cap

in outcap

OTAfg

Vin_p

Vin_n

I_outOTAfg

OTA

Vin_p

Vin_n

I_outOTA

vmm

in outVMM

filter

in outFilterbank

dac

in outDAC

classif

in out
VMM + WTA

 Classifier

awg

in outAWG

afft

in outAFFT

ocsillator

in outOscillator

Out1

1

swe1

in1

in2
FG

gnd_in1

in gnd

gnd_in

in gnd

cap1

in
o

u
t

capcap

in
o

u
t

cap

OTAfg1

Vin_p

Vin_n

I_outOTAfg

OTAfg

Vin_p

Vin_n

I_outOTAfg

OTA

Vin_p

Vin_n

I_out OTA

In1

1

Level 1

Level 2

- “Looks like Simulink”
- Easier simulation

- Simulation through
 SPICE

Fig. 4: To accommodate users with varying expertise, we provide multi-level libraries. The Level 1 library is meant for the highest level
blocks. These blocks will include functions with which a typical DSP engineer will feel comfortable designing, such as filterbanks, vector-
matrix multipliers, classifiers, analog FFT, DACs, and arbitrary waveform generators. The level 2 library contains the low-level blocks, such
as the FPAA CAB elements, and is meant for experienced circuit designers. The right side shows the design cycle of a second-order section
oscillator. The analog engineer designs with the Level 2 blocks, simulates with SPICE, tests on the FPAA, then creates a new Level 1 block.

common analog practice, Simulink operates in voltage mode
and cannot have two outputs drive a line. Therefore, we have
used a FG switch with two “inputs” to short the two nets. This
results in a legitimate circuit that will simulate in SPICE and
operate in silicon; it will not, however, simulate in Simulink.

To make this block useful to system designers, we abstract
it to the high-level block shown in the top right of the figure.
Here, we have expressed the eight-element circuit as a simple
second-order differential equation [2]. This equation is very
easy for Simulink to simulate. In this expression, the user
would specify the time constant (τ) and the Q. These system
parameters will be translated into physical parameters without
the user’s involvement. If we use equal capacitors and Gm

for the forward FG-OTAs, we get τ = C/Gm. With Gm

set, we get Q = 1/ (2 − GmFB/Gm), where GmFB is the
transconductance of the feedback OTA.

With the equation set, we just need to define the signal
dimension. There is no need to add any conversion stages
because this block is already voltage in and out. This block
can be arrayed by allowing the user to input two n-element
vectors, one for τ and Q. The block can automatically set its
input and output ports based on the size of the parameter array.
The resulting system will have n oscillator circuits in parallel,
each programmed with the elements of the parameter array.

IV. CONCLUSION

In this paper, we have addressed the major challenges
in developing an abstract analog system design framework.
We discussed the trade-offs involved in fixing the interface

mode between blocks, the conventions for vectorized nets, and
methods for automated biasing. We also illustrated the process
flow with a bottom-up example of an analog oscillator. With
the development of large-scale FPAAs, the size and complexity
of analog systems requires these high-level synthesis tools.

REFERENCES

[1] P. Hasler and D. Anderson, “Cooperative analog-digital signal process-
ing,” in IEEE ICASSP, 2002, pp. 3972 – 3975.

[2] Carver Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989.
[3] P. Hasler, “Low-power programmable signal processing,” in Int.

Workshop on System-on-Chip for Real-Time Appl., 2005, pp. 413 – 418.
[4] G. Frantz, “Digital signal processor trends,” IEEE Micro, vol. 20, no.

6, pp. 52 – 59, 2000.
[5] B. Murmann, C. Vogel, and H. Koeppl, “Digitally enhanced analog

circuits: System aspects,” in IEEE ISCAS, 2008, pp. 560 – 563.
[6] R. Robucci, K. Leung, J. Gray, J. Romberg, P. Hasler, and D. Anderson,

“Compressive sensing on a cmos separable transform image sensor,” in
IEEE ICASSP, 2008, pp. 5125 – 5128.

[7] S. Peng et al., “A programmable analog radial-basis-function based
classifier,” in IEEE ICASSP, 2008, pp. 1425 – 1428.

[8] A. Basu et al., “A floating-gate-based field-programmable analog array,”
IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1781 – 1794, 2010.

[9] C. Schlottmann and P. Hasler, “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: The fpaa implementation,”
IEEE JETCAS, vol. 1, no. 3, pp. 403 – 411, 2011.

[10] S. Suh, A. Basu, C. Schlottmann, P. Hasler, and J. Barry, “Low-power
discrete fourier transform for ofdm: A programmable analog approach,”
IEEE Trans. Circuits Syst. I, vol. 58, pp. 290 – 298, 2011.

[11] C. Schlottmann et al., “A high-level simulink-based tool for fpaa
configuration,” IEEE TVLSI, vol. 20, no. 1, pp. 10 – 18, 2012.

[12] C. Schlottmann, C. Petre, and P. Hasler, “A high-level simulink-based
tool for fpaa configuration,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 1, pp. 10 – 18, 2012.

[13] P. Hasler, C. Schlottmann, and S. Koziol, “Fpaa chips and tools as the
center of an design-based analog systems education,” in IEEE Int. Conf.
Microelectronic Systems Education (MSE), 2011, pp. 47 – 51.

����

