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A field programmable analog array (FPAA) is presented as an energy and computational
efficiency engine: a mixed mode processor for which functions can be compiled at
significantly less energy costs using probabilistic computing circuits. More specifically,
it will be shown that the core computation of any dynamical system can be computed
on the FPAA at significantly less energy per operation than a digital implementation.
A stochastic system that is dynamically controllable via voltage controlled amplifier and
comparator thresholds is implemented, which computes Bernoulli random variables. From
Bernoulli variables it is shown exponentially distributed random variables, and random
variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated
to show the utility of this system by calculating the trajectory of a biological system
computed stochastically with this probabilistic hardware where over a 127X performance
improvement over current software approaches is shown. The relevance of this approach
is extended to any dynamical system. The initial circuits and ideas for this work were
generated at the 2008 Telluride Neuromorphic Workshop.
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1. INTRODUCTION
Due to the large computational efficiency gap that is theorized
between classic digital computing and neuromorphic style com-
puting, particularly in biological systems, this work seeks to
explore the potential efficiency gains of a neuromorphic approach
using stochastic circuits to solve dynamical systems.

There is wide demand for a technology to compute dynam-
ical systems much more efficiently with some recent examples
being to calculate quantum equations to aid in the devel-
opment of quantum computers or in the search for new
meta-materials and pharmaceuticals using high computational
throughput search methods for new meta-compounds. Standard
digital computers—even super computers—have proven to be
inefficient at these tasks limiting our ability to innovate here.

Stochastic functions can be computed in a more efficient way
if these stochastic operations are done natively in probabilistic
hardware. Neural connections in the cortex of the brain is just
such an example and occur on a stochastic basis (Douglas, 2008).
The neurotransmitter release is probabilistic in regards to synapse
firings (Goldberg et al., 2001) in neural communication. Most
germaine to this work, many chemical and biological reactions
occur on a stochastic basis and are modeled here via probabilistic
circuits compiled on a reconfigurable field programmable analog
array (Gillespie, 1976).

Gillespie effectively showed that molecular reactions occur
probabilistically and gave a method for translating a system of N
chemical equations, normally specified by deterministic differen-
tial equations, into a system of probabilistic, Markov processes.
This will be the dynamic system described and computed herein.
It has been shown that in a system with a sufficiently small

number of molecules, the stochastic method is more accurate than
its deterministic counterpart. It was further proven that in the
thermodynamic limit (large number of molecules) of such a sys-
tem, the deterministic and stochastic forms are mathematically
equivalent (Oppenheim et al., 1969; Kurtz, 1972).

Mathematical results will be extended from Gillespie’s algo-
rithm to show that any dynamical system can be computed using
a system of stochastic equations. The efficiency in computing
such a system is greatly increased by a direct, probabilistic hard-
ware implementation that can be done in the analog co-processor
we present. However, how to express a general dynamical system
stochastically will not be discussed, only that a formulation exists
that is more efficient when computed with natively probabilistic
hardware.

Several encryption algorithms and other on-chip solutions for
a uniformly random number generator in hardware have been
shown for microprocessors (Ohba et al., 2006). Generating static
Bernoulli trials, where a 1 is generated with fixed probability p
and 0 is generated with fixed probability 1 − p, were proposed
using amplified thermal noise across digital gates and is also not a
novel concept, but the work in which this concept was described
was not fabricated, measured, or applied in hardware, and only
existed in theory (Chakrapani et al., 2006). Static probabilities,
or those with a fixed p-value, will not allow the performance
gains that are possible in many stochastic systems because without
dynamic p-values stochastic processes cannot be fully realizable in
hardware.

There has been a hardware solution proposed for dynamic
Bernoulli trial generators, where the probability p can be
dynamically reconfigured via reprogramming a floating gate
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transistor (Xu et al., 1972). While this latter work illustrates a
note-worthy solution and is a unique implementation to pro-
vide dynamic probability adjustment, there is an overhead cost
in terms of time to readjust the probability p due to the nature of
floating gate programming, which were not designed in that work
for the continuous updates that are required for the applications
presented here.

The topic of generating stochastic variables with hardware
circuits has also been addressed previously in Genov and
Cauwenberghs (2001), but not in this manner. We make a con-
tribution to the literature by showing that not only can we
produce stochastic variables, but we can tune the probability of
these stochastic variables in real time through a software control-
lable input to the Bernoulli trial generator circuit via the FPAA.
Further, we show how an array of these can be compiled on hard-
ware and where outputs are input to a priority encoder to create
an exponentially random variable for the first time known to the
authors. Finally, this paper shows how the FPAA, with tunable
stochastic variables which can be dynamically tuned in real time,
results in significant performance gains of 127X for computing
dynamical systems.

In short, this paper will present several novel contributions
including

• A novel circuit for fast dynamic Bernoulli random number
generation.

• A compiled chaos circuit to generate environment independent
probabilistic variables.

• A novel circuit for fast dynamic exponentially distributed ran-
dom number generation.

• Analysis of the performance gains provided by the latter cir-
cuits over current methods for Gillespie’s algorithm that apply
to many biological applications and stochastic applications in
general.

• Extension of the latter methods for applicability to any dynam-
ical system and the result that all dynamic systems calculated
stochastically require exponentially distributed random num-
bers.

• A method for going from concept to circuit measurements in
2 weeks using a novel reconfigurable chipset developed in part
by the authors.

Section 2 introduces the technology behind building probabilistic
function generators in hardware using thermal noise characteris-
tics. Section 3 reviews implementation of dynamical systems in
general and specifically Gillespie’s Algorithm to give a context for
why these circuits are important. Section 4 will review the chipset
that was built in part by the authors and how it can used for
faster stochastic computation. Section 5 will discuss the hardware
results and experimental measurements. Section 6 will conclude
the paper and discuss future directions.

2. EXTREMELY EFFICIENT STOCHASTIC CIRCUITS
Stochastic computation has shown to be a powerful tool to com-
pute solutions to systems that would otherwise require complex
continuous-time differential equations. However, the efficacy of
stochastic methods are lost if complex computations are needed
to produce the digital representation of these stochastic results.

We present several circuits to solve these issues that can
uniquely be compiled in analog technology, and thus our FPAA
co-processor.

2.1. A PROGRAMMABLE THERMAL NOISE CIRCUIT
Thermal noise is a well-defined, well-behaved phenomenon that
we show can be used as a computational resource within the FPAA
fabric. This work will show that it can be used not only as a
resource for random number generation, but for the generation
of arbitrarily complex probabilistic functions.

The current through a transistor, and hence the voltage at the
drain or source node of a transistor, shows the probabilistic ther-
mal noise effect as shown in Figure 1, and can be used as the basic
building block of any probabilistic function generator.

Thermal noise present in integrated circuits, also known as
Johnson Noise, is generated by the natural thermal excitation of
the electrons in a circuit. When modeled on a capacitive load, the
root-mean-square voltage level of the thermal noise is given by

UT =
√

kT
C where k is Boltzmann’s constant, T is temperature,

and C is the capacitance of the load. The likelihood of the voltage
level of thermal noise is modeled as a Gaussian probability func-
tion and has an equivalent magnitude throughout its frequency
spectrum and is thus known as white Gaussian noise (Kish, 2002).

To take advantage of the well-defined properties of ther-
mal noise trapped on a capacitor, the circuit in Figure 2A was
developed. This circuit can be broken down into the circuit
components seen in Figure 2B.

Thermal noise voltage on a 0.35 µm process, which is the pro-
cess size used for testing in this paper, with capacitor values in the
range of C = 500 fF has RMS noise level of roughly 100 µV. Even
with a 100 mV supply, the thermal noise voltage that would cause
a probabilistic digital bit flip is 1000σ down from supply, giv-
ing the probabilistic function designer limited options. Hence, in
these experiments the thermal voltage signal was routed through
two operational transconductance amplifiers (OTA) with gain Ai.
These circuits are shown in Figure 3.

By routing the amplified thermal noise signal through a com-
parator, and then comparing this signal to a user selectable voltage
signal, a Bernoulli trial is created where the comparator outputs

FIGURE 1 | (A) The noise characteristics generated by a single transistor
can be used as well-defined noise source. The current through and thus the
voltage at the drain or source node of the transistor produces noise due to
the thermal agitation of charge carriers. (B) Voltage measured from a
transistor on 0.35 µm test chip.
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a digital “1” if the amplified thermal voltage signal is greater than
the probability select and a “0” is output otherwise. A probability
p can be set for the Bernoulli trial by setting the input voltage to
the comparator such that it is less or more likely for a randomly
varying thermal voltage to surpass this value, “Probability Select.”
The integral from the input voltage to Vdd of the thermal noise
function is the probability of a digital 1, and the probability of
a digital 0 is the integral from ground to the input voltage. This
concept is illustrated in Figure 4.

Note that the reconfigurable FPAA used to program this circuit
has floating-gate controllable current biases such that they can be
used to offset temperature effects.

A Bernoulli random variable is generated with a probability p
dynamically selectable by the user using these techniques. A useful
property of Bernoulli trials is that an arbitrary probability distri-
bution can be created when used in large numbers (as the number
of Bernoulli trials N → ∞) they can be used to create an arbi-
trary probability distribution. This phenomenon is illustrated in
Figure 5.

An exponential random variable is generated from a Bernoulli
variable in the following way. X is defined here as the number
of Bernoulli trials needed to produce a success, and this variable
X is exponentially distributed. For example, to require six coin
flips to produce a heads is exponentially less likely than to require
two flips to get a head, since this is nothing more than a standard
geometric sequence. The shape of this exponential distribution is
controlled by the probability p of the Bernoulli trials.

Pr(X = k) = (1 − p)k−1p (1)

FIGURE 2 | Circuit used to take advantage of the well-defined thermal
noise properties on a capacitor where the root-mean-square (RMS)

voltage of the noise on a capacitor is Vn =
√

kT
C . The thermal noise on

this capacitor is used as the gate voltage for PMOS and NMOS transistors
where a current with the same spectrum as the thermal noise is generated.
This ultimately produces a voltage controlled current through the
diode-connected transistor.

Figure 6 shows how these Bernoulli random variables are used
to create an exponentially distributed number by being placed as
inputs to a priority encoder. Recall that a priority encoder works
by encoding the output to represent in binary which input was the
first in priority order (from top to bottom for example) to be a 1.
Also recall from Equation (1) that the number of Bernoulli trials
needed to get a 1 is exponentially distributed. !The top Bernoulli
trial in the figure is considered our first trial, the second from the
top, our second trial etc. So the priority encoder in Figure 6 is
encoding for us how many trials are needed to get a success (1),
exactly our exponential distribution.

Using these methods, an exponentially distributed random
number can be generated in two clock cycles, a vast improvement

FIGURE 3 | Circuits for generating a Bernoulli random variable (1 with
probability p and 0 with probability 1-p). (A) Dynamic Bernoulli
Probability Circuit. Thermal noise is trapped on the capacitor, amplified
twice through two operational transconductance amplifiers (OTA) with gain
of Ai then put through a comparator with a probability select input. Note
that these three OTA’s are the same basic circuit programmed to different
functionality. (B) Nine-transistor OTA used in (A) for amplifier and
comparator circuits.

FIGURE 4 | The probability distribution function of thermal noise and
the probability of generating a P(1) or P(0) in the Bernoulli variable
generating circuit. The probability of a 1 is the integral under the
probability distribution function of the thermal noise from the comparator
voltage to the supply voltage of the circuit, Vdd .
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FIGURE 5 | A Bernoulli probability trial can be used to generate an arbitrary probability distribution with the correct transfer function. This result will
be taken advantage of to greatly increase the performance of dynamical systems in this paper.

FIGURE 6 | Illustration of how to transform N Bernoulli trials into an
exponential distribution. Bernoulli trials put through a priority encoder as
inputs results in an exponentially distributed probability function, where the
shape of the exponential function can be tuned through the threshold
inputs to the Bernoulli trials.

over software and other current methods, which will be explained
in the next section.

2.2. PROGRAMMING BERNOULLI TRIALS AT TELLURIDE WORKSHOP
All of the above circuits from the previous section were con-
ceived of, designed, built, measured, and compiled in about in
the 2 weeks of the 2008 Telluride Neuromorphic workshop. This
accomplishment is both a testament to the productivity that the
Telluride Neuromorphic workshop allows as well as a testament
to the quick prototyping capability of the FPAA.

The Telluride Neuromorphic workshop is unique in that some
of the most brilliant minds in the country get together for an
extended several week session dedicated to teaching, working with
real hardware, and producing results such that students are com-
pletely immersed in a world class engineering environment, day
and night, for 2–3 weeks.

The FPAA is analogous to the FPGA for logic circuits in that
circuits can be conceived of, programmed onto the chip, and mea-
sured in the same day. The FPAA has a mature toolset where
an analog designer can conceive of a circuit, such as during a
Telluride lecture session on analog design, and can simply cre-
ate a netlist. The FPAA tools automatically take this netlist and
optimally compile it to the fabric using a bitstream to program
the on-board floating gate devices to set switches allowing net-
works of active and passive devices, set current sources, bias
currents, amplifier characteristics, and calibrate out device mis-
match. A standard multi-meter is connected to the FPAA test
board via built-for-test pinned out circuit leads. The multi-meter

in this instance was connected back to the computer via GPIB
that was producing the netlist to allow a full hardware in the
loop programmable environment. Current toolsets are even more
advanced allowing Simulink and other Simulink-like tools to
build the circuit netlists.

2.3. TEMPERATURE INVARIANT BERNOULLI TRIALS
The thermal noise circuits used to create Bernoulli trials shown
in the previous section have the well known side effect that
their accuracy is highly dependent on temperature. And although
methods such as adjusting bias currents with temperature are
available on the FPAA, we present a temperature invariant
method here to address this potential variability in the Bernoulli
trials presented previously. These chaos circuits were built as
follow-up work to the Telluride workshop.

Chaos circuits were chosen to exemplify a more temperature
invariant method. The model and explanation for the low-power
chaos circuit used in this paper is first presented in Dudek and
Juncu (2005).

A chaos circuit works by introducing a seed value to a non-
linear “chaos map” circuit which is itself chaotic. The sample and
hold circuit then captures a continuous voltage value for con-
sumption by a stochastic algorithm. The chaos map from Dudek
and Juncu (2005) was chosen because of its proven results, but
also because it only requires nine transistors and is extremely
energy efficient.

The resulting chaos map with a tunable control voltage to
dictate the probability characteristics is shown in Figure 7.

While further reading may be needed to understand the chaos
circuit map shown in Figure 7, this map is very close to the results
expected as shown in the literature. The general idea is that a
given output voltage will result in a random assignment to the
chaos map, allowing us to generate random variables in a tem-
perature invariant way. The idea is that this chaos map could be
used in place of the thermal noise circuits should the designer be
concerned about temperature.

These circuits all have something in common: they can be used
to directly compute a stochastic function, cannot be compiled on
a digital chip, and compute more efficiently than a digital system.

Next we show how the usefulness of these circuits in a
dynamical system.

3. GILLESPIE’S ALGORITHM FOR STOCHASTIC
COMPUTATION

The previous findings are used to generate the results of a chem-
ical and biological system using Gillespie’s algorithm in this
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FIGURE 7 | Measured y(x) voltage vs. Vc for the chaos map circuit
compiled on the FPAA.

section. This section will also review the expense to calculate
the trajectory of stochastic systems in software as a compari-
son. Gillespie’s algorithm is a natively probabilistic algorithm that
takes advantage of the naturally stochastic trajectories of molecu-
lar reactions (Gillespie, 1976), this algorithm is described below.

3.1. GILLESPIE’S ALGORITHM
1. Initialize. Set the initial number of each type of molecule in the

system and time, t = 0.
2. For each reaction i, calculate the propensity function to obtain

parameter value, ai.
3. For each i, generate a reaction time τi according to an expo-

nential distribution with parameter ai.
4. Let µ be the reaction time whose time is least, τµ.
5. Change the number of molecules to reflect execution of reac-

tion µ. Set t = t + τµ.
6. If initialized time or reaction constraints met, finished. If not,

go to step 2.

We use complexity analysis, or big-Oh, analysis to analyze the
algorithms here where O(x) gives an expression, x, that represents
the worst case running time of the algorithm. , Only algorith-
mic improvements in software have been made to computing
Gillespie’s algorithm, until this work, such as Gibson et al. who
have improved the running time of the algorithm from O(Er) to
O(r + Elogr) where E is the number of reaction events in the tra-
jectory and r is the number of different reaction types (Gibson
and Bruck, 1998). Several orders of magnitude improvement in
energy efficiency and performance can be realized by comput-
ing the exponentially distributed random variable τi in hardware.
Note that the big-Oh function does not change, just the way we
implement this algorithm is much improved.

The generation of the exponentially distributed random num-
ber is the bottleneck of the algorithm, and the computational
complexity of each step is calculated to show this. The metric used
to judge computational cost is the number of clock cycles it takes

to do a given calculation on a modern general purpose CPU as
described in Patterson and Hennessy (2004).

A load instruction is used to initialize a variable in Step 1.
With the best case with a multiple data fetch scheme such as in
the cell processor, this requires a single computational step. The
propensity function ai in Step 2 is calculated by a floating point
multiplication (FPMUL), which takes five computational steps in
a modern processor per reaction (Gillespie, 1976; Patterson and
Hennessy, 2004). All r reactions assuming δ FPMUL units are
available takes 5r

δ total computational steps. In Step 4, the mini-
mum reaction time τµ takes r − 1 compare operations. Assuming
δ ALU (compare) units are available, Step 4 takes r−1

δ compu-
tational steps. Step 5 involves r − 1 integer addition/subtraction
operations taking again r−1

δ computational steps. Step 6 is an
update in the program counter resulting in a single step. Step 3
is a key step where each τi according to an exponential distribu-
tion. Generating an exponentially distributed random number is
complex and deserves a bit more treatment.

This is believed to be the first method to generate an exponen-
tially distributed random number in hardware, and the random
numbesr generated by other current methods is only pseudo-
random. The Park–Miller algorithm on a modern advanced
processor is the best known software method where a uni-
formly pseudo-random number is generated in 88 computational
steps (Park and Miller, 1998; Patterson and Hennessy, 2004). The
equation to transform a uniformly distributed random variable
U to one with an exponential distribution E with parameter λ is
shown in Equation (2).

E = − ln U

λ
(2)

The natural logarithm function, ln is extremely expensive, and
even in the best case of computing this on a modern digital signal
processor (DSP) takes 136 computational steps by itself accord-
ing to Yang et al. (2002). Thus counting the FP multiply and the
FP divide taking 5 steps and 32 steps, respectively (Patterson and
Hennessy, 2004), it takes a total of 261 computational steps to
generate a single exponentially distributed pseudo-random vari-
able in software. Thus Step 3 alone takes 261r computational steps
to generate τi for all i reactions. To review the number of compu-
tational steps for each part of the algorithm is shown below.

3.2. COMPUTATIONAL STEPS IN GILLESPIE’S ALGORITHM
Algorithmic step Computational steps
(1)Initialize. 1
(2)Multiply to find each ai.

5r
δ

(3)Generate each τi. 261r
(4)Find τµ. r−1

δ

(5)Update. r−1
δ

(6)Go to step 2 1

Thus for a conservative value of δ = 2, generating each expo-
nentially distributed τi in Step 3 takes approximately 98% of the
computational steps for a single iteration of Gillespie’s algorithm.
Seen in this light, the problem of improving exponential random
variable generation becomes quite an important one.
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3.3. EXPANSION TO ANY DYNAMICAL SYSTEM
It has been shown in Gillespie (1976) and Kurtz (1972) that the
trajectory of a chemical system consisting of N different reactant
concentrations can be expressed as both a system of determinis-
tic differential equations and a system of stochastic processes. For
deeper understanding of Equations (3–5) that follows, the reader
is encouraged to read these aforementioned references. This con-
cept can be generalized to any dynamical system where the time
evolution of a system of N state variables that has been described
in a classical, state-based deterministic model as

dx1
dt = f1(x1, x2, x3, ...)

dx2
dt = f2(x1, x2, x3, ...)

. . .

and in general as:
Ẋ = F(X) (3)

This system can also be expressed as a stochastic, Markov process.
For the stochastic system, the probability that state variable xµ

is updated during the next time interval τ is assigned, P(τ, µ)dτ .
More formally, this is the joint probability density function at
time t expressing the probability that the next state update will
occur in the differential time interval (t + τ, t + τ + dτ ) and that
this update will occur to state variable xµ for µ = 1 . . . N and
0 ≤ τ < ∞.

Given probability P0(τ ), the probability that no state-space
update occurs in the interval (t, t + τ ), and the probability, αµ

that an update to state xµ will occur in the differential time inter-
val (t + τ, t + τ + dτ ) we have the general form for the joint
probability function:

P(τ, µ)dτ = P0(τ ) · αµdτ (4)

Note that αµ is based on the state of the system X. Also note that
determining αµ is the critical factor in determining the Markov
process representation and no general method for this is given
here. In the chemical system example, αµ is the probability that
reaction Rµ is going to occur in the differential time interval and is
a function of the number of each type of molecule currently in the
system. The probability that more than one state update will occur
during the differential time interval is shown to be small and thus
ignored (Kurtz, 1972; Gillespie, 1976). Finally some function gµ

must be given describing the update to state variable xµ once
an update occurs. We then have the stochastic, Markov process
defined for the system:

Pr[X(t + τ + dτ ) = G(X(t)) | X(t)] = P(τ, µ) (5)

Note that this formulation does not make the assumption that
infinitesimal dτ need be approximated by a finite time step &τ ,
which is a source of error in many Monte Carlo formulations.

To solve this system using computational methods, random
numbers are generated according to the probability distributions
described by Equation (5). No matter what dynamical system is
involved, exponentially distributed random numbers will always

be needed. To calculate P0(τ ) from Equation (4), we break the
interval (t, t + τ ) into K subintervals of equal length ε = τ/K,
and calculate the probability that no state update occurs in the
first ε subinterval (t, t + ε) which is:

N∏

i = 1

[1 − αiε + o(ε)] = 1 −
N∑

i = 1

αiε + o(ε) (6)

This probability is equal for every subinterval (t, t + 2ε), (t, t +
3ε), and so on. Thus the probability P0(τ ) for all K subintervals
is:

P0(τ ) = lim
K→∞

[

1 −
N∑

i = 1

αiε + o(ε)

]K

(7)

= lim
K→∞

[

1 −
N∑

i = 1

αiτ/K + o(τ/K)

]K

(8)

Where o(ε) is the probability that more than one event occurs in
the time interval ε. Following the analysis in Gillespie (1976), we
assume as our incremental time interval goes to zero our func-
tion o(ε) → 0 as well. With o(τ/K) → 0 we are left with the
probabilistic, exponential function in Equation (9).

P0(τ ) = exp

[

−
N∑

i = 1

αiτ

]

(9)

Thus we prove how this work can be extended to any dynamical
system.

4. RECONFIGURABLE ANALOG HARDWARE FOR
STOCHASTIC COMPUTATION

These complex probability functions are generated on a recon-
figurable platform, reviewed in this section. More specifically, a
dynamic Bernoulli Trial generator is illustrated on chip. This novel
method involves using the reconfigurable analog signal proces-
sor (RASP) chip that was recently introduced (Basu et al., 2008).
This device allows one to go from concept to full functionality
for analog circuits in a matter of weeks or even days instead of
months or years for large-scale, integrated circuits. The design
presented went from concept to measured hardware in a matter of
2 weeks. The other useful feature is that many FPGA type archi-
tectures allow a designer to build a subset of the possible circuits
available with the RASP. Circuits such probabilistic function gen-
erators could not be produced on strictly digital reconfigurable
architectures although digital designs can be built on the RASP.
The RASP chip is shown in Figure 8.

4.1. STOCHASTIC CIRCUIT ARCHITECTURE
The macroarchitecture and details of the algorithmic implemen-
tation via Bernoulli trials and how this is built on the RASP chip
is explored here. The RASP has 32 reconfigurable, computational
analog blocks (CABs). The elements of a CAB and the elements
that are used in this design are shown in Figure 9.

Frontiers in Neuroscience | Neuromorphic Engineering May 2014 | Volume 8 | Article 86 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Bo Marr and Hasler bioFPAA

FIGURE 8 | Micrograph of the Reconfigurable Analog Signal Processor
(RASP), also referred to the Field Programmable Analog Array (FPAA).
The circuits were compiled onto this device. Computational Analog Blocks
(CAB) populate the chip where both the computational elements and the
routing is configured via floating gates. Buffers, capacitors, transmission
gates, NMOS, PMOS, floating gates, current biases, adaptive amplifiers,
and analog multiply arrays are all available and fully programmable on the
chip. Development is shared by many in the CADSP group at Georgia Tech.

An array of up to 32 Bernoulli trials can be calculated simul-
taneously on a single RASP device. New versions of the RASP
have been fabricated in 350, 130, and 45 nm; an entire family
of RASP 2.9 chip variants exist for different applications spaces,
which allow as much as 10X this number of Bernoulli trials, and
this scales with Moore’s law. The RASP chipset and accompa-
nying tools also have the ability to be linked together easily for
a multi-core RASP chipset should more Bernoulli generators be
needed. The RASP chipset is useful for a proof of concept here.
Since each Bernoulli generator only takes 30 transistors, many
thousands of these circuits could be built in custom hardware if
needed.

5. CHIP MEASUREMENTS AND EXPERIMENTAL RESULTS
To gather data, the Probability Select line described in Figure 3A
and the output producing the random numbers were routed
to the primary inputs/outputs of the chip. A 40-channel, 14-
bit digital-to-analog-converter (DAC) chip was interfaced with
the RASP chip on a printed circuit board, which we used as
our testing apparatus, so that any arbitrary voltage could be
input to the Probability Select line. This chip is 40 channel in
the sense that there are 40 independent outputs of the DAC.
The outputs of the RASP chip were connected to oscilloscope
probes so that the noise spectrum and random numbers could be
captured.

FIGURE 9 | The typical routing structure and available analog
computational elements in one of the 32 computational analog blocks
(CABs) present on the RASP chip. The elements used in the present
design are highlighted in red. Alternating CABs have NMOS transistors and
PMOS as the bottom CAB element, and although only three of the
MOSFETs are used in our circuit from Figure 3, instead of the four that are
circled, this is meant to show several different combinations of these four
transistors can be used to make the three transistor circuit. The top triangle
elements are an OTAs showing the two inputs and output being routed
back into the fabric which is a mesh of lines with switches able to connect
any two lines that cross in the mesh. The element below the OTAs is a
capacitor and the bottom elements circled are NMOS and PMOS available
to be routed.

The distribution of the Bernoulli trial circuits were measured
in the following way: 2500 random numbers were captured at
each Probability Select voltage. The number of successes was
divided by the total number of samples captured at each voltage
to calculate the probability of a Bernoulli success (probability of
randomly generating a 1). The results are shown in Figure 10.

An example of a voltage signal from the Dynamic Bernoulli
Probability Circuit producing a digital “1” with probability p =
0.90 is shown in Figure 11. The voltage signal was recorded via
on-chip measurement circuits and transmitted to a PC through a
USB connection to the chipset.

The array of Bernoulli trials was encoded and the exponential
distribution of reaction times, τi, was generated. The result-
ing distribution is what one would expect and matches a true,
exponential distribution as shown in Figure 12.
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FIGURE 10 | Measurements from the output of the Dynamic Bernoulli
Probability Circuit shown in Figure 3 were taken. The “Probability
Select” voltage was adjusted from 0.1 volts up to 1.4 volts and the resulting
probability of a digital “1” being produced was recorded with a 95%
confidence interval. Measurements were only taken down to p = 0.5 since
a Bernoulli trial is symmetric about this value.

5.1. VALIDATION OF RANDOMNESS
A probabilistic output and a random output are differing con-
cepts, and the ability to control this difference is the strength
of the proposed circuits. They are linked together and defined
through Shannon’s entropy (Shannon, 1949). Formally, entropy
and thus the randomness of a function are defined by H in
Equations (10, 11).

Let

Hn = − 1

n

∑

i,j,...,s

p(i, j, ..., s) log2 p(i, j, ..., s) (10)

Then entropy is
H = lim

n→∞ Hn (11)

where p(i, j, ..., s) is the probability of the sequence of symbols
i, j, ..., s, and the sum is over all sequences of n symbols.

By the same definition, a function exhibits the most random-
ness if H is maximized, which occurs when all output sequences
are equally likely, or equivalently, if all possible outputs have
an equal probability of occurring (Shannon, 1949). From this
work, a function is defined as random if all outputs have a uni-
form probability of occurring. Conversely, we define a function
as probabilistic if the function has an entropy 0 < H < log2 n.

There exist statistical measures of randomness, developed by
the National Institute of Standards and Technology (NIST), in
the form of a suite consisting of 16 independent tests to mea-
sure how random a sequence of numbers truly is Random Number
Generation and Testing (2014). However, these tests only measure
the performance of random functions and not probabilistic ones
such as the circuits presented in this work, although random
number generation (when p = 0.5) is a subset function of these
circuits.

FIGURE 11 | Voltage output from Dynamic Bernoulli Probability Circuit
also called a random number generator (RNG) circuit as labeled in the
graph, corresponding to the output out of the third (final) OTA circuit
from Figure 3. A 1 volt offset was arbitrarily chosen for the comparator, but
other voltage offset values than this were anecdotally observed to have
undesired noise effects resulting in spurious switching at the output of the
comparator. The noise amplifiers, and thus comparators, were observed to
switch at approximately 208 ps as a maximum rate, thus independent
Bernoulli variables could be produced at most at this time period in this
particular device. A digital “1” is produced with probability p = 0.90 and
“0” with 1 − p = 0.10. When the voltage is above the threshold
Vout >

Vdd −Vss
2 it is considered a digital “1” and otherwise a “0,” where the

threshold happens to be 0 volts in this case. The samples in this circuit
change much faster than can be consumed, and thus random samples are
taken from the output of this circuit at a slower rate than the rate at which it
changes state, but preserving randomness.

Each of the tests are measured on a scale from 0 to 1, where
a “passing” mark is considered >0.93 and higher marks indi-
cate a higher quality sequence. For a random output p = 0.5
these circuits with thermal noise as the source of randomness
passed all but the “Overlapping Template Matching Test” and
the “Lempel-Ziv Complexity Test” and even these two tests
received high marks >0.80. They also perform consistently better
than the software generated, Park–Miller psuedo-random num-
bers used by most algorithms, which failed half the tests in
the suite with some failing badly <0.10 (Chakrapani et al.,
2006).

6. CONCLUSIONS AND FUTURE DIRECTIONS
It was shown in section 3 that to generate an exponentially dis-
tributed random variable in software takes a minimum of 261
computational steps with the Park Miller algorithm. And with
hardware random number generators shown in previous micro-
processor works, only uniformly random numbers were available.
Bernoulli trials are generated here in hardware with a single com-
putational step, and an exponentially distributed random number
is generated with two computational steps.

Because of the high gain of our amplifiers, the thermal noise
distribution used to generate probabilistic distributions with our
hardware is extremely sensitive to perturbations such as ambi-
ent electrostatic interactions, device variations, and changes in
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FIGURE 12 | The histogram (and thus a scaled probability distribution
function) of the exponentially distributed Gillespie reaction times, τi ’s,
generated.

ambient temperature. Environment invariant chaos circuis were
compiled and measured to mitigate these concerns. Because the
Bernoulli trial circuits presented here can be controlled via a
programmable input signal, software calibration can be done to
mitigate these concerns as well.

An estimated performance increase of approximately 130X is
realized based on measured results to generate exponentially dis-
tributed random numbers. With the assumption used in section 3
that generating exponential random variables takes up 98% of the
computation time of a single iteration through Gillespie’s algo-
rithm, our system could potentially speed up the calculation of
the trajectory of this algorithm by approximately 127X.

Further is was shown that these performance increases via
hardware generated probabilistic distributions can be applied to
any dynamical system and possibly have a much wider impact than
the field of biological computations.

Such a method to increase computational efficiency by two
orders of magnitude is believed to be widely useful in calculat-
ing biological, statistical, or quantum mechanical systems. The
search for meta-materials new medicines, or any other host of
applications could benefit. Future directions for this specific work
include attempting to hardware accelerate quantum algorithms
and venturing into the world of software defined analog radios.
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