
We Could Build an Artificial Brain Right Now
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Brain-inspired computing is having a moment. Artificial neural
network algorithms like deep learning, which are very loosely based on the
way the human brain operates, now allow digital computers to perform
such extraordinary feats as translating language, hunting for subtle patterns
in huge amounts of data, and beating the best human players at Go.

But even as engineers continue to push this mighty computing strategy, the
energy efficiency of digital computing is fast approaching its limits. Our
data centers and supercomputers already draw megawatts—some 2 percent
of the electricity consumed in the United States goes to data centers alone.



The human brain, by contrast, runs quite well on about 20 watts, which
represents the power produced by just a fraction of the food a person eats
each day. If we want to keep improving computing, we will need our
computers to become more like our brains.

Hence the recent focus on neuromorphic technology, which promises to
move computing beyond simple neural networks and toward circuits that
operate more like the brain’s neurons and synapses do. The development of
such physical brainlike circuitry is actually pretty far along. Work at my lab
and others around the world over the past 35 years has led to artificial
neural components like synapses and dendrites that respond to and
produce electrical signals much like the real thing.

So, what would it take to integrate these building blocks into a brain-scale
computer? In 2013, Bo Marr, a former graduate student of mine at Georgia
Tech, and I looked at the best engineering and neuroscience knowledge of
the time and concluded that it should be possible to build a silicon version
of the human cerebral cortex with the transistor technology then in
production. What’s more, the resulting machine would take up less than a
cubic meter of space and consume less than 100 watts, not too far from the
human brain.

That is not to say creating such a computer would be easy. The system we
envisioned would still require a few billion dollars to design and build,
including some significant packaging innovations to make it compact. There
is also the question of how we would program and train the computer.
Neuromorphic researchers are still struggling to understand how to make
thousands of artificial neurons work together and how to translate brainlike
activity into useful engineering applications.
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Still, the fact that we can envision such a system means that we may not be
far off from smaller-scale chips that could be used in portable and wearable
electronics. These gadgets demand low power consumption, and so a highly
energy-efficient neuromorphic chip—even if it takes on only a subset of
computational tasks, such as signal processing—could be revolutionary.
Existing capabilities, like speech recognition, could be extended to handle
noisy environments. We could even imagine future smartphones
conducting real-time language translation between you and the person
you’re talking to. Think of it this way: In the 40 years since the first signal-
processing integrated circuits, Moore’s Law has improved energy efficiency
by roughly a factor of 1,000. The most brainlike neuromorphic chips could
dwarf such improvements, potentially driving down power consumption by
another factor of 100 million. That would bring computations that would
otherwise need a data center to the palm of your hand.

The ultimate brainlike machine will be one in which we build
analogues for all the essential functional components of the brain: the
synapses, which connect neurons and allow them to receive and respond to
signals; the dendrites, which combine and perform local computations on
those incoming signals; and the core, or soma, region of each neuron, which
integrates inputs from the dendrites and transmits its output on the axon.

Simple versions of all these basic components have already been
implemented in silicon. The starting point for such work is the same metal-
oxide-semiconductor field-effect transistor, or MOSFET, that is used by the
billions to build the logic circuitry in modern digital processors.

These devices have a lot in common with neurons. Neurons operate using
voltage-controlled barriers, and their electrical and chemical activity
depends primarily on channels in which ions move between the interior and



exterior of the cell—a smooth, analog process that involves a steady buildup
or decline instead of a simple on-off operation.

MOSFETs are also voltage controlled and operate by the movement of
individual units of charge. And when MOSFETs are operated in the
“subthreshold” mode, below the voltage threshold used to digitally switch
between on and off, the amount of current flowing through the device is
very small—less than a thousandth of what is seen in the typical switching
of digital logic gates.

The notion that subthreshold transistor physics could be used to build
brainlike circuitry originated with Carver Mead of Caltech, who helped
revolutionize the field of very-large-scale circuit design in the 1970s. Mead
pointed out that chip designers fail to take advantage of a lot of interesting
behavior—and thus information—when they use transistors only for digital
logic. The process, he wrote in 1990 [PDF], essentially involves “taking all
the beautiful physics that is built into...transistors, mashing it down to a 1
or 0, and then painfully building it back up with AND and OR gates to
reinvent the multiply.” A more “physical” or “physics-based” computer
could execute more computations per unit energy than its digital
counterpart. Mead predicted such a computer would take up significantly
less space as well.

In the intervening years, neuromorphic engineers have made all the basic
building blocks of the brain out of silicon with a great deal of biological
fidelity. The neuron’s dendrite, axon, and soma components can all be
fabricated from standard transistors and other circuit elements. In 2005,
for example, Ethan Farquhar, then a Ph.D. candidate, and I created a
neuron circuit using a set of six MOSFETs and a handful of capacitors. Our
model generated electrical pulses that very closely matched those in the
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soma part of a squid neuron, a long-standing experimental subject. What’s
more, our circuit accomplished this feat with similar current levels and
energy consumption to those in the squid’s brain. If we had instead used
analog circuits to model the equations neuroscientists have developed to
describe that behavior, we’d need on the order of 10 times as many
transistors. Performing those calculations with a digital computer would
require even more space.
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Synapses and Soma: The floating-gate transistor [top left], which can store differing amounts of
charge, can be used to build a “crossbar” array of artificial synapses [bottom left]. Electronic
versions of other neuron components, such as the soma region [right], can be made from standard
transistors and other circuit components.

Emulating synapses is a little trickier. A device that behaves like a
synapse must have the ability to remember what state it is in, respond in a
particular way to an incoming signal, and adapt its response over time.

There are a number of potential approaches to building synapses. The most



mature one by far is the single-transistor learning synapse (STLS), a device
that my colleagues and I at Caltech worked on in the 1990s while I was a
graduate student studying under Mead.

We first presented the STLS in 1994, and it became an important tool for
engineers who were building modern analog circuitry, such as physical
neural networks. In neural networks, each node in the network has a weight
associated with it, and those weights determine how data from different
nodes are combined. The STLS was the first device that could hold a variety
of different weights and be reprogrammed on the fly. The device is also
nonvolatile, which means that it remembers its state even when not in use—
a capability that significantly reduces how much energy it needs.

The STLS is a type of floating-gate transistor, a device that is used to build
memory cells in flash memory. In an ordinary MOSFET, a gate controls the
flow of electricity through a current-carrying channel. A floating-gate
transistor has a second gate that sits between this electrical gate and the
channel. This floating gate is not directly connected to ground or any other
component. Thanks to that electrical isolation, which is enhanced by high-
quality silicon-insulator interfaces, charges remain in the floating gate for a
long time. The floating gate can take on many different amounts of charge
and so have many different levels of electrical response, an essential
requisite for creating an artificial synapse capable of varying its response to
stimuli.

My colleagues and I used the STLS to demonstrate the first crossbar
network, a computational model currently popular with nanodevice
researchers. In this two-dimensional array, devices sit at the intersection of
input lines running north-south and output lines running east-west. This
configuration is useful because it lets you program the connection strength
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of each “synapse” individually, without disturbing the other elements in the
array.

Thanks in part to a recent Defense Advanced Research Projects Agency
program called SyNAPSE, the neuromorphic engineering field has seen a
surge of research into artificial synapses built from nanodevices such as
memristors, resistive RAM, and phase-change memories (as well as
floating-gate devices). But it will be hard for these new artificial synapses to
improve on our two-decade-old floating-gate arrays. Memristors and other
novel memories come with programming challenges; some have device
architectures that make it difficult to target a single specific device in a
crossbar array. Others need a dedicated transistor in order to be
programmed, adding significantly to their footprint. Because floating-gate
memory is programmable over a wide range of values, it can be more easily
fine-tuned to compensate for manufacturing variation from device to device
than can many nanodevices. A number of neuromorphic research groups
that tried integrating nanodevices into their designs have recently come
around to using floating-gate devices.

So how will we put all these brainlike components together? In the
human brain, of course, neurons and synapses are intermingled.
Neuromorphic chip designers must take a more integrated approach as
well, with all neural components on the same chip, tightly mixed together.
This is not the case in many neuromorphic labs today: To make research
projects more manageable, different building blocks may be placed in
different areas. Synapses, for example, may be relegated to an off-chip
array. Connections may be routed through another chip called a field-
programmable gate array, or FPGA.

But as we scale up neuromorphic systems, we’ll need to take care that we
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don’t replicate the arrangement in today’s computers, which lose a
significant amount of energy driving bits back and forth between logic,
memory, and storage. Today, a computer can easily consume 10 times the
energy to move the data needed for a multiple-accumulate operation—a
common signal-processing computation—as it does to perform the
calculation.

The brain, by contrast, minimizes the energy cost of communication by
keeping operations highly local. The memory elements of the brain, such as
synaptic strengths, are mixed in with the neural components that integrate
signals. And the brain’s “wires”—the dendrites and axons that extend from
neurons to transmit, respectively, incoming signals and outgoing pulses—
are generally fairly short relative to the size of the brain, so they don’t
require large amounts of energy to sustain a signal. From anatomical data,
we know that more than 90 percent of neurons connect with only their
nearest 1,000 or so neighbors.

Another big question for the builders of brainlike chips and computers is
the algorithms we will run on them. Even a loosely brain-inspired system
can have a big advantage over digital systems. In 2004, for example, my
group used floating-gate devices to perform multiplications for signal
processing with just 1/1,000 the energy and 1/100 the area of a comparable
digital system. In the years since, other researchers and my group have
successfully demonstrated neuromorphic approaches to many other kinds
of signal-processing calculations.

But the brain is still 100,000 times as efficient as the systems in these
demonstrations. That’s because while our current neuromorphic technology
takes advantage of the neuronlike physics of transistors, it doesn’t consider
the algorithms the brain uses to perform its operations.



Today, we are just beginning to discover these physical algorithms—that is,
the processes that will allow brainlike chips to operate with more brainlike
efficiency. Four years ago, my research group used silicon somas, synapses,
and dendrites to perform a word-spotting algorithm that identifies words in
a speech waveform. This physical algorithm exhibited a thousandfold
improvement in energy efficiency over predicted analog signal processing.
Eventually, by lowering the amount of voltage supplied to the chips and
using smaller transistors, researchers should be able to build chips that
parallel the brain in efficiency for a range of computations.

When I started in neuromorphic research 30 years ago, everyone believed
tremendous opportunities would arise from designing systems that are
more like the brain. And indeed, entire industries are now being built
around brain-inspired AI and deep learning, with applications that promise
to transform—among other things—our mobile devices, our financial
institutions, and how we interact in public spaces.

And yet, these applications rely only slightly on what we know about how
the brain actually works. The next 30 years will undoubtedly see the
incorporation of more such knowledge. We already have much of the basic
hardware we need to accomplish this neuroscience-to-computing
translation. But we must develop a better understanding of how that
hardware should behave—and what computational schemes will yield the
greatest real-world benefits.

Consider this a call to action. We have come pretty far with a very loose
model of how the brain works. But neuroscience could lead to far more
sophisticated brainlike computers. And what greater feat could there be
than using our own brains to learn how to build new ones?



This article appears in the June 2017 print issue as “A Road Map for the
Artificial Brain.”
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