
AUTOMATIC RAPID PROGRAMMING OF LARGE ARRAYS OF FLOATING-GATE
ELEMENTS

G. Serrano, P.D. Smith, H.J. Lo, R. Chawla, T. S. Hall, C. M. Twigg and P.Hasler

Department of Electrical Engineering Georgia Institute of Technology, Atlanta, GA 30332-0250.

ABSTRACT

The use of floating-gate elements on analog circuits has increased
over the last few years. Floating-gate transistors are been used
for analog multiplication, memory storage, on-chip bias, offset re-
movals, etc. Complex systems, such as imagers and filter arrays,
use thousands to millions of programmable floating-gate elements.
The programming speed and precision of this elements plays a
mayor role on the performance of these systems. In this paper
we present a system approach that allows for automatic rapid pro-
gramming of large arrays of floating-gates. We achieve this by op-
timizing all the time consuming tasks involved in the programming,
such as current measurements and drain pulsing among others.

1. AUTOMATIC ARRAY PROGRAMMING

Solid-State memory arrays have been around for many years
in EEPROMs [1]. Although EEPROMs are used for digi-
tal storage, similar techniques have been used to implement
analog storage [2]. As these arrays have become larger,
programming speed has become critical in making these
arrays useful. This paper outlines a method for achieving
rapid programming speeds of large array of floating-gate el-
ements.

Fig. 1(a) shows the schematic of a floating-gate (FG)
transistor. It consists of a pFET transistor with the gate con-
nected to a capacitor, hence this node does not have a dc
path to ground. The primary characteristic of a floating-gate
transistor is that it can store charge on the floating node.
Charge can be removed or added via tunnelling and hot
electron injection respectively. The details of floating-gate
programming have been previously discussed in [3]. Tun-
nelling is used as a global erase, while injection is used for
accurate programming of individual elements. Selectivity
of a single element in an array is achieved using the con-
figuration shown in Fig. 1(b). To select an specific FG, its
respective row and column are enabled. Adjacent rows and
columns are turned off by placing its drain and gate voltages
to Vdd.

Details of injection have been discussed in [4]. To inject
an electron onto a floating gate, the MOSFET must have
a high electric-field region to accelerate channel electrons
to energies above the silicon–silicon–dioxide barrier. When

Vtun

Vg

Vd

Vdd

Id
floating
node

Ctun

C

(a)

Vg1 VgN

Vd1

VdM

(b)

FPGA

ADC

Level Shifter

DACs
Custom

IC
&

Floating-
Gate
Array

4
1

18
1

11

18

(c)

Fig. 1. (a)Floating-gate transistor. Charge of the floating node can be
store and programmed. (b)Floating-gate array. This confi guration allows
for a selectivity of a single floating-gate transistor when programming.
(c)System block diagram. An FPGA provides fast digital control to a cus-
tom PC board. The PC board supplies the needed analog and digital volt-
ages to the chip and allows for analog voltage reading. Additional digital
I/O can be obtained from the FPGA directly.

this happens, electrons can be injected into the oxide and
transported to the floating gate. To physically achieved this,
Vdd is increased to a higher voltage (from 3.3V to 6.5V).
All the other voltages are also increased the same amount
(Vgs, Vds, and Vts voltage values does not change). This
process will be call from now on as voltage ramping. To
get the high currents for injection, the drain voltage (Vd) is
then pulsed to a lower voltage for a certain amount of time
(tpulse). After the injection is completed all voltages are
restored to their original values. The electron injection will
be a function of tpulse and the Vds voltage when pulsing.

Some of the factors that limit the floating-gate program-
ming speed are the injection pulse, the current measure-
ment, the voltage ramping, the amount of pulses needed
to hit a target, and the communication with the PC. In or-
der to inject, the bias voltages for the transistor have to be

��

�������	

������������
�����

�	��������	��

���
�

�	

���
�����

�	�

�

����

��

�����
�������������

����
�������������

 �!

 ���������
������"�

#��
� ����

 	�����	��$

% �������&�

% ������

�����

�
�"
�
��
�
�

�
��

�
�
	
��
�

�����
'�����(

�����

������

'�(')(

Fig. 2. Block diagram of our software and hardware floating-gate array programming system. (a) Software architecture implemented on the FPGA. This
controls the PC interface with matlab and the custom PCB for programming. (b) On-chip programmable analog array architecture. Individual programmable
elements can be switched into the program loop using on-chip control circuitry. The current measurement has also been moved on chip using an I-to-V
convertor. The ItoV converter consists of an integrator structure with a reset switch in parallel to the capacitor. The reset will give us control of the integration.
The input current, Id, is integrated on the capacitor, C, thus producing an output voltage Vout that changes linearly with time. The speed of the integration
will be proportional to C.

increased by 3V or more. To avoid unwanted injection,
these voltages must be increased of decreased in incremen-
tal steps. In legacy systems, it is typical to ramp the voltages
up or down using 10 steps. The same procedure applies
every time a floating-gate is pulsed, and ramping speed is
limited by the DAC speed. After ramping up, a high drain-
to-source voltage (Vds) is applied to the transistor over a
short period of time (tpulse). Typical values for these pulses
ranged from 100µs to 10ms. These pulses are repeated until
the target current is achieved.

Using the programming algorithm in [3], the number of
steps can be optimized for each target current. For a current
within 1nA and 200nA, 30 steps are typically needed, since
the instrumentation limits the smallest pulse to 100µs. The
injection algorithm computations were performed in the PC
using Matlab. Serial communication between the PC and
their custom board was restricted to 116kbps. Current mea-
surements were done using a commercial picoammeter with
the measurement speed limited to the communication be-
tween the ammeter and the PC (a 300kbps GPIB link).

2. SYSTEM IMPLEMENTATION

To improve the programming speed of large floating-gate
arrays, a new programming platform has been developed.
This platform consists of a custom printed circuit board
to interface to the analog ICs and an FPGA board to con-
trol the programming board and communicate with the PC
(Fig.1(c)). In addition, on-chip current measurements have
been incorporated into the VLSI layout.

A four layer printed circuit board was fabricated with
DACs, ADCs, and level shifters that provides 7 bias volt-
ages (0-3.3V), 4 programming voltages (0-10V), 18 level

shifted digital signals, and one analog voltage measurement
(0-5V). A clock of 10MHz is used for the DACs, while the
ADC has a maximum rate of 100M samples per second.
Fig. 1(c) shows the block diagram for the board, which is
fully controlled by an FPGA.

The FPGA is configured to implement a customized
soft–core processor (Altera’s 32 bit Nios processor) along
with specialized VHDL modules that handle timing criti-
cal communication between the programming board and the
soft core processor. The Nios processor controls the overall
system and coordinates the parallel operation of the differ-
ent VHDL modules. In addition, software running on the
Nios processor implements the TCP/IP protocol and com-
municates with the PC via a 100 Mbit Ethernet connection
(Fig. 2(a)). On the PC side, a Matlab interface has been
developed that provides a direct link to the FPGA from the
Matlab command line.

3. CURRENT MEASUREMENTS

The current measurements are the primary bottleneck on
floating-gate programming. A precise and fast reading is
required for accurate programming. Measuring the current
externally introduces some error, and the noise and parasitic
capacitances introduced by the protoboard greatly decrease
the accuracy. This will also affect the programming preci-
sion.

To get more accurate measurements, currents are mea-
sured on-chip using an integrator structure. This circuit,
shown in Fig.2(b), consists of an amplifier with a capaci-
tor connected in feedback loop. Vref sets the drain voltage
for the selected transistor. The current flows through the
negative terminal of the amplifier and is integrated in the ca-

��

�

�

�

�

�

�

	

�

�

�
�

�

����� �����������������

���������

���
����
����
����
����
����
����

���

��

�
��
�
�
�
�
�
��
 �
�
�

�
�
�

��� ����

!�"���#$%���µ��

&�'���$��
���

���
���	
����
����

&�����
���
���
��

&$�$�$�"
��
��

�

��

�

�

�

�

�

�

	

�
 	 � � � � � � ��

�
�

�
�
��
��
�
�

(�!�"���

��� �)� �'�

Fig. 3. (a) Programming accuracy of our on-chip I-to-V vs. a commercially available current meter. The increase in error at high currents is due to
accuracy of the ADC. During high currents, the output voltage of the I-to-V moves faster than 1LSB change for the ADC. Future versions of the I-to-V will
incorporate a sample-and-hold to remove this problem. (b) Injection occurs at pulses down to 10µs and injection rates can be increased or decreased by
controlling the injection voltage. The data shows pulses down to 50µs, but this can be decreased because the FPGA can provide accurate pulses down to
1µs. (c) Algorithmic injection for three different floating-gate elements. A target current of 10nA, 10nA, and 7nA was programmed for initial currents of
5nA, 1nA, and 2nA respectively. The difference on the target current and the actual programmed current are shown in the table. The programming time for
each element was 0.35s (using a integrator capacitance of 10pF).

pacitor, thereby effectively changing the DC current into an
AC voltage (I-to-V converter). This voltage will not be sus-
ceptible to the output capacitance and will be less affected
by noise. The reset signal is used to control the integration.
A logic high disables the integration making Vout = Vref ,
and a logic low enables the integration. The output voltage,
Vout, is measured after a certain amount of time (dt) has
elapsed. The current is then calculated as follows

I = C
dVout

dt
. (1)

Fig.3(a) shows the percentage of error found on each
current measurement using the ItoV converter, compared to
the ammeter. For this experiment C was 10pF . The ItoV
shows a better performance than the ammeter at very low
currents. The performance of this circuit is limited by the
sampling rate of our ADC (200k samples per second). To
increase our accuracy at higher currents, next design will
include a sample and hold at the output of the ItoV. The
speed of our current measurement will be limited by the
magnitude of the current to be measured and the size of C.
If we have C=300fF, we could measure a current of 1.5nA
in just 200µs, for a 1V drop at the output.

Averaging will increase the accuracy of measurement
but will also increase the time required for the current mea-
surement. To minimize the time delay an “intelligent” aver-
aging is performed. This consists on increasing the averag-
ing as we get closer to the target. This is implemented as a
look up table that is loaded into the FPGA.

4. ARRAY CHARACTERIZATION AND
PROGRAMMING ALGORITHM

The basics of programming floating gate transistors and the
inherent physics have been previously established. Accurate
programming of the charge on the floating-gate is achieved
using an algorithm based on the physics of hot-electron in-
jection [3]. A change in drain voltage is calculated around
a quiescent drain voltage that gives a 10 percent change in
current for each injection pulse. The required drain voltage
(∆Vd) to reach a desired current is given by the following
equation:

∆Vd = − ln

[
−C0

α · Iinj0 · (t)
[(

IS0

ISdesired

)α

− 1
]]

· Vinj ,

(2)
where IS0 is the initial current, ISdesired

is the target cur-
rent, C0 = UT · CT /κ, and Vinj , α, and Iinj are physical
device parameters.

Characterization of the floating-gate array plays a key
role on the effectiveness and accuracy of the algorithmic
programming. The physical device parameters can be ex-
trapolated with two simple plots, ∆I vs tpulse and ∆I vs
I . Fig.3(b) shows experimental data of one of these plots.
Here each of the plots for different Vds were done with dif-
ferent devices. The fitting of the plots resulted in almost
identical slopes, suggesting a low mismatch of the device
parameters. This plot also shows that injection can occur
under very low pulses (30µs). Even smaller pulses can be
used, with a higher Vds.

The programming algorithm is computational intensive,

FG #1 FG #2

0µs 400µs 800µs 400*Nµs400*(N-1)µs 400*(N+1)µs (500*N+400)µs500*Nµs

First Injection Cycle

FG #N

#1 #2 #3
FG

#N-1#N-2

FG #1

#N

Second Injection Cycle

time

prog

clk

current meas.

Vdd (ramp)

injection pulse

0
1

0
1

3.3V
6.5V

FGFGFGFGFG

Fig. 4. Time diagram of the programming of an array of floating-gate transistors. The programming time is going to be limited by the current measurement,
the injection pulse time, and the ramping. Values for these are 400µs, 100µs, and 200µs respectively. Programming starts by reading all the current in the
array. Voltages are then ramped up and individual injection pulses are applied to every element. The voltages are restored to its respective values and the
currents read again. This injection cycle will continue until the every element is programmed to its respective target current. Typical number of cycles when
programming, ranges from 10 to 30 (these is going to depend on the starting current and the target current).

it requires solving (2) before every injection pulse. The
present implementation transforms (2) into a look-up ta-
ble that is loaded into the FPGA, thus avoiding any kind of
computation and greatly increasing the programming speed.
Now the flow of data is only between the PC board and the
FPGA. Fig. 3(c) shows experimental data of injection us-
ing the algorithmic programming. Three different elements
were programmed to different target currents using the pro-
gramming scheme described in this paper. In just 10 pulses,
the algorithm converges to the target current.

5. PROGRAMMING SPEED

The speed of our programming scheme can be underesti-
mated as follows:

T =
[(

tmeas + tpulse

)
·E + tramp

]
·P (3)

where tmeas is the time required to perform a current mea-
surement, tpulse is the time required for a pulse, tramp is the
time required in ramping, E is the number of elements to be
injected, P is the number of pulses (cycles), and T is the to-
tal time required to inject E elements Fig. 4. Typical values
for tpulse and tramp are 10µs and 200µs. Our current ItoV
converter has a 10pF, which limits the speed of our mea-
surement to around 50ms (including averaging) for a 1nA
current. Using tmeas = 50ms, and P = 10, the estimated
time to inject one element to a target current is 0.5s. Exper-
imental measurements done for Fig. 3(c) showed a speed of
0.35s for one element, which correlates with our estimate.

It can be seen clearly that the dominant factor in our
speed is the current measurement. Future implementation
will use a lower capacitance size for the integration, thus
reducing tmeas. A 100fF capacitance will give us a tmeas

of 400µs (including average). Assuming P=10 for every
element, it will take at most 2s to program a 500 element
array.

6. CONCLUSION

A system that allows a fast and accurate programming of
floating gates has been developed. An FPGA controlled PC
board was designed and build. This setup allows for opti-
mization our programming speed and accuracy by minimiz-
ing all the time consuming steps involved in floating-gate
programming.

With the use of the FPGA we can get injection pulses
as small a 1µs, which is 10 times smaller than before. By
providing a 10MHz clock to the DACs we lowered refresh-
ing time needed for the bias voltages when ramping up and
down. Still the refreshing time is going to be limited by the
settling time of the DACs, which is 5µs. On chip current
measurements dramatically lowers the reading time. Data
flow stays within the chip and the FPGA, avoiding using
the PC as intermediary.

7. REFERENCES

[1] D.Kahng and S. Sze, “A floating gate and its application to
memory devices,” Bell Syst. Tech. J., vol. 46, p. 1288, 1967.

[2] H. V. Tran, T. Blyth, D. Sowards, L. Engh, B. Nataraj,
T. Dunne, H. Wang, V. Sarin, T. Lam, H. Nazarian, and G. Hu,
“A 2.5 v 256-level non-volatile analog storage device using
eeprom technology,” 43rd IEEE International Solid-State Cir-
cuits Conference.

[3] P. D. Smith, M. Kucic, and P. Hasler, “Accurate programming
of analog floating-gate arrays,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, vol. 5,
(Phoenix, AZ), pp. 489–492, May 2002.

[4] P. Hasler and J. Dugger, “Correlation learning rule in floating-
gate pFET synapses,” IEEE Transactions on Circuits and Sys-
tems II, 2000. in Press.

	footer1:

