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Abstract—Even though analog computation is better suited for
differential equation solutions (ODE, PDE), sometimes it needs
to solve systems of linear equations. This discussion focuses
on analog solutions of linear equation systems, implemented
on a configurable platform. Digital systems rely on solving
linear equations as the fundamental numerical computation.
Systems of linear equations are used to solve static circuits
illustrating that at least a reduced class of analog physical linear
system computation should be possible. The analog approaches
utilize iterative techniques, setting up a set of ODEs to solve
the system of linear equations, rather than relying on matrix
decompositions (e.g. LU decomposition). The approach allows
for multiple potential configurable circuit approaches. A set
of amplifier networks has been designed to demonstrate the
solutions for different matrices. These techniques provide energy-
efficient continuous-time solutions. The resulting algorithm has
been studied considering the analog numerical analysis for the
solution and convergence time.

Index Terms—Analog solutions of linear equations

Solution of linear equations is the fundamental numerical

computation for digital systems (Fig. 1), and simultaneously

not well aligned with analog computation [1]. Solutions of

linear systems through matrix decomposition is the most

straight-forward method for digital computation, and yet is the

most challenging option for analog approaches [1]. Solution of

linear systems is ubiquitous for digital solutions (Fig. 1). Entire

numerical software tools (e.g. MATLAB: Matrix solution

Laboratory) are dedicated to these solutions, and benchmarks

for computing are based on solving systems of linear equations

(e.g. LINPACK [2]). Linear system solution requires the

solution to the linear algebraic matrix equation

Ax = b (1)

where A is the input matrix, b is the input vector, and x is

the solution vector. The classic digital solution method is a

form of Gaussian elimination to decompose A into a product

of a lower triangular matrix, L, and an upper triangular matrix,

U. Once this solution is found, the solutions can be directly

solved, first using L and b, and then using this result and

U. This computational method shows all of the strength of

symbolic digital processing, including the pivot stages, to

get the maximum accuracy for the decomposition. Analog

decomposition into L and U is extremely challenging, with

numerous integer steps requiring intermediate value storage

at high resolution, and memory manipulations (e.g. pivots) to

retain as much final precision as possible. The lower analog

precision, particularly through short-term sampled registers,

makes this process incredibly challenging [1].
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Fig. 1. Solutions of linear systems are the fundamental operations for digital
computation, whereas solutions of Differential Equations (ODE, PDE) are the
fundamental operations for analog computation. Analog solutions of linear
systems would enable a wider range of analog capability. One approach is
recognizing that the steady state solution of linear circuits with controlled
sources can represent these networks; configurable analog systems can directly
implement such models using voltage-controlled current sources.

On the other hand, Engineering students (e.g. GT’s ECE

2040) are taught that systems of linear equations, like nodal

equations, are used to solve static circuits resistive circuits with

independent and dependent voltage- and current-sources (e.g.

Fig. 1). Therefore, the steady state of linear circuits could solve

systems of linear equations (e.g. Fig. 1). Electronic circuits are

used to illustrate solutions (e.g. Hopfield networks [3], [4]),

simulating linear solutions for a reduced class of problems

[5], [6], and considering specialized cases (e.g. elliptic PDEs

[7], [8] or resistor-only concepts [9], [10], [11], [12]). This

discussion focuses on a general algorithmic and numerical

methods for analog computation of linear system of equations

through the implementation and experimental measurements

from a large-scale Field Programmable Analog Array (FPAA).

[13].
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Fig. 2. A potential continuous-time circuit architecture to solve systems of linear equations is shown. Linear matrix solution is built from Transconductance
Amplifiers (OTA), which are elements of the Computational Analog Block (CAB) on the SoC. OTAs with Floating-Gate (FG) bias currents make up the
individual conductances allowing for a general constraint matrix to solve. The input vectors are fed into the gate input of the 9 transistor OTA, which acts as
a current source, while the offset for the reference voltages can be controlled by DACs compiled on the Array.

The paper focuses on solving systems of linear equations

using analog computation. The discussion moves towards iter-

ative methods for solving linear equations, good methods for

analog and digital computation, and its potential configurable

circuit approaches. The discussion then moves towards analyz-

ing the algorithmic issues and analog numerical analysis issues

of this approach. These techniques provide energy-efficient

continuous-time solutions. Even if an ideal solution exists, one

needs confidence in the overall accuracy and convergence time.

I. PHYSICAL COMPUTATION LINEAR EQUATION

SOLUTIONS → ITERATIVE MATRIX TECHNIQUES

Linear systems are also solved by iterative techniques, using

coupled equations that converge x to the desired solution.

Iterative digital techniques are sometimes faster and have

fewer operations than digital Gaussian elimination, particularly

for sparse matrix solutions. As one should simply use physical

techniques to solve ODE / PDE applications [14], we focus

on physical solution systems of linear systems from different

applications.

A physical approach will be aligned with iterative matrix

equations. Physical computing solutions of linear systems are

iterative techniques, where the iterations result from coupled

differential equations whose steady state represents the desired

output (x). One might modify (1) to build the differential

equation

τ
dx

dt
+Ax = b, (2)

where τ is the time-constant for the network. Each row could

have a different τ , although we present the simpler case for

clarity. Digital (sampled time) approaches would be written as

x[n] = x[n− 1] + ǫ (b−Ax[n]) , (3)

effectively approximating the time derivative of x. These

techniques are related to gradient-descent, Jacobi, and Gauss-

Seidel iterative matrix solutions [15].

The dynamics of (2) are seen along the eigenspace corre-

sponding to A. We define the eigenvalue / eigenvector of A

as

A = EΛE−1 (4)

where Λ is a diagonal matrix of eigenvalues, and E are the

corresponding rows of normalized (power = 1) eigenvectors

corresponding to the particular eigenvector. By projecting (1)

and (2) on the eigenvector basis in (4), we get

x = Ey, τ
dy

dt
+Λy = E−1b, (5)

This ODE requires positive Λ values requiring that A be

positive definite. Non positive definite matrices can be solved

through multiple transformations [6], [16], such as multiplying

(2) by AT resulting in a positive definite matrix [16]. There-

fore, this method is general enough for these solution methods.

II. LINEAR EQUATION SOLUTION USING

TRANSCONDUCTANCE AMPLIFIERS

We solve these linear system of equations employing

Transconductance Amplifiers (TA) in an architecture shown

in Fig. 2. One can achieve a larger set of matrix equations

utilizing TAs, enabling a richer set of potential matrices. The

linear region of an OTA is expressed as

Iout = G(V +
− V −) (6)

For an OTA programmed with subthreshold bias currents

(Ibias), the resulting coupling between nodes (k,l) would be

Gk,l = κIbias

UT
. The discussion holds when utilizing above

threshold currents with a modification of the underlying func-

tion for G.

Figure 2 shows the resulting general network to solve (1),

where the l row is written as

C
dVl

dt
= Il −

m∑

k=1

Gl,kVk (7)

and by comparing with (2), al,k ∝ Gl,k and bk ∝ Ik.

The timeconstant, τ is the load capacitance divided by a
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Fig. 3. Analysis for the convergence of A matrix with 200nA and 100nA as the diagonal and off-diagonal elements respectively, is shown. For a 40mV b

input applied as current sources, the x(t) solution is plotted and is within the linear range of the OTAs. The time constant is 61µs curve-fitting the exponential
curves from the step responses. One of the components along the eigenvalue that is larger by a factor of 5, converges 5 times faster in 12µs.

normalizing conductance, often related to a larger diagonal

element of A. For a particular normalizing subthreshold bias

current, Ibias, τ = CUT

κIref
. One could have a different τ per

row due to different conductance modeling and capacitances,

and potentially tuned to optimize convergence. Current sources

set b inputs where positive current sources would go to Vdd,

and negative current sources would go to GND. These current

sources could also be implemented as additional TAs with

controlling input voltages.

III. MEASURED DYNAMICS ON THE SOC FPAA

This approach is implemented in an SoC FPAA device [13].

The linear equations are solved by 9-transistor TA elements

in Computational Analog Blocks (CAB) [13]. The A matrix

is set by the conductances of the individual OTAs, that in

turn are set by Floating-Gate (FG) bias currents. A TA is

used to convert the input voltage (b) signal to a current. The

reference voltage(s) can be controlled by DACs compiled on

the FPAA [13]. A 4x4 linear system solution is compiled and

programmed on the FPAA using 16 TAs to implement the 4x4

A matrix, and 4 TAs to implement the b matrix. The sign of

each A matrix element determines the TA input sign, where

positive values are input in the - input and the reference to the

+ input, while negative values are input in the + input and the

reference to the - input. The outputs, x(t) can be scanned and

buffered out to be measured.

Figure 3 shows the dynamics of the matrix solutions,

demonstrated through a 4x4 network. The b vectors are inputs

fed to the gate input of the TA structure. In particular, the

inputs are step functions. They are step inputs, starting from

zero (= fixed potential) and moving to a single input value for

b. The matrix solution outputs, x(t) , show the dynamics when

new inputs are applied to different conductance matrices. The

time constant is roughly the diagonal TA bias current and the

FPAA routing capacitive load, and is related to any mismatch

in the resulting components, both for small and large signal

sizes. Additional A matrices can be programmed and dynamics

measured.

Figure 3 analyzes the convergence and resulting eigenvalue

timeconstants from the step responses. The dynamics are

studied by plotting the matrix solution outputs, x(t) which

are the steady-state responses. In case of the matrix with

200nA diagonal elements, the effective time constant is 61µs

from the three eigenvalues, obtained through curve-fitting the

exponential curves from the step responses. Since one of the

eigenvalues is larger by a factor of 5, it converges 5 times

faster, in 12µs. The time constant is 47µs for the diagonal

matrix with 1µA as the 1 element and 10nA as the 0 elements.

The effective time constant is related to the minimum

eigenvalues, resulting in the largest value for settling to a

solution. Other terms will settle faster, and depending on the

particular problem and method, the τ for each row could be

adapted to optimize convergence. Larger eigenvalues converge

faster. Smaller eigenvalues that correspond to the smaller

changes in the solution (signal power), have little changes

overall, and therefore, not in the required precision. Hence,

it is not important to wait for them. One could visualize the

adaptation of τ to accommodate for λ, because, if (2) is stable

for one set of τ , it is stable for all positive τ .

Another way to understand the ODE of the linear equation

solver as a dynamical system or fully coupled filters, is

typically as a set of low-pass filters. Figure 4 shows the

response of the network to a chirp input, sweeping between

frequencies from 1Hz to 20kHz over a time duration of 1ms.

These approaches give a new way of approaching the solution

of linear equations as effectively filter design, consistent with

an approach typically seen in control system implementations.

The dynamics of the output at one tap show the higher

frequency components being attenuated, which is consistent

with low pass behavior.
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Fig. 4. A chirp input of 20mV offset about 1.25V is applied as the b(t) vector
for a set of currents to the 4x4 OTA network structure. The output response
is shown, where one could observe the higher frequencies being attenuated,
thereby effectively behaving like a Low-pass filter. The linear equation solver
can be described as a filter response, thereby connecting to control theory and
filter design concepts.

IV. LINEAR EQUATION SOLVER ARCHITECTURE

COMPLEXITY

Digital systems utilize a number of techniques for solving

linear systems based on a range of potential applications. The

complexity for solving diagonal matrices, whether by analog

or digital techniques is similar. Upper or Lower diagonal

matrices (e.g. L or U) can easily be solved by analog tech-

niques, linearly propagating each of the results in a similar

fashion for a digital solution for L and U, retaining the

typical 1000× improvement for an analog system over a digital

system (e.g. [17]), which turns out to be a similar complexity

for a Vector-Matrix Multiplication (VMM). These operations

(analog or digital) are O(m2) in area and total operations for

mxm matrices when only considering computational elements,

and for full architecture analysis [18] with communication /

memory access, requiring (at least) O(m3) Area–Delay and

Power–Delay products.

The remaining question is comparing the analog computa-

tion to the linear solution using Gaussian decomposition of

L and U or finding A−1. These digital computations require

O(N3) operations. The analog techniques closely resemble

iterative matrix solutions [15]. The relative scaling question

for analog iterative techniques is eigenvalue spread with in-

creasing number of nodes, which in turn, is related to the

propagation of the resulting iterative outputs. The particular

method highly depends on the application, as the computa-

tional complexities are similar in each case.

These computational comparisons make some particular

assumptions. If application comes from a directly solvable

physical system (e.g. PDE computations), one would utilize

those more natural techniques for that application as they

already benefit the analog techniques. Both analog and digital

have similar tradeoffs for sparse computation, particularly

with configurable analog capabilities [19]; therefore sparse

computation has similar effects on both approaches.

V. ANALOG NUMERICS OF ITERATIVE LINEAR EQUATION

SOLUTIONS

For digital numerical analysis of linear systems, the con-

dition number of A determines the discussion of numeri-

cal accuracy. The condition number of A is related to the

ratio between the largest magnitude (λmax) eigenvalue and

smallest (magnitude) (λmin) eigenvalue of A, demonstrating

the eigenvalues spread. The larger the condition number, the

higher required starting precision is expected to counteract the

amplification of numerical errors in b. The metric is a loose

bounds on the error propagation for numerical approaches.

One might imagine that A with a moderate or high condition

number would be unusable for analog techniques. Typical

practice assumes that one loses the number of bits related

to the log2 of the condition number of A; such loss of

precision makes analog techniques nearly infeasible. This

assumption needs to be revisited both for the actual nature of

the computation, as well as within the framework of analog

numerical analysis techniques [1].

The maximum gain from b to x is λmax/λmin. Higher gain

is one reason for considering a decrease in precision for the

operation, particularly when using floating-point arithmetic.

Gain of errors in the input (b) or the eigenvector projected

input ( E−1 b ) would have a similar issue for the worst case,

and therefore either formulation will help. Gain, like all analog

gains, will raise up signal and noise.

VI. SUMMARY AND DISCUSSION

The paper discussed solving systems of linear equations

using analog computation transforming the linear system so-

lution method to a set of ODEs. The technique is related to

iterative digital methods for solving linear equations. These

approaches extend the energy efficient properties of analog

computing initially shown for vector-matrix multiplication to

solutions of linear systems, where the vector-matrix multipli-

cation happens through arrays of TAs.

The paper also starts analyzing the algorithmic issues and

analog numerical analysis issues of this approach. The dy-

namics and convergences are studied for different matrices,

through experimental measurements of the matrix output so-

lutions from hardware. Analog solutions of linear systems

typically is the most challenging algorithm for analog com-

putation [1]. Hence, finding analog algorithmic solutions for

linear systems opens the entire range of analog computing

towards high-performance computing. This approach allows

for solution of any positive definite A matrix through the use of

OTA devices, and not limited as in resistive coupling networks,

originally proposed in Hopfield networks [3], [4] that could be

built using two-terminal nano devices like memristors [12],

[20], [21], with simple transformations on the set of linear

equations (e.g. multiplying by AT ).
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