This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

VMM + WTA Embedded Classifiers Learning
Algorithm implementable on SoC FPAA devices

Jennifer Hasler, Senior Member, IEEE and Sahil Shah

Abstract—This paper presents a learning algorithm for a VMM
+ WTA classifier one layer architecture on a Large-Scale Field
Programmable Analog Array (FPAA). The technique enables
opportunities for embedded, ultra-low power machine learning,
techniques typically considered for large servers. To develop this
training algorithm, the paper starts by understanding funda-
mental equivalent transformations for VMM +WTA classifier
networks. A VMM + WTA structure can exactly compute a Self-
Organizing Map (SOM) or Vector Quantization (VQ) operation,
in addition to other transformations. SOM, VQ, and Gaussian
Mixture Models (GMM) learning concepts are utilized for the
training algorithm of this single one-layer network. An on-
chip clustering step determines the initial weight set for ideal
target and background values. Null symbols are important for
the algorithm and are set from midpoints of the target values.
The results are shown both as numerical simulation of the
VMM+WTA learning network, illustrating some numerical ODE
simulation limitations for this problem, as well as experimental
measurements implemented on an SoC FPAA device.

This paper focuses on training of classifiers for a single
layer of a Vector-Matrix Multiplier (VMM) and a single
layer of a k-Winner-Take-All (WTA) [1], built on our original
foundational work on VMM + WTA classifiers being demon-
strated experimentally as a universal approximator [2], and
recent work demonstrating a single engineer-tuned example
of wordspotting classification in the SoC large-scale Field
Programmable Analog Array (FPAA) [3]. The experimental
demonstration of the universal approximation concept [2],
based on Maass’ theoretically description a decade earlier [4],
encourages the use of one-layer (or multiple layer) networks
for embedded low-power classification. A universal approxi-
mator is a classifier that can represent any static function (with
infinite resources) in a single layer of processing.

An automatic technique of learning the VMM classifier
weights based on representative data sets is far preferred to
hand tuning a particular classifier for a given application. This
work develops a VMM+WTA training algorithm capable of
the universal approximator functionality, and demonstrating
the learning both in numerical simulation as well as exper-
imentally in an SoC FPAA. The algorithm was developed
through understanding the connections of VMM+WTA clas-
sifier to Self Organizing Maps (SOM) [5], [6], [7], Vector
Quantization (VQ) and Learning VQ [8], [9], [10], [11], [12],
[13], Gaussian Mixture Models (GMM) [14], and Support
Vector Machine (SVM) capabilities [15]. Training multilayer
networks, typically required for universal approximation, often
has training issues due to error estimations in all but the last
classificatier layer; avoiding this issue is central is most neural

The authors are with the School of Electrical and Computer Engineering
(ECE), Georgia Institute of Technology, Atlanta, GA 30332-250 USA (e-
mail:jennifer.hasler @ece.gatech.edu).

FPAA
Fabric
SRAM
Input
l Analog ASP <
- & Classifier
Target(s
Processor|
he]
: LR) e o0
T s B EEvMm
= £ El B £
Via ™ § x(t)’é % Qo 2
= g sl 2 =
- L
Constant Q cee e
BPF, Amp
Detect, LPF L Ll L
u(t)¢ m features L ¢ n nulls ¢
k-WTA
m outputs L ¢ n nulls ¢ (m;)r Y t
¢ y(©) Yo
(b)
Fig. 1. On-chip classifier training algorithm on a Large-Scale Field

Programmable Analog Array (FPAA). (a) Block Diagram for the on-chip,
SoC FPAA based learning algorithm for the Vector-Matrix Multiplier (VMM)
with dynamic k-Winner-Take-All (WTA) Embedded Classifier utilizing the
on-chip 16-bit microprocessor (uP) and SRAM. (b) Block diagram for the
Vector-Matrix Multiplier (VMM) with dynamic k-Winner-Take-All (WTA)
Embedded Classifier [1], including the front-end circuitry, VMM (from x(t)
— u(t), k-WTA (from u(t) — y(t)) blocks, and training signals on desired
outputs (g(t)). We choose an acoustic demonstration problem utilizing front-
end circuitry of constant Q filters, amplitude detection, and post filtering
setting up the inputs classification.

network (NN) [16], machine learning [17], and deep learning
theory [18].

This paper focuses on the algorithm implementation using
the SoC FPAA IC [3], and classification will focus on audio
classification tasks as a representative, although not exhaustive
sample; we easily see these approaches extendable to sensor,
vision, and communication tasks. FPAA devices enable the
factor of 1000 x improvement in energy efficiency over custom
digital approaches [19], as well as improvements in area
efficiency. Improvements over commercial FPGAs and related
hardware is even more significant because of memory issues.
The companion paper explaining particular hardware details is
presented as part of this issue [20], and summarized in Section
II. Recent FPAA devices utilize on-chip pP processors, even
with programming in operation mode, one can utilize these

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Constant Weight Offsets

on Emerging and Selected Topics in Circuits and Systems

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

Constant Weight Gain + Offsets

X (input) X (input) X (input)
(@ o o |e o o (@ o o
Wi +Wy > z > Wy —>> 2 > aWi +Wp) > Z >
| | 3 | | 3 | | 3
a [} a
Wr+Wgo > é »g Wy —> % —)g a(Wy + Wp) > é)g
° 3 El ° g 2 ° 3 El
® = L] = [] =
> E > E * E
Wpnh+Wo > > > W > = > aWp+Wo) > = >
Euclidian Distance Metric Linear Metrics with Offsets
x (input) X (input) X (input)
‘ e o o ‘ ‘ e o o ‘ ‘ e o o‘
(x-W)T(x-Wp) > 2 > 2xTW, +W[TW,| > Z B Wi+by > ; >
| | 3 | | 5 | | 2
o a a
(x-Wy)T(x-Wy) > o —>g 2xTWH + WyT Wy > o —)%A> Wotbp > —>g
° 9 2 \ ° & 5] P & E
° g = ° E = ° E =
: E ° E * E
(x-W))T(x-Wp) > > > 2XTW + W TWhil 5 > Wh+by, B = >
Constant Input Offset Linear Metrics with Offsets) Monotonic ()
X (input) + X x (input) x (input)
|o o o ‘ o o o‘ ‘ e o o ‘
W —> 2 = Wi +x0TW| > ; > Wi +bg »(: » ; >
| | g | | g | | 3
[} a (e}
Wa > 5 > 9 Wy +x0TWy > - »g Ws + by +@—> S »g
° g] ° & 2 ° & 2
° e = ° & - ° &
> E ° E ° E
Wi, > > > W +x0™Wp > =2 > W +by)@—) z >

Fig. 2.

Ilustrating mathematical reductions possible for WTA classifiers. We assume the WTA classifier has sufficient precision for its comparisons. Constant

Weight Offsets: Transforms to just VMM weights. Constant Weight Gain + Offsets: Transforms to just VMM weights. Euclidian Distance Metric: Transforms
to linear VMM metric with particular offsets. Constant input offset: Transforms to linear VMM with weights with offsets. Monotonic f(): Using a monotonic
function (e.g. (")) after the linear VMM computation with offsets results in a reduction to a transformation of a linear VMM with weights and offsets.

features for on-line learning [3]. Given this framework, we will
focus our on-chip learning for this system to involve training
the classifier over a single statistical presentation of the data,
or a single epoch, and then adapt the weights after each
presentation (where the chip computes the error metrics, etc.).
The input comes from a parallel (12 device) bandpass filter
bank, resulting amplitude detectors, and filtering, enabling
using a range of recorded and realistic auditory datasets
(Section III).

This paper demonstrates the first on-chip learning algorithm
for an on-chip FPAA classifier. The focus of this paper is on
how to develop this on-chip learning algorithm, leaving the
discussions about the particular application capability to their
own focused discussion. Section I will describe the mathemat-
ical framework for the VMM + WTA classifier. Section II will
summarize the SoC FPAA device aspects that are important for
this implementation. Section III will describe the application
and dataset used to demonstrate training this VMM +WTA
classifier. Section IV will describe our VMM + WTA classifier,
the VMM+WTA learning approach pointed towards an FPAA

device. Section V summarizes our discussion.

I. PROPERTIES OF THE VMM +WTA CLASSIFIER

The WTA circuit [1] eliminates the multi-input common-
mode signal, resulting in similarities between multiple
classifier layers, similarities that are encapsulated in the
VMM+WTA classifier. Building a VMM+WTA classifier
mathematical framework requires understanding mathematical
reductions of classifier layer(s) to this VMM+WTA block,
enabling development components of a VMM+WTA learning
algorithm.

Figure 2 shows graphical illustrations of these mathemat-
ical principles, particularly the mathematical simplifications
from more complex to the basic VMM + WTA classifier. A
mathematical framework to utilize to allow for transformations
and simplifications that will reduce system complexity where
not decreasing functionality as well as give a framework to
understand potential learning algorithms for this system.

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

A VMM is the product of an input vector, x(¢), and stored
weight matrix, W, giving the output vector u(t),

u(t) = Wx(t). (1)

FPAA routing fabric performs energy-efficient (and exten-
sively modeled) VMM computation [39].

Typically the difference of the inputs (typically to the largest
input) into the k-WTA will undergo a high-gain transforma-
tion. The k-WTA allows for at most k winners. The particular
output transistor current provides a non-zero confidence for
each of the outputs, resulting from the significant input met-
rics. The digital outputs are achieved by scaling the output
thresholds of the many-input comparison stage. The WTA
computation compares between all of the input signals; one
can find local WTA type operations (e.g. local spreading
of inhibitory signals), but won’t be the case treated in this
discussion.

Limitations of the WTA circuit might have some prac-
tical limitations on the resulting classifier, and its analytic
modeling. The WTA circuit input (to output) current gain
is finite, limiting some approximations when input metrics
are sufficiently close. We often need higher gain for the
typical situation when all inputs have a common baseline
(simplifying the common mode rejection) because we need
to find smaller differences between inputs. The noise of the
input signals as well as noise generated from the WTA circuit
is also important. The following subsections go multiple key
simplification properties.

A. Weight Offset effect on VMM+WTA Classification
For VMM weights transformed with the resulting output as

W —- W + Wy, u=Wx + Wyx,)

respectively, where W is a matrix of positive components that
has identical valued rows (e.g. all values of W are equal),
and the second term (Wx) would be identical for all inputs.
Because the WTA differentially compares the resulting inputs,
the same value applied to all inputs, even a time varying value,
has no effect on the resulting classification. Similarly one can
prove that if we scale the weights all by a constant value.

This property allows entirely positive computation weights
without any theoretical loss of behavior, requiring half of
the VMM FG devices. This property eliminates the need for
single-ended to differential-ended conversions. This property
enables learning algorithms to only require positive weight
changes (e.g. only hot-electron injection [23]) assuming that
the weights in the same columns (for a same input) all increase
by the same amount.

B. Input Offsets Effects for VMM +WTA classifier
For inputs transformed by a shift in the input vector, x,,
X = IX + X,, u = Wx + Wxqg, 3)

resulting in a constant term for the k-th input into the WTA
as wi ! xq. Either one can compensate by a separate constant
per row to equalize the differences in wi’xo (e.g. adding

current / element), or constrain this metric in weights to be
constant. This result enables unsigned-only inputs (non-zero dc
bias point), while varying around a constant unsigned level,
for both computation and training. The unsigned (i.e. positive)
input signals for a spectrum classifier structure reduces the
complexity of the VMM infrastructure.

C. Egquivalence of Euclidian Distance and VMM Metric for
VMM+WTA classifier

Starting with a typical Euclidian distance metric

Uy = — Z () — wl,k)2 “)

l

as the input into our WTA block, where z, is the k-th value
in the vector x, and wu; is the 1-th value in the vector u. We
use a minus sign to convert between finding a winning metric
versus finding a minimum value typical of VQ [8] and SOM
[5] networks. Expanding out the square terms gives

Up = —xTx + 2Wka — WkTWk 5)

where we notice that for all values of k, x7x is the same
value added to each metric, and therefore can be eliminated.
Therefore, the WTA compares with the metric

Up = Wi L X — (wkTWk) /2 6)

Because the offset is critical for equivalent operation with VQ
/ SOM networks, one typically adds additional currents to
equalize the differences in wi I'wy. This solution brings the
theory used for VQ, as well as associated theory for SOM,
into the operation of this classifier’s learning / training.

D. Abstracting away Ildentical nonlinear WTA input functions
to WTA

Having a monotonic function, f(yy), for all k inputs into the
WTA, does not change the classification function. Assuming
high enough gain, the resulting monotonic function does
not change the relative size of the incoming signals; even
though transistor gain typically is sufficient, in practice the
gain required should be taken into account. The practical
implication of this result is looking at metrics, say as those
used for bump regions

U = exp <Z o (z — wl,k)2> (M

l

often resulting in the computation of a product of input signals
from the guassian functions. As a result of all elements having
the same exp() nonlinear function, we can reduce the resulting
input to the WTA block as

up =y oy (z — wi)? @)
I

This case returns the VMM block mentioned before. For
arbitrary distributions, we will need additional terms for the
resulting input power variances; an alternate way of handling

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

SoC FPAA FPAA Fabric Array A Bus Lines
SRAM @ e OND Vf‘? ,,,,, CAB. :
Program: 16k x 16 @ : ‘
Data: 16k x 16 e ! .
MSP430 @ 0§ | |
Open Core @ ;: 3 3
Processor @ @ 0% ! !
=][a a]lo]o][a] - 3
=x 1
% SRR NGRN N. 1
Ia R e G :
o 53 [0][a][a][p][p][a][a][p][D][4] | |
PP g)
Registers| G; g @ @ @ @ @ iomlput;l]ionsl 3 ". !
=. nalog 0C 1
=7 @@@@@ * ; 000—0 !
Lo, 2] a [o][oa]ln o]0 RALETILA) SR
PSP;tI l:og: I;CV @@@@ B Bus Lines
orts am
’ [al[alp][p][a][a][p][D][A]
CAB / CLB Lines IMQE
S :’””611113”””7617\1]37: -
3 \5 LI v\\%(L2 100kQ
CBlock: ¢ . ‘ 2
CLB Routing £/ | . o
— to CABs | 1| * \(GND ‘\(GND 1 ocal
HHR D 53
e e ‘ Vi (V)

Fig. 3. Top Level View of the SoC FPAA IC, focusing on components used for the VMM+WTA learning application. The SoC FPAA has 98 Configurable
Analog Blocks (CAB) intermixed with 98 Configurable Logic Blocks (CLB) in a Manhattan-style routing architecture. The manhattan routing utilizes connection
(C) block routing and switch block routing to reach the CAB / CLB local routing (crossbar) fabrics. The routing elements are Floating-Gate (FG) devices,
capable of storing voltages outside of the power supply rail, providing a single-transistor rail-to-rail switch.

@

Vector-Matrix
Multiplication
(VMM) +
Winner Take All
(WTA)

property allows the VMM+WTA classifier to perform SOM
[5]1, [6], [7], GMM [14], and SVM capabilities [15].

‘ m
1! Order

‘Amplilude‘ m
| LpF

‘ Detect ‘

At)n Output

C4 BPF

100Hz to 4kHz
Constant Q =2
Exponential Spacing

m
Input C4 BPF

8Hz to 4kHz
Constant Q = 2
Exponential Spacing

25Hz corner

II. SoC FPAA HARDWARE OVERVIEW

Vector-Matrix
Multiplication
(VMM) +
Winner Take All
(WTA)

15t Order ‘
LpF |

‘AmpliludC‘
‘ Detect ‘

Aﬁ" Output

Figure 3 shows the top-level overview of the SoC FPAA
IC. We summarize the important operational aspects for the
learning application; more detailed information can be found
elsewhere (e.g. [3]). The SoC FPAA IC utilizes a Manhattan
FPAA architecture, including the array of computation blocks
and routing, composed of Connection (C) and Switch (S)

< 5Hz corner < 5Hz corner

Fig. 4. Acoustic low-power classification architecture compiled on our
SoC FPAA device. Upper plot: Block diagram for analog auditory word
classification, in a similar representation used for our tool framework, using a

BPF with center frequencies that are scaled evenly on a log-frequency scale
between 100Hz and 4kHz with a nearly constant Q (Q~2). Lower plot: Block
diagram for classifying acoustic sensor signals for field tested devices being
turned on and off. This system has a similar architecture, but with significantly
lower corner frequencies (from 8Hz to SKHz) to detect the majority of signal
energy of these mechanical structures.

these issues is utilizing nulls to sharpen the resulting distribu-
tions as required for different o values. When we generalize
values for oy 1, typical for a GMM metric as

Uup = exp Zal,k (@1 — wl,k)2 ®)
1

which then reduces to comparing metrics

up = Z o1k (1 — wik)?, (10)
]

that requires handling nonlinearities (quadratic terms), or ad-
ditional metrics (nulls) to deform the decision boundary. This

blocks. This configurable fabric effectively integrates analog
(A) and digital (D) components in a hardware platform easily
mapped towards compiler tools. The switchable analog and
digital devices are a combination of the components in the
Computational Analog Blocks (CAB), in the Computational
Logic Blocks (CLB), and in the devices in the routing ar-
chitectures that are programmed to non-binary levels. The
architecture is based on Floating-Gate (FG) device, circuit,
and system techniques. VMM computation in routing fabric
is enabled by this unique routing device. Integrating these
capabilities with an on-chip microprocessor (©P) component
(open source MSP 430) and 16 on-chip 7-bit signal DACs,
completes the picture that this FPAA is a SoC computing
device, not just an analog signal-conditioning device. SoC
FPAA has dynamically modifiable routing fabric using shift
register control signals, directed by locally routed signals in the
fabric, to rapidly between programmed aspects . The approach

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

enables a configurable scan chain throughout the SoC FPAA
fabric.

SoC FPAA devices enable the factors of 1000x computa-
tional energy, and 100X area, efficiency to comparable digital
computation, in a way that frees application engineers from
custom IC design, similar to FPGAs for digital applications.
Implementation of custom ICs, particularly analog system ICs,
takes years of development, requiring a large investment in
time and highly specialized (and therefore expensive) people,
that easily can miss a potential commercial or research target
window opportunity. The heavy use of FPGAs, GPUs, and
processors in digital processing directly comes from this
reality for digital systems. FPAAs tend to be competitive in
energy, area, frequency response (scaling paper) to custom
devices, and the improvements from FPAAs to custom analog
for a wide range of applications is less than the improvements
from FPGAs to custom digital. FPAA also enables the dream
of analog circuits, not to mention analog signal processing,
implemented as reusable IP blocks, enabling a designer’s
circuit or system creation to be used by engineers. The
capabilities of design tools [42] as well as initial analog
computing development [43], are essential parts of these
emerging capabilities. One expects learning classifiers, with
all of the interest in learning networks [17], [18], would have
high demand. These opportunities will grow as FPAAs, and
likely a family of FPAAs, become available.

III. EXAMPLE DATASET FOR CLASSIFICATION LEARNING

This section discusses the dataset and experiment used
for demonstrating the learning process for this classification
structure. Figure 4 shows a block diagram of application
dataset that we will use to develop our training algorithm. The
dataset was obtained by Lincon Labs to measure classification
for the Nzero DARPA program. The low-power systems were
required to classify acoustic (and other) signals after two min-
utes of data was presented. This problem has continued to be a
challenging problem, with other groups just barely classifying
the most elementary situations after years of effort [40]. This
dataset is modified to have unto twenty, 1s sound sources, in a
two minute acoustic window. The new classification problem
is significantly harder than the original problem, and is learned
and classified in low-power hardware.

For the learning investigations, as well as data analysis, the
datasets were processed through a constant Q filterbank (from
1.6Hz to 5KHz), amplitude detection, and LPF (5Hz) structure,
similar to Fig. 4. This technique provides a good representa-
tion of acoustic signals, similar to human cochlea systems,
and retaining desired acoustic time-spectral information. This
circuit approach has been efficiently implemented on the SoC
FPAA device previously (e.g. [3]) and is utilized again for
this discussion. High-level MATLAB / Scilab level modeling,
based on experimental measurements, closely agrees with
these measurements, and can be nearly interchangeably used
for these approaches. These spectrally separated outputs were
recorded to be used for theoretical and experimental devel-
opment. The input acoustic signal, going through a typical
input ac coupling, was converted from pressure as 40mV /

Pascal (from the original measurements), similar to the front-
end sensors in the testbed measurement (which include high-
pass corner frequencies around 20Hz).

Figure 5 shows the 16 output signals from the bandpass
filter block for generator datasets in both urban (concrete) and
rural (dirt) conditions, showing the strong narrow response just
under 100Hz. Rural datasets have higher attenuation than the
corresponding urban datasets, probably because sound travels
better through concrete than dirt, often resulting in narrower
spectrums for classification. Car datasets have a wider band
of higher frequency signals, differing its results from the
truck and generator signals. In these figures, the straight-
line elements are the extracted background noise level (with
occasional discussions by those setting up the measurements)
obtained from the quiet urban and rural datasets. Signal below
the noise could still be extracted using techniques other than
simple amplitude metrics.

The task will learn the correct classification of one of these
single datasets of steady-state acoustic signals. The dataset
uses multiple signals and resulting background that is far
more challenging than originally proposed for training and
classification. The test input is composed of signals from
urban environment for 3 objects and background ’quiet” sound
setting a typical background noise constructing a realistic
labeled data set. The resulting blocks of datasets give us the
opportunity to generate a wide range of labeled datasets. These
nulls in the space highly reduce the number of false alarm
cases. The classifier files are available on our GT website!.

IV. VMM+WTA LEARNING AND COMPUTATION

This section develops a batch on-chip learning algorithm
based on utilizing the connection between a VMM+WTA
classifier and VQ, SOM, GMM, and SVN classifiers (Section
I), and experimentally implemented on the SoC FPAA IC
(Section II) as well as in numerical simulation. The application
dataset was described in Section III. The VMM + WTA gives
a structure quite similar to VQ / GMM although with lower
complexity, because the input metrics only require a VMM
operation implemented in the routing fabric of the SoC FPAA.

This work demonstrates the first embedded classification
algorithm for this ultra-low energy VMM+WTA classification.
The input is processed through a 12 BPFs log-spaced from
1.6Hz to 5kHz range. The hardware demonstrates the entire
end-to-end system operating with less than 25 W (measured)
average power. These acoustic classifier measurements are
consistent with other acoustic classifier measurements, such as
command-word classification [3], or knee-wrap classification
[44]. We calibrate out some mismatch from the front-end BPF
filter and amplitude detector structures (as in [3]), precisely
programming the bias currents, as well as account for capacitor
mismatch.

This rich structure of the VMM +WTA classifier points
towards some potential training / learning algorithms. We
develop a supervised approach for VMM + WTA training,

IFiles can be found on the website: hasler.ece.gatech.edu
2We will make available our files for this classifier after acceptance and
publication of this paper on our GT website.

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

House |
—l()}m —S}m Cel}ﬁer 51}1’1 1()}m Rural
o [e) o O (on ground)
Truck/Gen Car
location location
8.38m
o
‘ 1.6Hz]
8Hz
5 |
=
9]
2 40Hz
O
2 |
E 0.5as
£ 20mV
) I 2
= 200Hz
1kHz
- - ; . SkHz
0 5 10 15 20 25
Time (s) Generator
§ Center ‘ o o ‘
£ 7M
£ o o
£
<
. . .
L T T T
g ImVg 5 o o E!
< L L L 9
o T T T
EmvLE -Sm o o o]
e " o °© ° ©° o o
£
<
N l i i
E IlmVE 10m o o o) o il
E. °© o o 4
=
5 ImV : : :
El -10m
£
£
< £ L L L
001 0.1 1

Frequence Taps (kHz)

10°

\ Building |
—l?m —S}m Cer}lter 5?] 10}m Urban
o o (¢} o O (on ground)
Test Item
location
10mV,
E 5m "o 070 P o
Z imvl © © o o]
£ 1mV ° e} 1) o
< o) . \
g 10mV ! “I !
S 10mVEe Center ° o o o o
E o o o
T ImVE o ° ° o g
8 5 © ‘ ‘ g
10mV, : : :
g 10m o o o - o
2 ImVe 0 2 ° o o 4
< Q © L L L
3 10mV 5 T S 3 T
= - 5 ° ° °© o o o o
£ ImVi o o o E
< o))) e
» 10mV, T T T
E -10m o ° o o
= o © o
£ ImVg ° o o 4 o 1
< © L L L
0.01 0.1 1 G
enerator
Frequence Taps (kHz)
< 10my Center 5 o o o o ® ' 4
£ o
S ImVg 0 © (R
< o [e]
| | |
10mV,
$ 0 sm ‘ o o 279 5 o 5 5 o
S ImVE o * ° 4
< o °
10mVg> 1 == 1
= -5m ° o] (e} o o o o ®
ImVE o © © o 4
o | | |
10mV; T T T T
3 . o o © o o o ° o
T omvg Mo q
(o]
10mV i = lo i
-
] -10m o © ©° © 0o o o o
E ImVe 5 o 4
Q © L L L
0.01 0.1 I Car (idle)

Frequence Taps (kHz)

Fig. 5. Analysis for an acoustic field test data developed by DARPA for acoustic classification in both for rural and urban condition datasets. We summarize
the experimental conditions for the acoustic measurements for both the rural (dirt) as well as urban (concrete) situations. We are showing sample curves from
the datasets we analyzed using circuit modeled MATLAB data set (similar to what is used in our Scilab design tools), including filterbank output from the
rural generator, as well as input classifier results from a rural truck data set, an urban generator set, and urban idle car dataset. Solid lines represent our
extracted background levels obtained from quiet datasets provided, showing significant signals for classification as well as a sense of how to pattern signals
for training and recognition. The generator seems to have very strong signals just below 100Hz with significant signals around it. For the idle car data, we
see far more higher frequency signals to distinguish its behavior. For rural signals, we see a stronger single peak frequency (or small group of frequencies)

due to the higher attenuation through a dirt (rather than concrete) environment.

where the resulting output classifier has multiple outputs that
are uninteresting for further stages, which we will identify
as null outputs. Figure 7 presents the expected centers, nulls,
and decision boundaries for this problem in two dimensions.
These outputs, even for labeled training sets, would not have
any identification of these resulting output, and we would
want to fill the resulting space. Figure 6 gives the block
diagram for the weight update algorithm, including the on-
chip metric calculation and weight update per epoch. This
discussion assumes a labeled dataset for the desired features
(only) indicating the duration that they are correct.

The following subsections will demonstrate the resulting
VMM+WTA learning classifier. The test input will be 110s of
data from the dataset mentioned in Section III. The first sub-
section walks through the VMM+WTA learning algorithm to
be implemented on the SoC FPAA IC. The second subsection
illustrates many of the classifier behaviors through a careful

MATLAB level simulation learning the referenced data set.
The third subsection shows experimental data taken from the
SoC FPAA IC showing on-chip preprocessing, classification,
and learning using this data set.

A. VMM+WTA Learning Algorithm

The learning algorithm takes inspiration from a VQ super-
vised algorithm [8], [9] when the desired outputs occur, and
from an unsupervised clustering algorithm [5], [6] when we
have no desired output. For our training sequence, we will
repeat the resulting data set, typical of training sequences;
each sequence would be defined as an epoch of data; similar
approach could be taken for data that is varying (and labeled)
assuming the statistics are similar between each epoch. The
network trains in batch mode taking data from each epoch
and using it to improve the resulting weights for the classifier;
this approach allows for occasional reprogramming (or in this

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

Dataset creation ("Quiet” and three urban data)

Initial ﬁé&npyte Compute VM&HQV 1| | Compute Subband Computation for VMM input
. idpoints + e e
Start 3> clstring [~ iy noise > for an Weror | Initialize the Weights by clustering, midpoints
x and y fl .
and w) oor Epoch program a: Compute VMM + WTA classifier on dataset
Y Y Y v Wb A Compute Error Metrics
Wi Wp, Wy Wy Ws, We W7, Wy WY . . .
if error is not small enough, jump to a
(a)

(b)

Fig. 6. Details of the FPAA learning algorithm for VMM+WTA classifier. (a) Operation of the uP for the VMM+WTA classifier learning algorithm, including
the initial weight clustering as well as error-driven weight improvements. (b) Pseudocode description of the VMM+WTA learning algorithm.

Fig. 7.
the desired targets and null signals, in this two-dimensional projected space.
We illustrate the 3 classes, 3 midpoints for the 3 classes, and the background
noise level nulls with an 8-output VMM+WTA classifier.

Tllustration in two-dimensions, of the decision boundary created by

case incrementing or decrementing) the FG weight values.
Figure 6a shows a block diagram of computations for the
weight update procedure, both for the first data epoch, and
for additional iterations until convergence is reached. Figure
6b gives a pseudo-code description for the learning algorithm.

The first epoch is handled as a special case to develop good
initial conditions for the target and null weights. The target
weights train on the input data stream based on the training
signals, clustering each target weight based on the center
position of the resulting input (within an additive constant)
for the starting weight values for the desired output signals.
We assume we have m target weight values which are set by
the m training signals. Often GMMs start by clustering their
initial data for their initial conditions for learning.

We compute as many null vectors as possible after comput-
ing the starting target weight values using the starting position
for the null vectors as the midpoint between all target weights.
The total number of null vectors is (m/2) (m-1). For problems
where we have no signal and just baseline background noise,
we want to have at least one null at these levels.

In cases with more midpoints then possible nulls, one com-
putes the distance between centers and uses the centers farthest
away from each other. Sometimes centers are close to each
other; in a case with four centers in a square in 2 dimensional
space, one has two nearly identical / redundant midpoints

in the center. After computing these weights, one runs the
input signal into the resulting classifier; often, the weight
initialization puts weights near the desired target therefore we
adapt from a good initial condition.

For remaining epochs until we see negligible change in
the network error, which can be generalized to a wide set of
measures used in network training, we modify the resulting
weights based on the resulting errors in the solution. The
algorithm for target values will follows a typical VQ learning
with weight decay terms following circuit dynamics for finding
centers (e.g. [13], [22]). We want a cluster of nulls to fill the
space given the total number of nulls available; null outputs are
unsupervised adaptation. Nulls should not go to an unbounded
W value (which would swamp out anything else); need similar
strength of target and null blocks. The nulls result in different
o for each weight vector in a typical GMM type calculation.

The measured errors result in a modification of the cluster-
ing algorithm in directions to correct the resulting errors; we
iterate our batch learning for the next step in W per epoch
resulting in changes from the original clustering that hopefully
gives a good initial starting condition for the classifier. The
amount of change in the weights should be proportional to
the percentage of errors in the presented data epoch. If 2% of
a data epoch have training errors, the weight correction should
be proportional to this 2% correction. We expect to see errors
in the following cases:

o Target a should have been Target b. Add that signal as
a clustering term into Target b weights, and subtract that
signal as a clustering term into Target a weights.

o Null ¢ should have been Target b. Add that signal as a
clustering term into Target b weights, and subtract that
signal as a clustering term into Null ¢ weights. We assume
that the two coordinates are close in multidimensional
space compared to other coordinates.

o Target b should not have been activated (false positive).
This case requires negatively clustering the term into
Target b weights.

All of these terms are summed up, proportional to the length
of the input sequence, and then modify the resulting VMM
weight. Only the changes are needed to be computed.

B. VMM+WTA Simulation Results

We start by describing the resulting algorithm and show
results from a simulation model for a realistic situation. Then
we continue by describing the resulting FPAA (RASP 3.0)
on-chip implementation of the learning network for a 12input,

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

M WTA Inputs

S

o

I
5

H o

sindup vIm N
.

Q
Z
[}

9poase)) O]

Keiry
VIM

O
.
:
:

Q
o
=
<
5
<
Z

Fig. 8. Block diagram and resulting circuits for the VMM + WTA combined
block, typical of what we would compile for an FPAA device. Some of the
circuits could be modified (like the WTA components) depending on the
particular availability of components.

8output VMM+WTA block trained on learning to identify the
three different mechanical systems being activated along with
5 nulls symbols (3 midpoints and 2 background noise level) in
the resulting space. We first process the bandpass filter, ampli-
tude detection, LPF, and then subsample the resulting signals
to a 500Hz sample rate from the original 44.1kHz sample rate,
reducing the amount of computation going forward.

Initial investigations on the VMM+WTA learning classifier
started with computer modeled simulations, which is a typical
approach for early adopters to these techniques. Figure 8 show
the circuit block for the one-layer VMM + WTA classifier
block for N inputs and M outputs. The VMM+WTA modeling
is built as one equation for the VMM modeling, and three
vectorized equations for the WTA modeling.

The VMM voltage output to current modeling follows the
original framework shown for the VMMs of adaptive filters
elsewhere [26]. A VMM is differential input signal and single-
ended output current, with each output current term allowing
for four-quadrant multiplication due to the output bias current
(which is dependent on the programmed the weights). The
initial question is what is the resulting input range and voltage
input representation

V;j; = Viias + 2Vg, V;; = Viias — 2V, (11)
where the input, X, is represented between 1 and -1. The
resulting output current for a single node would be

Tout = Toias (WHe™Ve/V0 4o WemVe/Un) - (12)

exponential is Uz because we are biasing the source voltage;

we define a = V,,/Up, where typically, a < 1, setting the
input range of the input signals. Weight per stage is defined

Wt =1+ (w/2),and W~ =1— (w/2); (13)

where having baseline of 1 is always possible by defining Iy,

for a particular circuit. The output current gets summed with

other elements to get the resulting case for row k as

N
I = Ipias Z 2 cosh(ax;) + wg, sinh(ax;),
1

I~ Iigs (2N(1 +a’xTx) + Wsinh(ax)) , (14)

where W is a weight matrix, and I, and x are column
vectors. Analyzing around the cascade voltage sets the first-
state variable, by define 71 = CUrp /(N Ipiqs), and normalize
the voltage level by Ur to give

Tltfl—ltl +y =2(1 + a’x"x) + W sinh(ax)/N.

The VMM computation can be modeled through the nonlinear,
vector multiplication operation followed by a first-order LPF.

The differential equations for the WTA current conveyer
block finishes the classifier model. Setting « all equal to make
a more tractable form and simplifies the numerics. The first
set of ODEs for the WTA system state variables for position
k (V,) as well as the equation of the middle node, V., as

Co dVap
Io1 dt

L — ¢AV:/Ur (1 B refAva,,k/UT)

M
C. dv, o~ AV/Ur ZCAVG,,I/UT _1

2 15
Isoz dt (15)

=1

where I501 is equal to N Ipias, Vimar 1S the highest voltage
for V;, values after the DC shift, I,,3 is the bias current for
the constraining current source, and r = e~ Vao/Ur ig a
constant relating a coefficient related to biasing values around
their steady-state point. To build a polynomial model for
computation, as well as analysis, we define

Ay = eAVar/Ur 7 _ (AV/Ur o CaUT,TZ _C.Ur
Is01 Is03
resulting in the equation set
N
dAyg dz
Ta~g = Ykdr = Z(Ae =), 12 = > Ap—2, (16)

=1

We will assume the output termination has negligible dynam-
ics, where we can compare the resulting output current (value
for Ay) against a threshold (sign (Ak/(zl]il Ag) — Ath)),
where the threshold sets the number of k maximum winners
for this k-WTA circuit (a [is for a winning node, and a 0 is
for non-winning nodes).

The VMM+WTA classifier is trained on the 110s acoustic
dataset where a sound source of approx 1s would turn on
a particular time. The training should learn a classifier to
correctly classify these sounds. Figure 9 shows the results
from these closely modeled physical IC system. The network
measurements are shown after the training converged in five
iterations. The resulting simulation showed all classes were
correctly classified. The numerical simulations with the 5S00Hz
sampling rate was just at the edge of numerical stability, due to
some internal high magnitude derivates, illustrating the trade-
off comparison between the digital and analog computation of
these structures.

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

-’qg = T T T T =
EN 1R x. I
= 5t 1s
<
5 4 l N | m 4
n
é 3HM " L ‘J; ‘ 1, [3
= B I : I ‘ I ‘ I I

(I)I J_” |_| um_” | Low Null 2
é i I | |_| Hm_ﬂ |” |_|| ||_L0wNu111
g Midpoint null 3
8 [Midpoint null 2]
7, Midpoint null 1
8 OI [ﬂ_l_l H | H | | “Idle Truck
% H H H I_I_Idle Car
S | | |_|_|_|| | | H | ” | | |Generator

0 20s 40s 60s 80s 100s
Time

Fig. 9.

Realistic simulation of the auditory classification pathway with 12 filter bank inputs and amplitude detectors, and a 12 x 8 VMM + WTA classifier

block for measured test range data. The output measurement shows the output of the VMM, the computed metrics that are input into the WTA, and the raw
output of the WTA block. We built a random dataset by having one of a generator, idle car, or idle truck sound turn on for a short interval and classify the
resulting signal. Our classification accuracy was greater than 95%, where all of the errors are in predictive timing and issues in the ODE software modeling.
The accuracy assuming a minimum of 30ms timing, as dictated by the front-end structure (simple post processing) is 100%.

C. VMM+WTA Experimental FPAA Measurements

Figure 10a shows the high-level hardware level FPAA
implementation. The input data waveform was input using
an analog discovery (14bit, upto 100MSPS) [46], processed
through the initial subtending classifier, and then input into the
VMM+WTA classifier. Hardware demonstration illustrates the
close agreement between theory, matlab simulation. Figure 10a
shows the computation for the weight values (first iteration)
and the weight updates are computed through the digital
processor; the input signals come from multiplexed compiled
ADC and the target signals (digital) come directly into the pro-
cessor. We expect more optimal future architectures, although
this architecture is sufficient to demonstrate the hardware
capability, as well as the mixed-signal FPAA signal processing.
The computation of the weight updates for 8-bit signal ADC
that are accumulated, based on target signals, as required for
training, in multiple memory registers, transformed at the end
of the epoch into the resulting LSB changes for the 14bit target
value for the current, and therefore weight, measurement.
Figure 10c shows the VMM circuit topology used for this
classifier structure.

Figure 11b shows on-chip FPAA experimental measurement
for the learning and training of these networks. The input
dataset was to classified the combination of generators, idle
cars, and trucks in this environment. All learning and clas-
sification occurred on this dataset passing through the same

frequency decomposition stage as previously described. The
approach shows a sensor-to-classified signal processing chain.
Figure 11b shows the measured results of a single epoch after
data set training converged. The weights in Fig. 11b were the
trained weights for on-chip learning of this computation. Two
nulls are used (3-input and 3-three output single WTA device),
both starting around at the noise level of the classification after
the first epoch. Assuming a minimum time for any symbol of
40ms, the classifier correctly recognized every input correctly
with no errors.

We can add a constant to all the weights; therefore we add
the most negative weight change for all 8 weight vectors to get
a small, but positive increment. This approach works because
the number of learning iterations are small. The network
initialization starts with current levels small enough (e.g.
10nA), within a factor of 4-8 of the maximum value in current.
All programming steps are a small increasing step to every
possible weight, easily utilizing the on-chip, P controlled
programming infrastructure [23]. while still significant enough
to allow incremental injection.

V. SUMMARY AND DISCUSSION ABOUT THE VMM+WTA
LEARNING CLASSIFIER

We presented a learning algorithm for a VMM + WTA
classifier one layer architecture, an architecture known to be a
universal approximator. The approach starts by understanding

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

System uP Control

Y

‘ W or
1 C# BPF bank, 12 VI\;I;VHWTA 8 Metric | AW | Weight
c > nputs >
In——> Amp Detect, > g Inputs Calculation > Program
LPF outputs / Update
20kHz 25Hz) SNEEE
(a)
GND—“—onL GND—“—onL o0 o GND—“—onL
Vdd
| V2
5
£ GND—“—O{ GND—“—C{ oo o GND—“—C{
™
° ° °
Vdd o ° °
° °
_Yn

GNHHEL

[]
[]
[]
3
1
,j—L
uonendwo)) 9SO

‘ k-WTA computation ‘

(b)

Fig. 10. Details of the FPAA learning algorithm for VMM+WTA classifier
and its implementation on the SoC FPAA. (a) Block diagram similar to the
tool level description of the SoC FPAA learning algorithm. (b) Circuits for the
VMM circuit. Add current offset for the resulting offset; can have a constant,
so we are only adding positive quantities.

fundamental equivalent transformations for VMM + WTA
classifier networks; in particular, showing that a VMM +
WTA structure can exactly compute a SOM or VQ operation,
in addition to other transformations, enables utilizing SOM,
VQ, and GMM learning approaches for this single one-layer
network. The results are shown both as numerical simulation
of the VMM + WTA learning network, illustrating some
numerical ODE simulation limitations for this problem, as well
as experimental measurements implemented on an SoC FPAA
device [3]. This discussion focuses on classifiers with analog
inputs looking for symbolic outputs; issues around spiking
input networks requires different conceptual frameworks (for
example, see [24]).

A. Placing VMM + WTA learning classifier with other Batch
Learning Approaches

Developing the learning for the VMM + WTA is a combi-
nation of learning of adaptive filters and neural networks in
custom hardware [25], [26], [41], as well as learning for SOM
and VQ algorithms. A clustering step determines the initial
weight set for ideal target and background values; the starting
point for the remaining null symbols are set from midpoints
of the target values. The learning approach follows one aspect
of a traditional hardware learning seen for weight-perturbation
type algorithms [30], [31], [32], [33], [34]. in running an epoch
of the dataset after each change of weights. These approaches
differ in using he signals to compute a weight update, typical
of SOM and VQ type maps, to explicitly minimizing these
errors for each step, resulting in typically few iterations.
These concepts superficially relate to earlier learning SOM in

Xg Xg Xpg Xpp Xpp

VYV VYV YV YV Y o

217 (226 |22.3 [23.0 |23.7 [24.4 |24.3 (233 |23.7 [23.7|23.0 [25.7 | 30.9
207 [20.4 |24.1 (232 |23.1 (2255 |22.5 [23.6 |23.3 [23.4 | 24.1 [21.5 | 36.6 [§
20.7 [20.4 |24.1 (232 |23.1 (2255 |22.5 [23.6 |23.3 [23.4 | 24.1 [21.5|36.6

VMM Current (nA)

25 o mewm o oy o 8 o

20F 1

ICI U . IR

10F | .

0.5+ 1

o it g o N o o

0 10 20 30 40 50 60 70 80 90
Time (s)

Fig. 11. VMM+WTA classification of the acoustic classification task of a
series of s data inputs, identifying the presence of a sound source, whether
it be a generator, truck, or car. The classifier used a 12x3 VMM classifier
followed by a 3input, 3 output WTA. On-chip classification and training
used the on-chip 12-band frequency decomposition. The experimental data
measurements were offset to show the input signal, the WTA output (top
vector), and one WTA null (third vector) on the same plot. Assuming a
minimum time for any symbol of 40ms, the classifier correctly recognized
the results every time.

hardware for 2 layer networks [35], although different training
and network structure. Further, previous approaches mostly
showed training for an XOR problem or a few phase shifted
sine waves; our approach trained in a DARPA dataset modified
to identify these acoustic symbols present for a short time
(=~ 1s).

B. Computation required for VMM + WTA learning classifier

The equivalent digital computation of this classifier, be-
tween the bandpass filter operation as well as the equivalent
12x8 VMM operating at a slow rate of 200SPS (for this prob-
lem) is roughly 4MMAC (/s). A MAC unit operating near the
energy efficiency wall [19] will take roughly ImW of power,
consistent with the similar processing and energy requirements
of digital hearing aid devices. The resulting memory access is
likely a factor of 2 to 8 larger than this computation [28].
Implementation on an embedded processor, say that requires
250pJ/Op, typical of low power processors, would require
roughly 4-8mW for these numeric computations. A typical
ADC for this computation, such as ADI7457[29], would
require ImW at 3.3V supply to transform the resulting acoustic
signal to the digital processor. The required classifier levels
(23uW) are significantly less than the required, dedicated
digital computation; these energy requirements have been
consistent across multiple acoustic applications [3], [44], [45]
as well as for this computation.

One might ask what the maximum problem size capable
in a single SoC FPAA device. A network could be built as
a single layer network, or as a combination of layers; each
VMM+WTA classifier is a universal approximator for its input

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

/ output space. The maximum problem size depends on the
number of WTA stages and then on the number of synapses
and inputs. One can get between 1-2 WTA stages per CAB,
with 98 CABs on the IC. The current implementation uses
16 inputs per CAB, although this number can be increased
significantly by using the C block switches in addition to the
local routing switches. Configurable fabric can allow for sparse
patterns, which could potentially improve the computational
complexity as in digital systems; in this case, we look at fully
connected local arrays to provide one possible metric on this
design. Conservatively (just 16 inputs per block), one could
get roughly 200 WTA stages and 6000 synaptic (multiply +
add) connections, operating from bandwidths less than 1Hz to
greater than SMHz on this IC. The VMM computation would
be 30GMAC(/s) at SMHz in this case, requiring 3-6mW of
power.

One can extend these approaches with multiple devices.
Future SoC FPAA devices will likely enable an order of
magnitude more classification with specialized WTA nodes
directly compiled into the CABs. Further, future SoC FPAA
devices built in advanced technology nodes [27] would expect
a quadratic increase in capability (synapse, WTA outputs) with
process node (roughly 10x — 130nm, and roughly 100x —
40nm). There would be significant differences (improvements)
for data from scanned two-dimensional sensors (e.g. imagers)
that are beyond the scope of this paper

C. Energy-Efficient One-Layer Classifier Discussions

The VMM + WTA classifier enables a one-layer training ap-
proach, not only computes an equivalent computation, enables
an elegant and dense training approach, elegantly implemented
in FG-based FPAA approaches. The computation and resulting
learning removes the need for more complex GMM type
hardware [13], [14], [36], including those cases built as part
of machine learning approaches [36]. FPAA approach enables
these learning algorithms to be widely available IP blocks that
can be compiled on this and related family of FPAA devices.

This classifier system, compiled on this FPAA, is consistent
with the improvement factor in computation (measured in
equivalent multiplication and accumulate, or MAC, opera-
tions), is similar to systems developed for VMMs (custom and
compiled) [37], as well as other custom classifier networks
[2], [13], [14], [36]. The VMM+WTA classifier, being a uni-
versal approximator [2], can generate the same classification
functions as other Radial Basis Function networks, SVN,
or Guassian Mixture Model networks [13], [14], as well as
related algorithms [36]. This case shows a full system for an
embedded classifier structure, going from sensor input (audio)
to classified sound, and further, is experimentally demonstrated
in configurable analog hardware utilizing high-level design
tools.

D. Remaining open VMM+WTA algorithm Questions / Op-
portunities

Multiple open questions still exist for the VMM + WTA
algorithm, including questions of comparison of classification
on a wider range of application problems, such as speech and

vision, typical of classifier problems, and question of nulls in
terms of this learning structure. But this approach provides
further opportunities for learning systems, particularly on
configurable platforms.

REFERENCES

[1] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-
take-all networks of O(N) complexity,” in Advances in Neural Informa-
tion Processing Systems 1, Morgan Kaufmann, 1989.

[2] S. Ramakrishnan and J. Hasler, “Vector-Matrix Multiply and Winner-
Take-All as an Analog Classifier,” IEEE transactions on VLSI, vol. 22,
no. 2, 2014, pp. 353-361.

[3] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich,
S. Nease, and S. Ramakrishnan, “ A Programmable and Configurable
Mixed-Mode FPAA SoC,” IEEE Transactions on VLSI, vol. 24, no. 6,
2016. pp. 2253-2261.

[4] W. Maass, On the computational power of winner-take-all, Neural
Computation, vol. 12, no. 11, pp. 25192535, 2000.

[5] T. Kohonen, Teuvo (1982). “Self-Organized Formation of Topologically
Correct Feature Maps,” Biological Cybernetics, vol. 43, no.1, 1982, pp.
5969.

[6] T. Kohonen, “Self-Organization and Associative Memory”, Springer-
Verlag, 1989.

[7]1 P.Somervuo and T. Kohonen, Self-Organizing Maps and Learning Vector
Quantization for Feature Sequences, Kluwer Academic Publishers, 2004,
pp. 1-10.

[8] R. M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1, no.
2, pp. 429.

[9] T. Kohonen, “Learning vector quantization,” M.A. Arbib, editor, The

Handbook of Brain Theory and Neural Networks, MIT Press, 1995, pp.

537540.

A. Sato and J. Tsukumo, “A Criterion for Training Reference Vectors

and Improved Vector Quantization,” ICNN, Vol. 1, 1994, pp.161-166.

[11] M. Biehl, A. Ghosh, B. Hammer, “Dynamics and Generalization Ability

of LVQ Algorithms,” Journal of Machine Learning Research vol. 8, 2007.

pp- 323-360.

A. Sato, and K Yamada, “Generalized Learning Vector Quantization,”

NIPS 7, pp. 423-429, 1995.

P. Hasler, P. Smith, C. Duffy, C. Gordon, J. Dugger, and D. Anderson,

“A floating-gate vector-quantizer,” Midwest Symposium on Circuits and

Systems, vol. 1, 2002, pp. 196199.

S.-Y. Peng, P. Hasler, and D.V. Anderson, “An analog programmable

multi-dimensional radial basis function based classifier,” IEEE Transac-

tions on Circuits and Systems I, Vol 54, No. 10, pp. 2148-2158, Oct.

2007.

A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, “Support Vector

Clustering,” Journal of Machine Learning Research, vol. 2, 2001. pp.

125-137.

S. Haykin, Neural networks - A comprehensive foundation, 2nd ed,

Prentice-Hall, 1999.

[17] Nils J. Nilsson, Introduction to Machine Learning, 2005.

[18] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic Modeling Using

Deep Belief Networks,” IEEE transactions on Audio, Speech, and Lan-

guage Processing, Vol. 20, no. 1, 2012, pp. 14-22.

B. Marr, B. Degnan, P. Hasler, and D. Anderson, Scaling energy per

operation via an asynchronous pipeline, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 147151,

2013.

S. Shah and J. Hasler, “SoC FPAA Hardware Implementation of a

VMM+WTA Embedded Learning Classifier,” submitted to special issue

for JETCAS, June 2017.

S. Shah, H. Treyin, O. T. Inan, and J. Hasler, Reconfigurable analog

classifier for knee-joint rehabilitation, IEEE EMBC , August 2016.

[22] P. Hasler, “Continuous-Time Feedback in Floating-Gate MOS Circuits,”

IEEE Transactions on Circuits and Systems II, vol. 48, no. 1, 2001.

S. Kim, J. Hasler, and S. George, “Integrated Floating-Gate Program-

ming Environment for System-Level ICs,” Transactions on VLSI, vol.

24, no. 6, 2016. pp. 2244-2252.

[24] J. Hasler and B. Marr, “Finding a roadmap to achieve large neuro-

morphic hardware systems,” Frontiers in Neuromorphic Engineering,

September 2013. pp. 1-29. doi:10.3389/fnins.2013.00118.

B. Furman, J. White, and A. Abidi, “CMOS analog implementation of

back propagation algorithm,” 1988, pp 381.

[10]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[23]

[25]

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2017.2771392, IEEE Journal

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

2156-3357 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

on Emerging and Selected Topics in Circuits and Systems

P. Hasler, and J. Dugger, “An analog floating-gate node for supervised
learning,” IEEE Transactions on Circuits and Systems I, vol. 52, no 5,
pp. 2005. pp. 834-845.

J. Hasler, S. Kim, and F. Adil, ”Scaling Floating-Gate Devices Predicting
Behavior for Programmable and Configurable Circuits and Systems,”
Journal of Low Power Electronics Applications, vol. 6, no. 13, 2016, pp.
1-19.

J. Hasler, Energy Constraints for Building Large-Scale Neuromorphic
Systems, GOMAC, March 2016.
http://www.analog.com/media/en/technical-documentation/data-
sheets/AD7457.pdf. Last visited August 31, 2017.

M. Jabri and B. Flower, “Weight Perturbation: An Optimal Achitecture
and learning Technology for Analog VLSI Feedforward and Recurrent
Multilayer Networks” IEEE Transactions on Neural Networks, vol. 3,
no. 1, 1992.

Philip H-W. Leong, and M. A. Jabri, “A Low-power trainable analogue
neural network classifier chip,” IEEE Custom Integrated Circuits Con-
ference, 1993, pp. 4.5.1 - 4.5.4.

K. Hirotsu, and M.A. Brooke, “An Analog Neural Network Chip With
Random Weight Change Learning Algorithm,” IJCNN, vol. 3, Nagoya,
1993, pp. 3031-3034.

G. Cauwenberghs, “Neuromorphic Learning VLSI Systems: A survey”
Neuromorphic systems engineering, Springer, 1998.

G. Cauwenberghs, “An analog VLSI recurrent neural network learning
a continue-time trajectory,” IEEE Transactions on Neural Networks, vol.
7, no. 2, 1996, pp. 346-361

B. Zhang, M. Fu, H. Yan, and M. A. Jabri, “Handwritten Digit Recog-
nition by Adaptive-Subspace Self-Organizing Map,” IEEE Transactions
on Neural Networks, VOL. 10, NO. 4, JULY 1999 pp. 939-945.

J. Lu, S. Young, I. Arel, and J. Holleman, “A 1 TOPS/W Analog
Deep Machine-Learning Engine With Floating-Gate Storage in 0.13 pum
CMOS,” IEEE Journal of Solid-State Circuits,vol. 50, no. 1, 2015.

C. Schlottmann, and P. Hasler, “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: the FPAA implementation,”
IEEE Journal of Emerging CAS, vol. 1, 2012, pp. 403-411.

PSoC5 Data Sheet, Cyprus Semi, 2011.

C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A Digitally-
Enhanced Reconfigurable Analog Platform for Low-Power Signal Pro-
cessing,” IEEE Journal of Solid State Circuits, September 2012, vol. 47,
no. 10, pp. 2174-2184

S. Tin, J. Kriz, B. Oliverl, T. Fabianl, A. Weidlingl, G. Niemela2,
J. Sangid2, A. Baruah2, K. Harris2, B. Blalock, J. Holleman, and V.
Yantchev3, “N-Zero Integrated Analog Classifier (NINA),” GOMAC,
2017, pp. 35-38.

A. Carusone and D.A. Johns, “Analogue adaptive filters: past and
present,” IEE Proceedings Circuits Devices and Systems, vol. 147, no.
1, 2001, pp. 82-90.

M. Collins, J. Hasler, and S. George, “An Open-Source Toolset En-
abling Analog-Digital-Software Codesign,” invited paper Journal of
Low Power Electronics Applications, Vol. 6, no. 1, February 2016, pp.
1-15.

J. Hasler, “Opportunities in Physical Computing driven by Analog
Realization,” ICRC, October 2016.

S. Shah, H. Treyin, O. T. Inan, and J. Hasler, “Reconfigurable analog
classifier for knee-joint rehabilitation,” IEEE EMBC, August 2016.

S. Shah, C. N. Teague, O. T. Inan, and J. Hasler, “A proof-of-concept
classifier for acoustic signals from the knee joint on an FPAA,” IEEE
SENSORS, October 2016.

Analog Discovery Reference Manual,
https://reference.digilentinc.com/reference/instrumentation/analog-
discovery-2/reference-manual, last checked September 8, 2017.

PLACE
PHOTO
HERE

Jennifer Hasler is a Professor in the School of Elec-
trical and Computer Engineering at Georgia Institute
of Technology. Dr. Hasler received her M.S. and
B.S.E. in Electrical Engineering from Arizona State
University in 1991, and received her Ph.D. From
California Institute of Technology in Computation
and Neural Systems in 1997. Her current research
interests include low power electronics, mixed-signal
system ICs, floating-gate MOS transistors, adaptive
information processing systems, “smart” interfaces
for sensors, cooperative analog-digital signal pro-

cessing, device physics related to submicron devices or floating-gate devices,
and analog VLSI models of on-chip learning and sensory processing in
neurobiology. Dr. Hasler received the NSF CAREER Award in 2001, and
the ONR YIP award in 2002. Dr. Hasler received the Paul Raphorst Best
Paper Award, IEEE Electron Devices Society, 1997, IEEE CICC best paper
award, 2005, Best student paper award, IEEE Ultrasound Symposium, 2006,
IEEE ISCAS Sensors best paper award, 2005, and best demonstration paper,

ISCAS 2010.

PLACE
PHOTO
HERE

Sahil Shah received his B.S from Manipal Univer-
sity, India, and MS from Arizona State University,
Tempe. He is currently pursuing a PhD in electrical
engineering at Georgia Institute of Technology, At-
lanta. His research interest involves design of ana-
log and mixed signal circuits, design of integrated
biosensors, and microfluidics.

