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Abstract—A proof-of-concept low-power analog classifier for
assessing acoustic signals from the knee joint on a reconfigurable
Field Programmable Analog Array (FPAA) is presented in
this paper. Knee joint sounds are measured using piezoelectric
(contact) microphones and processed using the front end analog
filters. A single layer of neural network composed of Vector
Matrix Multiplication (VMM) and Winner-Take All (WTA) is
used for the classification. A simple classifier detecting an anterior
cruciate ligament injury is implemented here. Measurement from
a single subject’s healthy and injured knees are used here as an
input. The FPAA is fabricated in a 350nm CMOS process. A
bank of 12 parallel filters is used for feature extraction and a
12x2 VMM-WTA is used as a classifier. The compiled system,
front-end and the classifier, consumes a power of 15.29,W with
a power supply of 2.5 V.

I. SIGNAL PROCESSING FOR WEARABLE DEVICES

Knee injuries, ranging from simple sprains to ligament
tears, are widely prevalent among all ages of Americans. Cur-
rent techniques for assessing knee joint rehabilitation involve
multiple visits to a clinic. To reduce strain on the health care
system and to perform continuous monitoring of the subject,
there has been work towards using wearable devices as a
non-invasive method for assessing the health information of
the knee [1]. It has been shown that acoustical signals could
be used to non-invasively measure in-depth information about
joint health [2][3]; wearable devices with embedded acoustical
sensors placed around the knee could thus be used as a point-
of-care solution for potentially enabling personalized treatment
for the patients.

Such approaches could greatly benefit from the use of on-
board, real-time classifiers for allowing information regarding
knee health to be presented to the user and care-giver alike.
From a classification point of view, there has been significant
progress in implementation of neural networks and machine
learning partly due to the availability of faster devices and
partly due to innovation in algorithms. They have been effec-
tively used to solve problems in the field of speech processing,
computer vision, and big data to name a few. They have
also shown promising results in the field of bioengineering
and biomedicine to perform medical diagnosis and prognosis
[4]. However, most of this work involves performing data
acquisition and analyzing it off chip which usually require
large storage and bandwidth for transmission. Such a method
would not scale, when taking into account multiple devices
generating data for multiple users. Thus a system which could
perform efficient and robust computation is necessary where
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the data could be analyzed and processed locally and in real
time.
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Fig. 1. Top level of the proposed acoustic classifier. The system is compiled
on the FPAA. The output of the analog front end and the classifier are
vectorized. In this work M is 12 and N is 2. In general, reconfigurability
offered by the FPAA allows N and M to be a variable depending on the
application.

This work presents a proof-of-concept low-power analog
classifier for knee joint health assessment compiled on a large
scale reconfigurable FPAA [5]. The system can be used for real
time signal processing with very low power consumption. The
classifier is used to automatically separate acoustical signatures
for a joint with an acute (< 7 days prior) Anterior Cruciate
Ligament (ACL) tear compared to the healthy, contralateral
side. A piezoelectric sensor (SDT, Measurement Specialties,
Hampton, VA) is used as a contact microphone to measure
these acoustic emissions. Measurement from a single subject
are used as an input for the analog classifier. A top level
block diagram of the proposed system is shown in Fig. 1.
The contact microphone recorded an acoustic signal while the
subject performed unloaded, seated flexion / extension of the
knee. These signal are analyzed by the compiled system com-
prising of 12 parallel second-order band pass filter, amplitude
detectors, LPFs and a single layer classifier implemented using
VMM-WTA. The WTA used in this work has a digital output
and could be easily stored.

II. RECONFIGURABLE SOC

Floating gate FPAAs offer reconfigurability and pro-
grammability which allow for low-power computation with
high efficiency [5]. Floating gate can be programmed to a
target current using hot-electron injection and erased using
Fowler-Nordheim tunneling. FPAA consists of Computational
Analog Blocks (CAB) and Computational Logic Blocks (CLB)
and are connected using manhattan style routing. CAB consists
of several OTAs, NFET current mirrors, transmission gates,
and capacitors which could be routed globally and locally.
Programming infrastructure is composed of DACs and ADCs
which measure and control the FG transistors. These DACs
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Fig. 2. General architecture of the compiled system. A contact microphone (piezoelectric sensor) is used to record the acoustic signals. The front-end analog
chain is compiled on the FPAA. Front-end is composed of 12 parallel band-pass filters, amplitude detectors, and LPFs. The features extracted by the front-end

are used by a single layer of VMM-WTA.

and ADCs could be routed to the FPAA fabric to work as
a arbitrary waveform generator and data acquisition. A shift
register which is a part of the routing infrastructure could be
used for observing and measuring multiple outputs and inputs.

Figure 2 shows a general architecture of the compiled
system on the chip. Acoustic signals from the piezoelectric
sensor are analyzed and processed for relevant features. Analog
front-end comprising of 12 parallel band-pass filter, minimum
detector and Low Pass Filter (LPF) is compiled on the FPAA,
using an open source open-source Xcos/Scilab tools [6]. In
this work a band-pass filter is designed using a G,,-C OTA, a
capacitively coupled current conveyer (C*) structure, present
as a part of the CAB elements. Inputs of the OTA has a
floating gate, coupling through a capacitor, which allows for
a higher dynamic range and input offset compensation at the
cost of reduced gain. The second-order band-pass filter have
a programmable G, which allows us to control the higher
frequency and lower frequency pole. They were programmed
to have a Q of 2 and with a gain of 10 dB. The band-
pass filter extracts the features, in this case the frequency
content, from an acoustic signal and this forms an input to
the amplitude detector. The amplitude detector measures the
minimum amplitude of the signal. The amplitude detector are
tuned to work with a bandwidth of 5 kHz. The LPF is biased to
have a cut-off of 100 Hz, which allows us to reduce the ripples
caused by the minimum detector. Current biases for all the
OTAs are set using a floating gate PFET transistor which could
be programmed to a target current value. All the elements
of the analog front-end are biased in subthreshold regime to
reduce the power consumption of the system. The front-end
consumes a power of 3.096u4W. Where the power consumed
by 12 band pass filters is 36.3nW and the LPFs consume 60nW.
Amplitude detectors consume a power of 3uW, because they
are biased to operate at higher bandwidth.

A single layer analog classifier, composed of Vector Matrix
Multiplication (VMM) and Winner Take All (WTA) uses the
features extracted by the analog front-end for classification. In
this system, a simple classifier is designed which detects the
presence of ACL injury in the knee joint. Reconfigurability of

a FPAA allows compiling a NxM VMM in the routing infras-
tructure. The FG transistors in the routing infrastructure are
used to store the weights of the classifier by storing a charge
on the floating node. Subthreshold current in a PFET floating
(Np(Vdd*AVfgref*VTo)) (Vaa—Vin)
gate is given by I, = I;pe Ur We Ur
where Ur is the thermal voltage, &, is the fractional change in
PFETs surface potential with change in V},, V¢ is threshold
(np(vddev;g)
voltage, and the weight W =e Uz . Source of the
FG PFET transistor is used as an input (V;,,) to the VMM. Here
a 12x2 VMM is used for the classification. Current output
of the VMM is compared using WTAs, which is a current
comparator with non-linear properties [7]. A 1-WTA, which
could only have a single winner, is used instead of K-WTA
which could have multiple winners. The design of WTA is such
that it wins with a zero and loses with a one at the output.

III. CLASSIFICATION OF ACL INJURIES

A single layer VMM-WTA can be used to perform non-
linear classification, such as a XOR classification [7]. In this
work, a single layer of 12x2 VMM-WTA is used to design
a classifier for detecting the presence of ACL injury prior to
reconstructive surgery. Figure 3 shows the recording system
and sensor placement during subject testing. Recording from
a single subject with an injured and healthy knee is analyzed
and used an input to the FPAA system.

Acoustic recording of a healthy and a injured knee is passed
through the analog front-end, and their outputs are used for
training the weights of the VMM. Inputs to the VMM are
observed using a 16-bit shift register on the chip. The training
of the VMM is done off-chip by clustering the weights around
their input. The FG PFET transistors in the VMM are biased
in subthreshold regime to reduce the power consumption. The
schematic of the 12x2 VMM-WTA is shown in Fig. 3. A
common bias for the WTAs is generated using a FG PFET
transistor and a NFET current mirror.

A dataset comprising of the injured and healthy knee was
created for the purpose of testing the classifier. Figure 3 shows
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Output of VMM-WTA along with recording and sensor placement. Two 1-WTA are used for the classification of ACL injury. The data was recorded

from a single subject having a ACL injury on one of the knees. WTA1 predicts the injury by winning when an injured acoustic signal is presented to it. WTA2

wins when the signal is from a healthy knee joint.

part of the dataset being used for testing the classifier. WTAI
detects when it is presented with features from an injured knee
whereas WTA2 wins for the rest of the input. The classifier
consumes a power of 12.2uW. The buffers used at the output
of the WTA, to drive I/O pads, consumes a power of 10uW
and dominates the power consumption of the classifier.

IV. DISCUSSION

In this work, we show a proof-of-concept low-power analog
classifier compiled on a large-scale SoC FPAA. This work
shows that such a system could classify acoustic signals,
that are recorded using a contact microphone (piezoelectric
sensor). These signals are analyzed and processed through
a analog front-end, and the features are extracted. These
extracted features are used by a single layer VMM-WTA for
classification. A dataset comprising of both injured and healthy
is used to test the classifier. The system consumes a power of
15.29uW with a power supply of 2.5 V.

In general, such a system can be scaled to work in real time
for detecting and classifying the knee joint sounds, assessing
the knee-health and rehabilitation. Patterns of the clicks over
the range of knee angle and an output measure based on
the changes of thes pattern due to knee-disorders could be
a promising metric for the knee-health. For generating such a
metric based on different activities, loading conditions, and
range-of-motions of the knee, a wearable system that can
operate for several hours while the subjects perform daily
activities is required. An activity detector, shown in [3], could
be used in conjunction with our system. This would allow

us to reduce the power consumption by only recording when
relevant activity is being performed.
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