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Abstract—With the rapid increase in size and complexity of
analog systems being implemented on field-programmable analog
arrays (FPAAs), the need for synthesis tools is becoming a neces-
sity. In this paper, we present Sim2spice, a tool that automatically
converts analog signal-processing systems from Simulink designs
to a SPICE netlist. This tool is the top level of a complete chain of
automation tools. It allows signal-processing engineers to design
analog systems at the block level and then implement those sys-
tems on a reconfigurable-analog hardware platform in a matter
of minutes. We will provide detailed descriptions of each stage
of the design process, elaborate on a custom library of analog
signal-processing blocks, and demonstrate several examples of
systems automatically compiled from Simulink blocks to analog
hardware.

Index Terms—Field-programmable analog array (FPAA),
Simulink, SPICE.

I. INTRODUCTION

T RADITIONALLY, engineers interested in implementing
signal-processing algorithms in hardware rely on digital

systems such as digital signal processors (DSPs) and field-pro-
grammable gate arrays (FPGAs). These platforms benefit from
a large body of work and software tools to simplify the compila-
tion to hardware. These software tools use well-developed and
intuitive interfaces to allow engineers who may have little-to-no
familiarity with ASIC design to benefit from the advantages of
dedicated hardware. However, since it is often real-world con-
tinuous signals that are being processed, the overall system per-
formance can be seriously limited by the conversion power and
speed.

One option for increasing the power efficiency of signal-pro-
cessing systems is to utilize analog in coordination with, or in
place of, digital hardware in certain applications. For instance,
in audio processing, a bank of analog filters can be
used on the front end of the digital system to subband the in-
coming signal, thus reducing the performance demands of the
analog–digital converters (ADCs) and the overall power con-
sumed by the system. Analog systems have even been shown
to perform certain computations extremely efficient [1], such
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Fig. 1. Sim2spice, the software tool for compiling systems in Simulink block-
diagram form down to FPAA analog hardware.

as scaling and summing, and could find uses as a powerful co-
processor. Given this and the many other advantages of analog
signal processing, the use of a reconfigurable analog signal pro-
cessor would create a more accessible design environment (re-
ducing the barrier to entry) as well as decrease the time to market
for such a system.

The problem addressed in this work is how to make the
benefits of reconfigurable analog hardware available to the
broad signal-processing community in the same way that DSPs
and FPGAs have done for digital. We propose a software tool,
Sim2spice [2], for compiling high-level designs in Simulink
onto field-programmable analog arrays (FPAAs), a concept
illustrated in Fig. 1. In Section II, we describe the current state
of reconfigurable analog systems and the need for synthesis
tools. Section III details Sim2spice, the tool for compiling
Simulink systems to SPICE, with Section IV finishing up by
taking SPICE netlists down to the hardware. We demonstrate
a few example systems in Section V and provide final remarks
in Section VI.

II. FPAA TECHNOLOGY AND ANALOG SYNTHESIS

FPAAs are reconfigurable VLSI arrays of analog circuit com-
ponents. The core of such a system is composed of two parts: the
computational analog blocks (CABs), which contain the analog
primitives, and the routing fabric, which connects the CABs.
These devices allow rapid prototyping and implementation of
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Fig. 2. Complete tool set is comprised of Sim2spice, which converts a Simulink
design to a SPICE netlist, and GRASPER, which converts a SPICE netlist to a
set of switches for programming on the FPAA.

signal-processing functions in analog hardware. Our group has
developed an entire line of FPAAs, with different CAB compo-
nents in different chips, particularly suited for different applica-
tions.

While early versions of FPAAs were modest enough to route
circuits by hand using fuse charts, this is quickly becoming im-
possible. The more recent FPAAs, such as the Reconfigurable
Analog Signal Processor (RASP) 2.8 [3], have 50 000 switches
and 32 CABs, and they are only getting larger. In addition,
newer FPAAs are far more robust than their predecessors and
can support larger and more complicated signal-processing sys-
tems. With this increase in size and complexity of FPAA sys-
tems, higher level synthesis tools are a necessity—hand routing
is no longer a reasonable option.

We have chosen Mathworks Simulink as our high-level de-
sign space because it allows for the implementation of signal-
processing systems in software with an intuitive graphical in-
terface, not to mention the fact that many DSP engineers are
already familiar with the program. The user connects together
functional blocks and has the ability to simulate the system
using a variety of simulation tools. Digital designers have al-
ready realized the power of Simulink and have developed soft-
ware tools to compile Simulink block diagrams to reconfig-
urable digital hardware on an FPGA, as in [4] and [5]. On the
analog front, there have also been tools investigated to allow
support for certain FPAAs designed to be done in VHDL-AMS
[6]. However, we chose Simulink over AMS as our high-level
design space because the graphical block-based user interface is
an important complement to the text-based SPICE netlist.

Our tool, Sim2spice, is the top-level compiler of an entire tool
chain for configuring FPAAs, a diagram of which is shown in
Fig. 2. This tool allows users to utilize our custom library of
analog signal-processing blocks to create designs in Simulink
and then compile that design down to a SPICE netlist. From
there, the GRASPER tool is used to place-and-route the netlist
to the FPAA and the Routing and Analysis Tool (RAT) is used
to visualize and modify the routing. This complete set of tools
now provides a useful interface for engineers outside the analog
circuit design field to implement their signal-processing systems
and ideas directly in analog hardware.

III. FROM SIMULINK TO SPICE: SIM2SPICE

The Sim2spice tool is the front end of the toolset; it takes
in a model (.mdl) file from Simulink and generates a SPICE
netlist, ready for simulation or place-and-route. The program is

Fig. 3. Example piece of model (.mdl) file in Simulink. This example shows a
representation of the VMM and WTA system, which is described in the Exam-
ples section of this paper.

composed of two main parts, shown along with the library in the
dashed box of Fig. 2: the Simulink model parser and the SPICE
netlist generator.

A. Simulink Model Parser

The parsing of the Simulink model file is done in MATLAB
and involves the use of a custom script written in Python. The
script is packaged as an executable file, allowing it to be called
directly from MATLAB without the installation of Python. The
input to the program is the Simulink model file. An example
piece of an .mdl is shown in Fig. 3 that displays the vector-
matrix multiplier (VMM) and winner-take-all (WTA) blocks.
The output of the parser is a MATLAB structure containing the
blocks and connections that comprise the model as well as all
associated block parameters and values. Python was chosen as
the language for the parser due to the ease of parsing text with
built-in parsing libraries such as PyParsing [7].

B. SPICE Netlist Generator

The netlist generator takes as input the structure created by
the parser from the Simulink model file and converts it to a
SPICE circuit netlist, utilizing the circuit netlist elements asso-
ciated with each block contained in the component library.

First, the netlist generator reads a list of block types from the
component library, and then it reads a description file associated
with each block type. The description file lists attributes of the
block type, such as user-specified block parameters and input/
output port parameters. At this point, the parser is called to read
the model file and search for blocks and associated parameters.
The structure created by the parser contains an array of blocks
and an array of lines, or connections between blocks.

Next, the netlist generator makes several passes over the
parser’s output arrays, finding and naming common circuit nets
between blocks. At this point, the lines between blocks can be
of a variety of forms: vectorized, single-ended or differential.
During compilation, no exhaustive DRC is performed; however,
the netlist generator will check if vectorized signals are of the
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Fig. 4. Component library. (a) The MATLAB GUI presents the user with all of the available component libraries. (b) Expansion of the Analog Signal Processing
library. Blocks are continuously being added to the library as other users share their functional blocks.

same dimension between blocks. We also use a color coding
scheme in the blocks to match signal type, such as blue for
current-mode and red for voltage-mode signals.

The final step involves assembling the actual netlist. The pro-
gram calls a user-defined MATLAB script, the build file, for each
block. The build file receives—as input from the netlist gener-
ator—the user-specified parameters for that specific instance of
that block type, and returns an array of strings, representing in-
dividual lines of the SPICE circuit netlist for that block. The
netlist generator combines the netlists for each block in one
netlist and keeps global net names unique by making use of sub-
circuits to encapsulate each block instance. The inport and out-
port blocks from Simulink become input and output pins in the
SPICE netlist, to be converted to I/O pins on the FPAA when
placed-and-routed.

C. Component Library

The Simulink block library is our collection of the prede-
fined blocks. This library allows one user to create a functional
block and share it with the other users of the Simulink tool.
This enables us to design systems with blocks that are already
tested on the FPAA, without having to redesign them. In this
sense, the library is very much “open source”; anyone who cre-
ates a working system is encouraged to build the corresponding
Simulink block so that others can utilize the design. Addition-
ally, any component built into the Simulink toolbox is available
to the user to help optimize designs. Any such block that is given
a circuit equivalent in the library will be realized in the SPICE
netlist.

The analog Simulink blocks are defined by level-2 M-file
S-functions and their corresponding circuit netlist elements. We
have designed the system to make it as easy as possible to add
new blocks to the component library. When adding a compo-
nent to the library, there are four main files that must be written,
which are given here.

1) S-function Simulink block. The first step is to create the
physical block as a Simulink S-function block. The number
of ports and their names, as well as the input parameters,
are defined here. There is also a field for the designer to
write a description about the functionality of the block,
which is useful for future users.

2) Simulink (.m) behavior file. This file defines the behavior
of the block in Simulink simulations. Here, the designer de-
scribes what mathematical function the block will perform
on the incoming signal. The behavior can be as detailed or
as high level as the user wants. For instance, for the WTA
block, the user can simply allow the block to output a high
or low corresponding to the “winner” or “losers,” or try to
accurately describe all of the transistor subtleties. Since a
true transistor level simulation can be done in SPICE, in the
essence of design and simulation time, it is recommended
that this block be made as ideal as allowable. A further dis-
cussion on macromodeling is given in Section III-D.

3) MATLAB (.m) build script. This file tells MATLAB how to
build the netlist that corresponds to the block. In general,
this file consists of loops that print SPICE subcircuits ac-
cording to the size parameter. The name of this file must
be the same as the definition file, with “ ” appended
at the beginning.

4) Description file. The .desc file defines the list of parame-
ters that the parser will look for when it reads the model
file.

Our library now comprises over 60 different parts and
is growing constantly as users continue to add new blocks.
Currently, we have several libraries of blocks in five different
subcategories of functionality including analog signal pro-
cessing blocks, basic CAB circuit elements, filters,
bio elements, and neuron channel models.

Fig. 4 shows the GUI which organizes the library into subli-
braries. In this figure, the analog signal-processing sublibrary
is broken out to show the available components. Fig. 5 shows
the dialog box that appears for a specific block, the VMM,
allowing the user to edit the parameters of the block. In this
case, the user is allowed to edit the matrix elements, the time
constant, and the signal representation. During the build cycle,
the resulting VMM will consist of floating-gate transistors tiled
and programmed according to the elements parameter, with the
bias current set according to the tau parameter. An example
of a Simulink system using this VMM is demonstrated in
Section V-C of this paper.

One interesting aspect of building an analog component li-
brary is that it allows us to define what we consider analog signal
processing blocks. This area, surprisingly, is not as defined as it
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Fig. 5. Block parameter window for the VMM provides a brief statement about
the usage of the block and asks the user to specify several needed parameters: the
matrix elements, the desired time constant, and whether the inputs and outputs
are to be single-ended or differential.

could be. Although there have been books written on the area,
notably [8], most analog signal processing is still done at the
custom level, without the use of premade blocks. This gives us
the freedom to invent the blocks that fit our needs with the hope
that once they are built, the community will be inclined to use
them as standard analog blocks.

D. Macromodeling

The need for a Simulink behavior file brings up the issue of
macromodeling. Macromodeling is the design of a functional
block that captures the desired performance, without being
overly detailed. While there have been previous discussions
on the varieties of macromodels for operational amplifiers (Op
Amps) [9], the same design process needs to be extended to the
other analog signal processing blocks. In order to design large
systems with the Simulink tool, we need to have blocks that are
accurate enough to demonstrate that the system works, without
being overly complicated that it makes the simulation time too
long or muddles the results.

One example of a macromodel design is for systems utilizing
many operational transconductance amplifiers (OTAs). As a first
pass over the system, the user would want to test the simple func-
tionality. In order to test first-order functionality, as quickly as
possible, the user would use the basic function to charac-
terize the OTA. This model is sufficient for testing the dc char-
acteristics containing many OTAs. Fig. 6 shows how closely a
simple matches to a real sweep.

Once the general functionality of a system has been estab-
lished, the models can be made more detailed to show certain
design metrics. One metric important to most signal-processing
systems is signal-to-noise ratio (SNR). In order to test this, a
noise component needs to be added to the blocks. For the OTA
we can easily do this by adding MATLAB’s noise function to the
model. This noise source can be made to have the same power
spectral density as the amplifier we expect to use. By using these
simple models, with only the features we are directly looking to
test, we can get a better feel for the way the system as a whole
is working, with a much shorter simulation time.

Fig. 6. OTA model with hardware data. The smooth curve is a func-
tion which can be used to model the OTA. The bubbles are data taken from the
FPAA hardware.

IV. FROM SPICE TO ANALOG HARDWARE

The next step in the process chain is to compile the SPICE
netlist onto the analog hardware. The GRASPER tool is used to
place-and-route the netlist onto the FPAA, and the Programming
& Evaluation board, along with the programming interface tool,
is used to target the hardware. Along the way, the systems can be
simulated in SPICE, using custom sub-circuits, and the routing
can be viewed and edited with the RAT tool.

A. Place-and-Route

GRASPER, developed by Baskaya et al., is the place-and-
route tool used for targeting SPICE netlists to the FPAA [10].
The output is a list of switch addresses and the values to which
they should be programmed, given in the format: (row, column,
prog value). The (row, col) address refers to the desired floating
gate’s location in the crossbar matrix [11]. The programmed
value indicates if this floating gate is intended as a switch or
a computational element. A programmed value above approxi-
mately 30 A will result in a switch that is all the way closed (we
often simply use the value 1) and any value below this will de-
scribe the amount of current that the FG-pFET is programmed
to pass with its source at . This list of switches can then
be targeted directly onto the RASP family of FPAAs. In the
GRASPER netlist input file, the particular FPAA is specified
by the device (.dev) file. This .dev file describes all of the im-
portant attributes of a given FPAA such as: number and type
of horizontal and vertical lines, CAB elements, and I/O lines.
By including this file, GRASPER will be compatible with fu-
ture generations of FPAAs and routing structures. Fig. 7 shows
the flow of a circuit being mapped to the FPAA and the corre-
sponding object code.

B. SPICE Library

Although the FPAA’s CABs contain predefined circuits, in
order for SPICE to accurately simulate a design, these CAB el-
ements need to be implemented as subcircuits. Most of these
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Fig. 7. RAT design. (a) Schematic of a first-order filter. This system
is complied into an object code that can be programmed onto the FPAA. (b)
RAT displaying the connectivity of the filter. The CAB elements are illustrated
on the right, with the switch matrix on the left. The nets are highlighted in red to
indicate what rows and columns the switches have connected. (c) Object code
for the filter consists of a list of the switches that were displayed in the RAT
GUI. The first five entries in the list are fully programmed switches, and the last
entry is the OTA bias current.

are straightforward one-to-one mappings, such as the MOS el-
ements, 500-pF capacitors, and T-gates. However, several CAB
elements use floating gates as programmable current sources, in
particular the OTAs. For these, an ideal current source is used
in the subcircuit for simulation purposes and that value is then
passed to the FPAA as the floating-gate target value.

One problem that arises is how to model the floating-gate
elements when they are explicitly used in the circuit. Examples
of this occurrence are the floating-gate input OTAs, the MITEs,
and the switch elements used for computation. The problem is
a result of the rule that in SPICE each node needs a dc path to
ground; therefore, gates cannot be left floating.

One popular model is to simply place a dc voltage source
on the gate through a large resistor . Although this
achieves reasonable results, the dc voltage does not intuitively

Fig. 8. Floating-gate SPICE model. This model is needed because SPICE
cannot implement a true floating-gate transistor. The model closely resembles
the indirect programming structure used on the FPAA. Under dc circumstances,
the floating gate model resembles the upper equivalent circuit: a normal pFET
with a fixed potential on the gate. Under ac conditions, the circuit will act as the
lower circuit: the gate programming voltage will be coupled onto the floating
node.

Fig. 9. Evaluation and programming board. This board communicates with
MATLAB over a USB connection. The board contains a microcontroller for con-
trolling the programming algorithms, a 40-channel DAC and a four-channel
ADC for creating and reading test signals, and all necessary power manage-
ment circuitry.

translate to the programming current. The model we chose was
to force a dc current through an indirect transistor, as shown in
Fig. 8. This model was chosen because it allows for the program-
ming current value to be directly used in SPICE and the circuit
closely resembles the actual schematic of the indirect program-
ming system [12].

C. RAT Visualization Tool

RAT, developed by Koziol and Abramson, provides a
graphical way to view and edit the compiled circuits [13]. This
visualization tool has proven invaluable when designing and de-
bugging on the FPAA because it has eliminated the need to draw
fuse charts. The input to the RAT is a programming (.prg) file
that includes the switch list in the form output by GRASPER.
By running the command ,
the GUI of Fig. 7(b) is launched. This window shows a
zoomable image of the FPAA routing structure and CAB
elements. The routing lines are color-coded by type and the
I/O ports are clearly labeled. The switches from the input
list appear as large black dots connecting the corresponding
horizontal and vertical lines, and if a particular switch is used
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Fig. 10. (a) Simulink model of the low-pass filter. (b) Step response in SPICE simulation. (c) Step response on FPAA.

as a computational element, it is shown with a green circle
around it. The lines connecting elements are highlighted in red
to easily follow the connectivity of a particular net.

In addition to being able to view a circuit, modifications can
be made to it. Switches can be added or deleted and the connec-
tivity highlighting will be updated accordingly. Once modifica-
tion is complete, the new design can be output into a new .prg
file that has the same file name as the input file, but with “ ”
appended to the end of it.

D. Evaluation and Programming Board

The custom four-layer printed circuit board (PCB) in Fig. 9
was built to program, communicate with, and test the RASP
family of FPAAs. This evaluation board communicates over and
is fully powered by USB, but it also has the capability to be
powered by a 5-V dc supply and communicate over a serial
connection. The board is controlled by an ATMEL ARM mi-
crocontroller for handling instructions from the computer using
MATLAB commands. It also includes a 40-channel 14-b dig-
ital–analog converter (DAC), a four-channel 8-b ADC, audio
input/output amplifiers and jacks, and all of the programming
circuitry not already on-chip. In order to have maximum con-
trol and flexibility, almost every signal is pinned out to a header:
all 52 FPAA I/O (4 to SMA connectors), the 40 DAC channels,
four ADC channels, and many of the microcontroller and pro-
gramming lines. The plane is jumpered so power mea-
surements can be taken.

E. Current FPAA Chips

At the bottom level of the chain, and really the heart of the
system, is the FPAA itself. The most recent and advanced line
of FPAAs is the RASP 2.8, which was designed in a 350-nm
double-poly CMOS process. This new FPAA offers several
drastic improvements over its predecessors [14].

With a die size of 3 mm 3 mm, the RASP 2.8 was able
to contain 32 CABs and incorporate multilevel routing. This
new system of routing maintains the flexibility of the previous
FPAAs while also providing more dedicated lines. These
dedicated routing lines connect each CAB to its four nearest
neighbors: top, bottom, left, and right. By providing this nearest
neighbor connection, the lines are made shorter and thus have
less parasitic capacitance.

Another advancement is the movement of most of the pro-
gramming infrastructure on-chip [15]. By moving the control
DACs, current measurement systems, and the ADCs on chip, we

have seen a drastic speed up in programming time. This on-chip
migration has also allowed the form factor of the entire system to
shrink. Whereas the previous system was the size of a shoebox
and contained three separate boards [16], with the on-chip pro-
gramming we only need the 4.6 in 5.6 in board discussed in
the previous section.

In addition to the architectural advancements, the RASP 2.8
line was developed with four different varieties of chips for tar-
geted applications. The different models of the RASP 2.8 line all
use the same routing and programming infrastructure, but vary
by their CAB components.

1) The general-purpose FPAA: RASP 2.8a [17]. This is the
most commonly used FPAA and contains common analog
building-blocks in its CABs: OTAs, n/pFETs, capacitors,
T-gates, floating-gate elements, and Gilbert multipliers.

2) The bio-FPAA [18]: RASP 2.8b. The bio FPAA contains
neuron and synapse models in its CABs. By using the re-
configurable nature of the FPAA, the neurons and synapses
can be arranged into computational neural networks.

3) The sensor-FPAA [19]: RASP 2.8c. This FPAA contains
a specialized sensor interface and capacitive sensor CAB
elements.

4) The MITE-FPAA [20]: RASP 2.8d. This FPAA contains
multiple-input translinear elements (MITEs) as its compu-
tational primitive. The CABs are made up of translinear
loops of MITEs which can perform various mathematical
operations.

V. EXAMPLE SYSTEMS

In order to demonstrate the capabilities of our high-level
Simulink tool, we have constructed the following three example
systems. The first, a first-order low-pass filter, illustrates the
use of abstracting the circuit parameters away from the user and
simply prompting them for functionality-based parameters. The
second example, a spiking neuron system, demonstrates the
use of a specialized bio-FPAA, RASP 2.8b. The third example
system, a VMM-WTA system, demonstrates the use of the
switch matrix as a computational element. For these example
systems, we highlight the three phases of system verification:
Simulink system-level simulations, SPICE transistor-level
simulations, and FPAA hardware-level results.

A. Low-Pass Filter

One simple example system we have constructed and tested in
Simulink, SPICE, and the FPAA is a low-pass filter block. This
particular filter is a first-order block and was previously
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Fig. 11. (a) Simulink model of the spiking neuron system. (b) Simulink simulation of the spiking. (c) Spiking as compiled on FPAA. The complete example is a
spiking Hodgkin-Huxley neuron, input block, and output buffer.

Fig. 12. (a) Simulink model of two neurons and a synapse model. (b) Spiking
activity of the two neurons. The pair of neurons demonstrates synchronized
spiking due to the coupling through the synapse circuit element.

shown in Fig. 7(a). The transfer function for this filter is given
as

(1)

Fig. 13. Three phases of implementation for the VMM-WTA system. (a) The
Simulink design. Each of the two blocks, the VMM and WTA, will be compiled
based on the custom analog library. The in and out ports will be compiled to
I/O pins on the FPAA. The scopes in the figure are for simulation purposes
and are not compiled to hardware; they represent the locations of the outputs in
Fig. 14. (b) A subblock circuit to which Sim2spice will compile the VMM block.
The netlist for this circuit will be tiled in the horizontal and vertical directions
according to the parameters specified by the user. (c) The corresponding switch
representation to the 2 2 VMM subblock that RASPER will compile. This
VMM uses the floating-gate routing fabric for both switches and weight storage.

where is the time constant. In the circuit implementation, this
time constant is set by , where

(2)

is the gain of the amplifier. In order to abstract the design, in the
parameter box, the user is only asked to specify the time con-
stant. By using a fixed-capacitor design, the block will translate
this time constant into the gain of the amplifier. In the resulting
netlist, the gain is set by the bias current of the OTA, as described
in (2). This illustrates the way non-analog designers can take ad-
vantage of this tool: they specify a filter of a certain order and
its poles, and the compiler will create amplifiers with bias cur-
rents. The process of parameter abstraction detailed here can be
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Fig. 14. Output of the VMM-WTA system is compared between the Simulink response and the real hardware data from the RASP 2.8a FPAA. The first row of
plots corresponds to the output of the Simulink simulation, and the second row is from the FPAA. The columns represent a common state of the system between
the Simulink simulation and the FPAA. The columns correspond to the scopes in Fig. 13(a). (a) The input vector evolves in such a way that each component has a
time having the highest value. Here, the inputs are dimensionless signals. (b) The Simulink VMM matrix in this example is the identity, so the output of the VMM
is equal to its input. (c) The output of the WTA shows the boolean output corresponding to the input that is highest at a given time. (d) The input vector for the
hardware VMM-WTA system is the same as the Simulink example. The input to a hardware system must have physical dimensions; in this, case we used currents.
(e) As in the Simulink case, the output of the identity VMM is equal to the input. (f) The output of the hardware WTA demonstrates the same boolean trend as
shown in the simulation.

extended to any block. Fig. 10 shows the Simulink block-level
diagram, SPICE step simulation, and FPAA step response.

B. Neuron

Another example system we have constructed using
Simulink, compiled to SPICE netlist, and targeted to a spe-
cial purpose neuromorphic FPAA (RASP 2.8b) is a spiking
Hodgkin–Huxley-type neuron block. The circuit for this spiking
neuron follows the model described in [21]. The Simulink block
diagram of the neuron block and necessary input and output
blocks, such as an output buffer, is shown in Fig. 11(a). Spiking
data from the Simulink model can be seen in Fig. 11(b) and
from the FPAA in Fig. 11(c). The neuron block worked as
expected in both Simulink level simulations and implemented
in analog hardware on the FPAA.

We also compiled a system of two coupled neurons to demon-
strate synchronized firing. The Simulink diagram for this system
is shown in Fig. 12(a). Two neurons are shown with one feeding
into the other trough a programmable synapse. This synapse is
a floating-gate transistor that can be programmed strongly or
weakly depending on the desired weight. The output of this cou-
pled system is shown in Fig. 12(b). The two neurons are shown
to be in sync, with the first one coupling onto the second.

C. VMM-WTA

The third example system is shown in Fig. 13(a). The system
consists of a VMM feeding into a WTA. Fig. 13(b) shows a
sample 2 2 circuit that will result when the VMM block is
compiled to SPICE [22]. The circuit implementation contains
design fields such as the number of transistors in the array,
floating-gate program values, and amplifier biases. To aid the
inexperienced analog designer, these fields are all presented as
functional parameters to the user. Referring back to Fig. 5, the
block-level design choices include matrix coefficients and time
constant.

Fig. 13(c) shows what the sample 2 2 VMM will look like
after compiled by RASPER. The diagram shows the same two
OTAs that were in the previous schematic, along with the con-
nection switches and floating-gate elements. It should be noted
that one benefit of the RASP architecture is that any floating-
gate elements can be synthesized right into the switch fabric
[23]. This allows for much denser routing and the ability to
create larger structures.

The results from the VMM-WTA system are shown in
Fig. 14, where (a)–(c) are from the Simulink simulation and
(d)–(f) are real data from the RASP 2.8a FPAA. The three plots
for each correspond to the output at the scopes in Fig. 13(a).

The two rows of output plots in Fig. 14 match almost iden-
tically. The input vector (first column of plots) is designed in
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such a way that each element input has a time being the largest.
After the matrix multiplication with an identity matrix (the
middle column), the magnitudes are preserved. The output after
the WTA (last column) correctly decided which element of the
vector was the largest.

Of note, a major dissimilarity between Simulink and Hard-
ware is the concept of what constitutes a “signal.” In Simulink,
the signals are simply numerical vectors. This is sufficient to
prove the functionality of the system. In real hardware, how-
ever, we are dealing with currents and voltages. In this example,
we made the Simulink vector log values in order to map easily
to the exponential nature of the input currents. This is an easy
conversion to make, but it is something that the user should be
aware of when dealing with analog signal processing.

VI. DISCUSSION

We have developed Sim2spice, a configuration tool that al-
lows for the conversion of signal-processing systems defined
as interconnected blocks in MATLAB Simulink to a SPICE cir-
cuit netlist. This netlist can then be compiled to a targeting code
for reconfigurable switches in an FPAA with an existing tool
called GRASPER. A user can quickly and effectively compile
relatively complex systems directly into analog hardware, even
without a thorough understanding of analog circuit design. This
tool flow opens a new world of design and rapid prototyping in
analog to the wider signal-processing community.
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