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CHAPTER 1

OVERVIEW

This body of work as whole has the theme of using floating-gates and reconfigurable

systems to explore and implement non-traditional computing solutions to difficult prob-

lems. Various computational methodologies are used simultaneously to solve prob-

lems by mapping pieces of them to the appropriate type of computer. There exists no

systematic approach to simultaneously apply analog, digital, and neuromorphic tech-

niques to solving general problems. Typically, this is a very difficult task, and one that

few attempt to undertake. However, when done right, solutions can be found with

orders-of-magnitude improvement over existing solutions restricted to using only one

type computational domain. To that end, I have helped build large and complicated

reconfigurable systems (and software tools for helping to use these systems) capable

of implementing solutions to problems in all three of those domains simultaneously.

These systems are used to explore and implement these cross domain solutions to

difficult problems.

The earlier work was involved with simply applying floating-gate technology to im-

proving the building blocks of digital systems. Through that early work a new logic

family built from floating-gate transistors was discovered, a Logical Effort compatable

power analysis technique was developed, and low power floating-gate based FPGA

was implemented. This work was then merged with existing research in the group in-

volving solving problems using reconfigurable analog, and neuromorphic techniques.

Thus converging on the mentioned systems that allow one to solve problems using

techniques from all three domains: analog, neuromorphic, and digital.



CHAPTER 2

BACKGROUND

Since we are trying to solve a wide variety of computational problems, we will be im-

plementing systems that are to certain degree, general purpose. The approach we will

take will largely be one of reconfigurable systems. Low level computational elements

(digital or analog devices) are placed in a sea of flexible wiring. High level functionality

is produced by building large circuits out of these devices by using the flexible wiring

(interconnect) to reconfigure the devices into a new topology. Switches are the smallest

elements of the interconnect, and provide the utility of being able to either connect two

nets together, or not, decided by the state of some memory element assigned to that

switch.

In the majority of modern FPGAs, this is implemented by a single nFET (or some-

times a transmission gate) whose gate is driven by SRAM. Our reconfigurable systems,

however, use floating-gate transistors as both the switch and the storage device. Figure

1 shows examples of SRAM based and floating-gate based switches.

2.0.1 SRAM Based Switches

One way to increase the efficiency of an SRAM based switch is to use just just use

a single nFET, instead of a transmission gate (a pFET and nFET in parallel). This

reduces parasitic capacitance at a cost of conductance, but the net effect is usually a

faster switch. This circuit, when both the SRAM and logic are on the same voltage, only

passes up to about a threshold voltage less than the rail for a logic high output. This

reduces headroom and noise margin and significantly increases the leakage power in

gates driven by this lower logic level.

Consider the tristate inverter of Figure 2a. Its function is to invert the input signal

when VS EL is high, connecting the output through a low impedance path to either the

VDD or GND , and to disconnect the output from any rail voltage when VS EL is low. A
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(a) (b)

Figure 1. a) Switch element M is an nFET with SRAM based state storage as is typical of modern
FPGAs. M′s state is set by turning on MS EL and driving ColS el high or low. b) Switch
element M is a pFET whose gate has no DC paths under run-time bias, and whose state
is stored as charge trapped on the f g node. Negative charge is added through MINJ by
channel hot electron injection or removed through CTUN by Fowler-Nordheim tunneling

transient simulation of input and output voltage for this device can be seen in Figure

2b for various values of VS EL. An idiosyncratic output is observed for when the gate

tries to pull the output high. This is the well known threshold drop behavior of nFETs

attempting to pass logic level high signals.

This response is due to the output of the gate being the source terminal of the

passfet nFET. Assuming that the output is initially low, and that the input makes a

transition from high to low, the tristate’s pull-up network turns on and starts to pull

the output high. However, as the output voltage starts to rise, the source voltage of

the nFET starts to increase and eventually causes the passfet to enter subthreshold,

where conduction is significantly weaker. The EKV model predicts this to be when

κ(VG − VT0) − VS < 0, (1)

where κ is the capacitive coupling ratio of the gate voltage, VG , into the surface potential
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1.8V for an arbitrary load. VDD was 1.2V and the threshold voltage for this process is
about 0.4V.
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of the channel, and all voltages are referenced to the bulk. In this case, VG = VS EL and

VS = VOUT , such that the maximum voltage the output can go to before the onset of

subthreshold is

Vout = κ(VS EL − VT0) (2)

To keep the passfet above threshold during the entire transition, VS EL must be bi-

ased higher than VDD :

VS EL =
VDD

κ
+ VT0 (3)

Figure 2b shows that for VS EL = VDD that the output quickly reaches to about a

threshold drop down from VDD before the passfet leaves above threshold and then

starts to slowly conduct up towards VDD in subthreshold. Larger values of VS EL cause

the passfet to stay in above threshold longer, and for VS EL = 1.8V the passfet is in

above threshold the entire time and the output voltage quickly converges on VDD.

If the delay of the gate is measured as the 50% rail-to-rail propagation delay, then

the time scale of this figure is too large to see any speed differences, as for all values

of VS EL in this figure, the onset of subthreshold is after the output goes to VDD/2.

Figure 3 shows the average propagation delay speedup of a tristate inverter in a

chain of tristate inverters versus VS EL for various h , where each stage hi = h, for

various h. Here h stands for the Logical Effort term, electrical effort, which is closely

related to fanout and load capacitance, and is defined as the ratio of load capacitance

seen by the driving gate to the driving gate’s input capacitance, h = Cout/Cin.

Note that speedup increases monotonically with VS EL and h, which makes sense,

as the smaller the load capacitance, the more delay is dominated by the gate’s own

parasitic capacitances which are not discharged by the passfet. For this particular

process and gate topology, simulation shows speedups in excess of 30% when VS EL >

VDD + VT0.
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Figure 3. Average propagation delay speedup of a tristate inverter in a chain of tristate inverters
versus VS EL for various h. Where each stage of the chain has the same h.

SRAM can achieve these results by running the SRAM rail voltage at a higher volt-

age than the rest of the logic in the chip. But this comes at a cost of an increase in

leakage current in the SRAM. Floating gates, however, can do this without increasing

memory stand-by power, while also simultaneously reducing all stand-by power from

off switches.

2.0.2 Floating-Gate Based Switches

Floating-gate transistors are normal MOSFET devices where the gate is completely

insulated by silicon-dioxide. This means that all terminals capacitively couple onto the

gate, and the device’s effective threshold is modified by charge trapped on the gate.

The modeling of the behavior of this device can be achieved by substituting for the gate

voltage the following in any MOSFET current equation

V f g =
1

ctot
(Q f g +

∑
vici) (4)

where ctot is the total capacitance at the floating-gate, ci and vi are the capacitance

coupling into the floating-gate and the voltage at the ith node of the device. Q is the net

total charge on the floating gate that is modified (or programmed) to set the state of the
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device.

Since the gate has no DC path to ground, the charge Q is trapped and remains

on the floating-gate during normal circuit operation. However, for the floating-gate to

implement the state storage of the switches, this charge has to be modifiable in a

selective manner.

Figure 4 shows an array of floating-gates. All floating-gates are erased by applying

a very large voltage to the global signal VTUN! which enables electrons to flow off of the

floating-gate nodes into the VTUN! net by Fowler-Nordheim tunneling. This makes all

floating-gates very positive in potential, and effectively turns off all floating-gate pFETs.

To selectively turn on a pFET floating-gate, electrons are injected onto the floating-gate

by way of impact based channel hot electron injection through Min j (Figures 1b and 4)

[1]. If AVDD is set to a high enough voltage to allow for injection, the ith floating-gate

is injected by setting RS i low and CS j low. Injection takes place in regions where the

electric field is strong enough to heat a significant portion of the minority carriers in the

pFET channel to energies high enough to conduct in the silicon-dioxide, and the field

in the oxide is such that those carriers are attracted to the floating-gate. The highest

electric fields are achieved by operating the device in subthreshold, where almost all

of the source to drain voltage is dropped in a very short region near the drain, and

setting the source to drain voltage as high as possible. In this case, the probability

of injection of each carrier is maximized, but when this is maximized the amount of

available carriers tends to be very low. Because of this, injection rate is maximized

somewhere near the onset of above threshold, and tends to be very poor in regions of

high above threshold (lots of carriers, not very high fields) and deep subthreshold (very

high fields, but not many carriers) [1]. In order to bias the device in regions conducive to

injection, and further optimize the dynamic range of programmability, there is a control

gate on each floating-gate that is controllable during injection.

Figure5 shows the floating gate erase and program method. The erase comprises a
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Figure 4. Programming is achieved by globally removing charge from the floating-gate nodes
through CTUN via Fowler-Nordheim tunneling, and then selectively adding charge
through Mi, j with impact carrier hot channel electron injection. Injection of charge per
row is controlled by the selection lines CS i, and per column by the drain lines CS j.

forward tunneling operation that removes electrons from all floating gates in the system.

Due to different starting conditions, and different tunneling rates, floating-gates end up

at different states at the end of the tunneling. The different starting conditions are due

to previously programmed state, or floating-gate drift due to multiple erase exposures.

The rates are largely layout dependent, but are also significantly impacted by process

variations across the chip.

In general, tunneling slower, ie. at a lower voltage, for longer periods of time, can

bring the entire population of floating-gates to the same average. But this can take an

unreasonable amount of time. Therefore, an aggressive forward tunneling operation

takes place that pushes the worst case floating-gates into the accepted off range. But

also happens to push some of the floating-gates into such an off state that they can

not be programmed with injection (injection being proportional to current). A reverse

tunneling pulse is used to bring the populations back together. Then individual floating

gates are programmed selectively using hot electron injection.
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Figure 5. The floating-gate programming procedure uses a global erase comprising a forward
and reverse tunneling phase, and then individual floating-gates are selectively pro-
grammed using hot electron injection.

Well designed floating-gates and programming techniques are able to produce run-

time voltage ranges on the floating gates (this range is fundamentally limited by tunnel-

ing) that are higher and lower than the supply nets. This makes a switch with a much

higher Ion/Io f f value than an SRAM based switch would be able to achieve. And since

accurate programming algorithms exist that can precisely set the charge on floating

gate, a continuous spectrum of currents between the on and off state can be achieved.

This property makes the floating-gate transistor useful as an explicit circuit element to

modify the behavior of analog and digital circuits, or can be used to perform meaningful

computation with interconnect devices.
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CHAPTER 3

CAPACITIVELY COUPLED FLOATING GATE DIGITAL CIRCUITS

In synchronous digital design the delay of the critical path is used to set the clock

frequency in order to guarantee that the propagation delays of all paths will satisfy the

setup and hold times of the latches used to synchronize the data. In the classical CMOS

design space, the choices allowed on these paths include gate mapping and transistor

sizing. While a larger, more parallelized gate architecture with transistors sized through

methods like Logical Effort are able to sacrifice area and power in order to further

enhance the performance of the critical path, a smaller, less complicated architecture

with minimally sized transistors can be used on non-critical paths, sacrificing speed

for area and power. The synchronization, however, still becomes a necessity as given

by these quantized design options, and the intrinsic process variability of fabrication, it

becomes nigh impossible to equate the propagation delays of all paths. All paths will

end up with a varying amount of slack Figure 6. Giving the designers more options to

allow them to optimize out the slack, as well as to further control the power, area, and

delays can pave the way for a better design and has been the topic of much research,

giving rise to commercially implemented techniques such as: Dynamic Voltage Scaling

(DVS), and variable threshold transistors [2].

While lowering the clock frequency of a chip at run time can certainly reduce the

average power consumed by the chip, it hurts average MIPS/Watt performance giving

rise to an increase in energy used per computation. This is because it increases the

amount of slack in every path on the chip, and while the dynamic energy consumed per

computation may stay the same, an increase in time is spent dissipating static power.

In order to decrease the energy consumed per computation, techniques like DVS scale

the rail voltage of the chip with the frequency to reduce the slack.
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Changing the rail voltage has a many fold effect on a digital circuit’s operation. In-

creasing VDD increases the amount of charge that has to be moved onto a gate in

order to fully charge it up which linearly increases dynamic energy per switch, and be-

cause the driving gate’s ability to source current increases polynomially with VDD, a

net decrease in switching time results. An increase in VDD, while usually not signifi-

cantly increasing subthreshold leakage currents, increase the voltage drop over which

the leakage currents pass and therefore linearly increases static power dissipation.

Adjusting the threshold voltages of the transistors that make up the gates gives rise

to a new design trade-off. Increasing the threshold of a device exponentially decreases

the subthreshold leakage currents but polynomially decreases the driving current when

the devices are supposed to be on. Adjusting the threshold allows the designer to trade

off static power dissipation and speed and can be done at fabrication time by changing

the doping profiles or the oxide thicknesses.

An important consequence here is that given a particular path architecture and a
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target path delay, there is a two dimensional design space for VDD and VT in which

a subset of points exist that will produce the target frequency, and within this space

dynamic and static power dissipation are traded off, and that there exists a particular

VDD and VT for that path that globally minimized total power [3].

There exist significant barriers to picking the optimal VT for all paths. While the

threshold voltages can be adjusted rather harmlessly by changing the doping profiles,

the select ability of this offset is coarse-grained in that doping profiles are applied to

either the entire chip or very large portions. Changing the doping can also produce

adverse effects on carrier mobility within the devices, hindering speed even further.

Threshold adjustments in the form of varying oxide thicknesses can be applied very

selectively to individual paths but the choice of thickness is usually process limited to

only a couple. Varying VT in these manners are static at run time and allow for no run

time trade off of energy per cycle and cycle time.

Having varying VDDs for spatially local paths becomes logistically implausible. For

every new VDD desired a new rail routing network needs to be introduced and a new

power source needs to be fabricated. This aside, two adjacent paths with varying VDD

will either be forced to have separate wells for their pFETS or suffer significant well

leakage between the rails. Another barrier is that paths with different VDDs produce

different logic levels, and upon mixing these signals it may be necessary to introduce

logic level shifters. This is why in VDS VDD is often varied globally across the entire

chip, or at best variable VDDs exist on the chip but in very coarse grained regions to

minimize the area penalties. To further limit the choices of DVS, there exists maximum

and minimum values for acceptable CMOS operation for VDD [2]. Significant prob-

lems arise when VDD approaches the reverse bias breakdown voltage of the PN diode

junctions or within twice the threshold voltage of the devices.

We present a capacitively-coupled, floating-gate based digital CMOS logic family

(CCFG CMOS) that allows a designer to trade-off dynamic power versus delay, and
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static power versus delay, without the limitations of DVS.

3.1 CCFG CMOS

As can be seen in Fig. 7, there are two capacitively coupled inputs to the floating-gate

of the transistor. The input labeled VIN , coupled through CC, serves as the regular

transistor gate input used in CMOS devices, while the other input, labeled VB and cou-

pled through CB, is used as a bias voltage for the transistor. The pull-up and pull-down

networks of CMOS logic gates can be built using floating-gate nFETs and floating-gate

pFETs as per normal CMOS design using the VIN inputs as the regular gate inputs.

The bias inputs of each floating-gate nFET are tied together to form the nFET bias net,

VBN , while the bias inputs of the pull-up network are assembled to form VBP. An inverter

and a two-input NAND gate made by this arrangement are shown in Figure. 7.

The capacitance CIN , seen by the regular input, becomes the parallel combination

of CC and the rest of the capacitance seen at the floating gate node including CB and

the capacitance looking into the gate CG. The smaller CC, the smaller the input capac-

itance, and the less charge that has to be moved in order to charge up the node. This

in turn linearly decreases the amount of energy consumed per switch with decrease

in input capacitance. The caveat here is that the contribution of VIN to the floating

gate voltage is then proportional to the capacitive divider of CC and the total capac-

itance seen at the floating gate, Ctotal, so while the driven gate requires less charge

per switch, the strength of the driving gate at supplied current decreases polynomially

with decrease in the amount coupled. This gives rise to a fabrication time trade off of

dynamic power dissipation and speed.

The bias voltage gets coupled into the floating-gate much in the same way as the

input voltage but through CB. However, this voltage remains static during normal op-

eration of the gate and after charging up once serves to simply couple an extra bias

voltage into the floating-gate to effectively adjust the the threshold of the device. By
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increasing the VBN voltage a polynomial increase in driving current results which in-

creases speed, but an exponential increase in subthreshold current occurs increasing

static power dissipation. This allows a run-time adjustment of speed and static power

dissipation.

Dynamic power dissipation can be optimized on a per path basis using CCFG

CMOS by choosing the capacitive dividers at fabrication time without any of the penal-

ties associated with trying to apply multiple VDDs to spatially local paths, or without

having to mix and convert different logic level signals.

Threshold adjustments of floating-gate CMOS inverters have been explored in the

past by [4] and [5] by moving charge on to and off of the floating-gate through hot-

electron injection / Fowler-Nordheim tunneling and UV light conductances respectively.

In this scheme static power dissipation can be adjusted on a per path basis using

CCFG CMOS and tying all of the nFET biases together and all of the pFET biases

together within the path and applying bias voltages accordingly. This incurs a similar,

but not nearly as large, problem as having multiple VDDs in that the finer grain the

solution the more voltage sources are required. The benefit with CCFG CMOS is that

the voltage sources are not constrained locally by well leakage, and simply act as

references drawing little to no measurable power and can be routed therefore on a

minimally invasive network.

3.2 Simulation

The design space for a few simple paths were explored using SPICE. The paths were

variations on inverter chains. All of the inverts involved were minimum sized, the paths

contained a varying number of stages, and simulations were carried out for standard
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Figure 7. Multiple floating-gate transistor and its abbreviated drawing. One can see how the
devices come together to create complex CCFG CMOS gates with local, shared biases.

Figure 8. Normalized energy per cycle versus normalized cycle time for various six stage inverter
chains simulated with SPICE3F5 using the BSIM3.3 models provided by MOSIS for the
TSMC 0.35u process: standard CMOS implementation shown in dense black circles,
standard CMOS using DVS shown in sparse black squares, and CCFG CMOS imple-
mentations of varying capacitor sizes shown in colors
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Figure 9. Energy versus cycle time plot for a CCFG CMOS inverter chain that was fabricated
in a 0.35um process. The two different curves were for two different values of input
capacitance for the CCFG inverters, and moving along each curve was done by varying
the bias voltages on the coupling lines.
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Figure 10. a) Partial layout of the fabricated CCFG CMOS inverter chain. Using a two poly process
the common poly1 gate is split and overlapped with a strip of poly2 which becomes the
new gate input. The top and the bottom portions of the original poly1 strip are crossed
with a horizontal strip of poly2 which spans all of the gates in a path to comprise the
bias lines. b)Partial die photograph of the test chip, a CCFG CMOS ring oscillator is in
the top right.

CMOS structures with and with out DVS, and CCFG CMOS structures (Figure. 7) of

varying capacitive dividers and bias voltages.

The results for a particular path architecture of six minimum sized inverters in a

0.35um (the same process chosen for verification through fabrication) digital process

can be seen in Fig. 8. This figure shows energy consumed per cycle (EPC) for various

path implementations normalized by the EPC of the standard CMOS implementation

running as fast as it can versus the cycle time normalized by the delay of the standard

CMOS path.

The densely populated line of black circles represents the standard CMOS case.

The data ready was taken at 50% of the rail to rail voltage, and as can be seen the

EPC increases rapidly until it settles in a rather linear slope representing only further

static power dissipation as the path waits the amount of slack time before switching

again. The path populated with sparse black squares represents the same standard

CMOS implementation with DVS, which does rather better when slack is introduced.

Under a 20% increase in cycle time the standard CMOS case consumes 7% more

power and the DVS case consumes 40% less power. In practice, these gains will vary
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with circuit topology.

Each colored curve represents a CCFG CMOS implementation with different ca-

pacitor sizes for CC with CB = CC/10, moving curves from left to right represents a

decrease in CC, while moving along the an individual curve from left to right represents

a decrease in bias voltage VBN with VBN = −VBP. As can be seen, for the same EPC,

a CCFG CMOS implementation can operate 12% faster, or at the same speed a re-

duction in EPC of 36\% can be achieved. In this case, the CCFG CMOS path really

shines when a 20\% increase in slack is introduced, where a 62% reduction in EPC is

observed.

3.3 Measurement

A chip was designed to help validate the results of simulation, as well as to further

explore the area ramifications of designing with CCFG CMOS. A double-poly process

was chosen because it allowed for a very tight layout. A partial layout involving a

chain of inverters is shown in Fig. 10a, when layout is done in this manner a minimal

amount of area penalty is incurred in implementing low capacitively coupled CCFG

CMOS, however, in designing for very fast structures that require higher capacitive

coupling of the inputs a larger area penalty will be incurred. CCFG CMOS oscillators

were also fabricated using MOSFET capacitors to explore the layout consequences in

the absense of a double poly process. Using MOSFETs certainly increases the area

overhead but still works. To chips were also also erased by exposure to ultraviolet

light to normalize any change that may have accumulated on the floating-gates during

fabrication.

In order to get accurate speed measurements the inverter chains were implemented

as 13 stage ring oscillators (12 CCFG CMOS inverters and one CCFG CMOS NAND

gate) whose output was divided down many times to a reasonable speed to get off

chip. A partial photo including a ring oscillator and instrumentation circuitry is shown
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in Fig. 10b. A few EPC versus cycle time sweeps are shown for two different CCFG

CMOS ring oscillators built using double-poly capacitors in Fig. 9. The power dissipa-

tion was higher than expected for all floating-gate implementations due to fabrication

errors which have been fixed in a new version of the chip that is in fabrication, but the

functionality of CCFG CMOS and the trends for the trade offs as expected from theory

and simulation are clearly shown.

19



CHAPTER 4

LOGICAL POWER

In this chapter, we propose a method to predict power that is compatible with Logical

Effort (LE) that we call Logical Power (LP). Logical Power is designed for the charac-

terization of digital CMOS logic gates at the level of hand analysis in order to predict

delay and energy consumption. The models for delay and energy presented are naive,

first-order, linear predictors that take into account load capacitance while ignoring input

slew rate, but are shown to be quite accurate. LE has previously been shown, and LP

will be shown, to be greater than 90% accurate versus SPICE simulation for a wide

variety of cases. An approximate analytical solution to the optimal inverter chain sizing

for minimized energy under constrained non-minimum delay is proposed and shown to

be within 2% of optimal when compared to the exact numerical solutions to the LE and

LP equations.

4.1 Introduction

Logical Effort [6] is a model for unitless approximations for normalized path propagation

delay, d, for an N deep logic chain with last stage load capacitance, cN+1 = cL, as

d =
N∑

i=1

fi + pi =

N∑
i=1

gihi + pi =

N∑
i=1

gi
bici+1

ci
+ pi, (5)

where fi is the effort delay of the ith stage in the path associated with the gate driving its

load, which is proportional to the ratio of the load capacitance to the input capacitance

(called the electrical effort) of the driving gate by the gate dependent scalar, gi, called

the gate’s logical effort. The parasitic delay, pi , is the load and gate size independent

delay associated with the gate driving its own internal parasitic capacitances. The

capacitance coefficient ci is the input capacitance to the ith stage, with bici+1 (see Figure

11) being the total load capacitance seen by the i-th stage, and represents the effective
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Figure 11. An arbitrary logic path is illustrated. The ith stage is a two-input nor gate with output
load capacitance equal to bici+1 , the load capacitance of the previous stage is equal
to the input capacitance of the ith stage, ci .

sizing of the gate- double the size of a gate, double the input capacitance. Absolute

path delay is given by dabs = τd where τ is the absolute effort delay of a minimum sized

reference inverter driving a minimum sized reference inverter that sets ginv ≡ 1.

For the purpose of Logical Effort and this chapter, a gate is defined as any digi-

tal CMOS configuration of a pull-up network of pFETs and complementary pull-down

network of nFETs with a single output and one or many inputs applied only to the MOS-

FET gate terminals, where the ratio of any two transistor sizes is fixed. It is important

to emphasize that the parameters gi and pi are simply then gate dependent and are

independent of the gate’s particular sizing.

The LE formulation of delay is simple. It treats MOSFET capacitances as constant,

pull-up and pull-down networks as either open circuits or effective resistancs, and ig-

nores input slew rate. However, it remarkably and consistantly is able to predict the

delay of arbitrary logic paths in modern processes to within 10% error, and usually with

much higher accuracy. In general, the parameters logical effort and parasitic delay

will be different for a falling and rising transition, as well as being input-gate dependent.

One can obtain decent results with average parameters, or can use specific parametres

for transition and input.

The real power of LE is that it solves the sizing problem of gates in a path in order to
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minimize delay. When the first stage gate is set to be constant and the load capacitance

also to be a constant, there then exist N-1 degrees of freedom for sizing choices for the

path. There is an exact set of gate sizings that minimizes Equation 5 and the solution

is obtained when the effort delay of all stages are made equal. This happens when

f̂ = gi
bici+1

ci
= (

N∏
i=1

gibihi)
1
N = (GBH)(1/N) = F(1/N), (6)

where G =
∏N

i=1 gi , B =
∏N

i=1 bi , and H =
∏N

i=1 hi =
∏N

i=1 Ci+1/Ci = CL/C1 . The

path effort, F, is then independent of the gate sizing choices, and minimum delay is

immediately obtained as

dmin = NF(1/N) + P (7)

where P =
∑N

i=1 pi. Predicting delay and gate sizing for speed is what Logical

Effort does well, but what LE does not do is identify the energy ramifications of any

particular set of gate sizings. The sizing for minimum delay has only one solution, but

what about sizing for a target non-minimum delay that minimizes energy? In [7], for

instance, Logical Effort is applied to various high valency adders, which provides a fast

and efficient means of evaluating the delay trade-offs of the different architectures, but

provides no insight into the energy trade-offs.

Figure 12 shows constant delay contours using text-book values for the Logical Ef-

fort parameters for the sizings of the second and third stages for a three-stage logic

path of inverters with fixed load and first stage input capacitance as predicted by Equa-

tion 5. Logical Effort predicts the minimum delay by Equation 7 obtained with the

sizings by Equation 6 and this is the point at the center of the graph. For any delay

greater than the minimum delay, there are contours of values able to obtain that delay.

These contours are of increasing delay as they move outward from that minimum delay

point. Delay for each contour is labeled normalized by the minimum delay sizing.

If a path had a timing delay requirement of 5% higher than the minimum delay it
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Figure 12. Constant delay contours for C2 and C3 of an arbitrary three-stage logic path of invert-
ers with fixed load and first stage capacitance, F = 30. The contours are labeled in
normalized delay to that of the minimum delay, with the optimal minimal delay sizing
shown as the point in the center.

could obtain, then any point on the 1.05 contour shown would suffice. Moving to the

top right in the graph corresponds to greater total capacitance, so perhaps a good

choice on the constant delay contour would be the one towards the bottom left as this

would trend to a smaller design and less dynamic energy. But to figure out exactly

which point minimizes energy, the method of Logical Effort needs a compatible energy

prediction methodology.

The method of Logical Effort is explained in detail in [8]. We show its validity in

modern processes as well as go into further detail how to extract its parameters. In [9]

Logical Effort is applied to cyclic asynchronous control paths, and a similar method for

analyzing power is introduced that considers only active power as a result of the domi-

nant parasitic and gate capacitances as a function of sizing, but provides no method for

accounting for static power, the active power due to intermediate node capacitances,

and limits its scope to only scenarios in which the delay of all stages are the same.

In [10] the energy-delay trade-offs of sizing individual transistors are explored using

the same linear models as in [9], but only heuristics are suggested for the solving the
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optimization problem.

This section served as a crash-course in Logical Effort, and explained the motivation

for Logical Power. The rest of this chapter is organized as follows. Section 4.2 derives

Logical Power as a method to predict path energy as a linear function of the sizing

choices of gates in the path. Section 4.4 investigates the validity of the linear predictors

of Logical Effort and Logical Power with a SPICE simulation based methodology, and

a means of extracting the gate dependent parameters of the two methods. Section

4.3 details the pencil and paper method of estimating the parameters of Logical Effort

and addresses the problems of using a similar method for estimating the paremters of

Logical Power. Section 4.5 provides a statistical analysis of the two methods’ abilities

to predict power when compared to detailed SPICE simulations of randomly generated

logic paths. Section 4.6 applies both methods to the optimization problem of sizing an

inverter chain for the minimization of energy under delay constraints and proposes an

approximate but analytical solution to the exact sizings required to do so.

4.2 Logical Power

Logical Power is a linear predictor for power designed to be compatibile with Logical

Effort- that is, its degrees of freedom are the same and limited to gate sizings. Energy is

predicted on a per gate basis, using only these variables, and two new gate-dependent

paramters, active internal and static internal.

The per-cycle energy consumption of the ith gate is split into its active and static

components as

Ei = Eact,i + Estat,i

The active energy is then expressed as the sum of the dynamic and short circuit

energy as
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Eact,i = Edyn,i + Esc,i

= V2
dd[cout,i + cp,i] + Esc,i

with the first term simply being load capacitances as seen from the gate output of the

gate, the second term being internal capacitances, and short-circuit energy making up

the third term. We define a new parameter, ai , to predict the internal active enery

of a gate, the amount of dynamic energy consumed by internal capacitances plus the

short circuit energy of the gate, which we will refer to as the active internal coefficient,

defined as

aici = cp,i +
1

Vdd
Qs.c.,i. (8)

If the right hand side of the above equation scales linearly with input capacitance,

we can write the active energy as

Eact,i = V2
dd[bici+1 + aici],

which is a reasonable approximation, as both internal capacitance and short-circuit

current should double when a gate’s width is doubled when all other factors are held

equal (input and output slew rate, for instance). In [11], the authors show that when

the input and output slew rates of a gate are the same that short-circuit power is a

constant scalar multiple of its dynamic power , which makes it reasonable to lump the

two together using the same coefficient accounting for both, the accuracy of such an

approximation relying on circuits to not vary too far from the equal stage delay points.

The static energy is then

Estat,i = VddIstat,iT
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where Istat,i is the static current dissipated by the gate and T is the time the gate is static

state, which will be assumed to be the cycle time. We define a unitless time constant,

ds, as

ds =
τs

τ
=

VddCinv

Is,invτ

The process dependent variable, τs, and its normalized value, ds, can be interpreted as

the amount of time a minimum sized reference inverter needs to remain in static oper-

ation to have its static energy equal to its active energy. We define a new coefficient to

predict static energy as a function of input capacitance as

si =
cinv

Is,inv

d
dci

Is,i

where ci is the gate’s input capacitance that varies with its size, and cinv is the input

capacitance for the reference inverter gate.

If the static current scales linearly with input capacitance, we can then represent

the static energy of the ith gate as

Estat,i = V2
dd

d
ds

sici

where d is time normalized per-cycle that the gate remains static, and si is a scaling

factor comparing the gate’s leakage current divided by input capacitance to that of a

reference inverter, and will be called the static internal coefficient that takes into account

only leakage currents sourced by the gate, not that are dissipated in the gate. That is,

for gate’s with non-trivial ammounts of gate leakage current, some of the leakage power

dissipated in a gate could have been sourced by a previous gate, and we do not want

to double count this.

As a matter of convenience, we will use e , which has units of capacitance; conse-

quently, absolute energy is then obtained by multiplying by V2
dd :
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E = V2
dde

The amount of energy dissipated by the ith stage is then

ei = bici+1 + aici +
d
ds

sici,

And the contribution of energy dissipation by the entire path due to the size of the ith

stage is then

e = (bi−1 + ai +
d
ds

si)ci (9)

The total path energy per cycle then becomes

epath = cL +

N∑
i=1

(bi−1 + ai +
d
ds

si)ci (10)

where b0 = 0 to remove the input capacitance of the first stage out of the energy

calculation. The total path energy equation assumes that every gate makes a transition

during every cycle. In general, this is not the case, and for completeness a per gate

activity factor, αi , can be added to all terms associated with active power, resulting in

epath = αNcL +

N∑
i=1

(αi−1bi−1 + αiai +
d
ds

si)ci. (11)

4.3 Parameter Estimation

In order to apply these methods, the gate dependent parameters of Logical Effort

and Logical Power must be determined for the logic paths. These parameters are ei-

ther extracted through simulation (Section 4.4), experimentation, or through topological

analysis with simple circuit principles. While simulation and experimentation certainly

produce the most accurate parameters, hand analysis methods allow for an intuitive
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understanding of how different gate topologies will affect the various parameters. Ex-

tracting parameters for Logical Power is the topic of this section, and we start from the

approximations used in Logical Effort.

4.3.1 Logical Effort

For a simple inverter, the pull-up network is a single pFET and the pull-down network

a single nFET. The pull-up and pull-down networks source current as functions of their

gates, vin, and drains, vout. If the input slew rate is ignored and approximated as con-

stant with respect to time, and it is assumed that for rising output transitions the pull-up

network does not fight the pull-down network, and vice versa, then the delay of a pull-

up transition (the time for the output to rise from Vout = V1 to Vout = V2 ) of a gate driving

a fixed load can be approximated as

4t = CL

ˆ V2

V1

1
Ipu(Vo,Vi)

dVo = CLRpu

where regardless of the shape of Ipu so long as the choices of V1 and V2 remain fixed,

the value of the integral, the effective resistance over the pull-up transition Rpu, remains

valid for varying load capacitances. This approximation is scaled to more complicated

pull-up and pull-down networks by ignoring the intermediate node capacitances leaving

only the dominant pole of the Elmore delay model caused by the output parasitic and

load capacitances. In this approximation, series transistors are treated as a single

transistor of length equal to the addition of both original transistor lengths, and parallel

combinations leading to an increased effective width.

We define a reference inverter in Figure 13, with approximations for the scaling of

effective pull-up, Ru, pull-down, Rd, resistances, gate input capacitance, Cin , and output

parasitic capacitance, Cp with width are as follows:

Ru =
RpWmin

WP
=

RpWmin

rW
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Figure 13. An inverter with pFET width r times that of the nFET showing input, output load, and
parasitic capacitances is transformed into the pull-up and pull-down networks are re-
placed with their effective resistances.

Rd =
RnWmin

WN
=

RnWmin

W

Cin =
C f et

Wmin
(1 + r)W

Cp =
xC f et

Wmin
(1 + r)W

where RP and RN are the effective resistances of a minimum sized pFET and nFET

respectively, and C f et is the input capacitance of a minimum sized pFET or nFET (as-

sumed to be relatively equal for both), and x is some scalar relating parasitic capaci-

tance to gate capacitance.

Propagation delay is then modeled as some effect pull-op or pull-down resistance

multiplied by the the total capacitance seen at the outout (load capacitance plus internal

capacitance), so the pull-down propagation time is given by

dd = Rd(Cp +Cout)

=
RnWmin

W
[
xC f et

Wmin
(1 + r)W +Cout]

=
RnWmin

W
Cout + xRnC f et(1 + r)

The first term is the part of the delay that scales with output capacitance and in-

versely with gate width, and the second term is independent of both capacitance and
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gate size. Transforming this equation into the form of Logical Effort results in

dd = τ(ginv
Cout

Cin
+ pinv)

Comparing these two equations, it becomes clear that the first term is the electrical

effort and the second term the parasitic delay. Equating these terms results in

τginv
Cout

Cin
=

RnWmin

W
Cout

= RnC f et(1 + r)
Cout

Cin

where ginv ≡ 1 and τ = RnC f et(1 + r).

We define the logical effort of a reference inverter to be equal to one. The Logical

Effort of any other gate is then approximated as the ratio of its driving strength multiplied

by its input capacitance and the driving strength and input capacitance of the reference

inverter:

g =
RCin

RinvCinv
(12)

The parasitic delay of the reference inverter is

pinv =
xRnC f et(1 + r)

τ
= x ' 1

where in most processes x is nearly one.

In practice, it is difficult to size for equal rise and fall times, and generally impossible

to do so for all possible values of h . In general, when the rising and falling logical

efforts, gr and g f , are equal, the rising and falling parasitic delays, pr and p f , are not.

However, for pedagogical reasons we will assume that a reference inverter is sized for

equal rise and fall times and that this leads to r = 2 .

Applying the model to an n-input NAND gate (Figure 14) and sizing for equal rise

and fall times results in
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Figure 14. n-input NAND gate sized for equal rise and fall times.

Ru =
2Rn

W/Wmin
,

Rd =
nRn

(n/2)(W/Wmin)
,

Cin = (
n
2
+ 1)C f et

W
Wmin

,

and

g =
2Rn(n/2 + 1)C f et

Rn3C f et
=

n + 2
3

In order to estimate simple parasitic delay, we continue with our approximation of

ignoring internal parasitic capacitances and consider only those parasitic capacitances

at the output that results in

τp =
2Rn

W/Wmin

(n + n/2)C f et

Wmin/W

= n3RnC f et

= nτ
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which is the same result as obtained through the simplest reasonable parasitic delay

approximation method: for na n-input gate, p = n .

4.3.2 Logical Power

In order to approximate the active internal coefficients, we need to get estimates of the

parasitic capacitance for the gates. One way to do this is to re-extract from parasitic

delay:

p =
RdCp

τ

Solving for Cp and equating to Equation 8 and dropping the short circuit term we find

that

acin = Cp =
pτ
Rd

Solving for a and using the normalized equation for the logical effort parameter, Equa-

tion 12, we arrive at the very simple equation

a =
p
g

(13)

When ignoring short-circuit power and miscellaneous intermediate parasitic capac-

itances, the above relationship provides a very simple approximation for our active

internal coefficient a using only Logical Effort parameters.

Referencing Figure 15, it can be seen that for a switching A-input, that the inter-

mediate parasitic capacitance, Cp2, remains discharged and should therefore negligi-

bly contribute to active power dissipation, and Equation 13 represents an approxima-

tion for the A-input. However, when switching B-input, the intermediate capacitance

is charged and discharged. Because in the delay approximation, delay is increased

polynomially with the distance a capacitance is from the source of the signal, ignoring

intermediate capacitances was justified because a differential amount of capacitance
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Figure 15. A two-input nand gate showing load capacitance, CL , and various internal parasitic
capacitances, Cp1 and Cp2.

contributed less to delay the farther away it was from the end of the path of signal prop-

agation. The energy consumed due to intermediate capacitances does not follow this

trend, a differential amount of capacitance added anywhere will eventually get charged

or discharged by the same amount regardless of location in the signal path and thus

contributes equally to energy. Ignoring these intermediate nodes is not a good approx-

imation in the energy case.

Instead of deriving active internal parameters from Logical Effort parameters, one

could always be more thorough and re-extract these from the gate topology and include

the internal parasitics. For the B-input of our 2-input NANDE gate this becomes

anand2,b =
5
2

For an n-input NAND gate and an n-input NOR gate of equal rise and fall time with

the assumed above parameters and a switching input of distance y in the transistor

stack from the output (y = 1 for the closest input to the output), these become:

anand =
2n(y − 1) + 3n

2 + n
(14)
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and

anor =
4n(y − 1) + 3n

2n + 1
(15)

Unfortunately, there do not seem to be any estimation techniques of comparable

simplicity for getting the static internal coefficients that are appropriate over varying

technology nodes. This is due to different mechanisms of leakage being dominant in

different processes, and will be explained in further detail in the following section.

4.4 Parameter Extraction

To extract the Logical Power and Logical Effort parameters, we need to be able to

accurately measure the components of power and delay for a given logic gate versus

its load capacitance. To do so, we employ the same characterization structure used to

extract the parameters for LE.

Figure 16 shows the circuit used for gate characterization. It is simply the circuit

suggested in chapter 5 of [8]. The circuit comprises multiple chains of gates, where

each gate is the same gate to be characterized. The chains are five stages deep. In

any chain each stage is subjected to the same electrical effort with varying electrical

efforts between chains by increasing the number of branches at each stage.

A pulse is applied to the first stage and performance is measured on the third stage,

the first two stages used to shape the input pulse to something reasonable. Integer

values of electrical effort are achieved by loading a gate with multiples of itself, each

load being loaded to reduce Miller capacitance effects on delay.

The parameters need to be extracted for each gate in order to use LP. In order

to extract the parameters of Logical Power, we need a method to accurately measure

the components of power for a given gate. To do so, we observe various currents

associated with a gate, illustrated in Figure 27: Ipd the current entering the channels

of the nFETs of the pull-down network connection to GND, Ib the current entering the
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Figure 16. Three stages of the characterization circuit used for parameter extraction.

bulks of these devices, Iputhe current entering the channels of the pFETs in the pull-up

network from Vdd , Iw the currents entering the wells of these devices, Ig the current

entering the gates of the transitioning input, Ibu the current entering the gates of the

non-transitioning inputs that are held high, Ibd the currents entering the gates of the

non-transitioning inputs that are held low, and IL the current entering the output of the

gate. All currents are referenced as positive going into the gate, such that the sum of

all of the above currents equals zero. The total currents coming out of the GND and

VDD supplies is then:

IGND = Ib + Ipd + Ibd

and

IVDD = Iw + Ipu + Ibu

The integrals of current are used to evaluate energy as

E = Vq = V
ˆ

idt (16)
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Figure 17. A) an arbitrary CMOS logic gate with pull up and pull down networks and correspond-
ing currents, b) Integrals of current through the VDD and GND supply nets.
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where the integral is taken over a time period that returns the gate to its starting state.

This ensures that all flux that enters through the positive terminal of the voltage leaves

through the negative terminal with no net flux accumulating in the circuit. That is, that all

charge entering the circuit through Vdd leaves through GND. All power measurements

are done through explicit integration of saved values of currents post simulation, as

opposed to using power-meter subcircuits like the one proposed in [12] and used in

[13].

Integrals of IVDD and −IGND for a rising then falling transition for an arbitrary inverter

in Figure 28. In this plot there are four distinct regions of interest. In Region I there is

a significant amount of charge leaving through VDD corresponding to a rising transition

at the output of the gate. This current goes to charging capacitances and thus does

not immediately show up through GND network of the gate. Region II is after the rising

transition has settled and the gate has entered a static region, with Region III being the

falling transition and Region IV the post falling static mode. One can see that after the

gate has been restored to its original state does all charge that has entered the circuit

leave the circuit.

Active energy is then extracted by integrating this current (either ivdd or ignd, both

being equivalent) over Region I and Region III

Eact = Vdd


t2ˆ

t1

ivdddt +

t4ˆ

t3

ivdddt

 (17)

Effective input capacitance, cin , is measured as

Cin =
1

VDD

t2ˆ

t1

igdt (18)

Assuming that after a rise transition that there is negligible voltage drop across the

pull-up network, not all current coming out of Vdd gets dissipated in the target gate as
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some of this current leaves into the MOSFET gates of the load where it is then dissi-

pated in the load gates. In order to avoid over-counting we need to consider only the

leakage currents in the target gate that have an appreciable voltage drop in that gate.

To do so, we measure different currents after different transitions. These transitions for

a rise and fall respectively are

Pstat,rise = VDD(−ipd − ib − ig + ibu − ibd)

and

Pstat, f all = Vdd(ipu + iw + ig + ibu − ibd)

with Pstat being the average of the two.

Figure 18 shows the input voltage and output voltage of a two-input NAND gate

(switching the A-input) using the characterization circuit for various electrical efforts .

The input slew rate changes as all stages in the characterization circuit have the same

electrical effort. This choice tends to make Logical Effort more accurate in the cases

where all stages have similar slew rates which is certainly the case for circuits optimized

for maximum speed.

Rising and falling propagation delays are shown in Figure 19, which shows the

linear behavior of propagation delay in this range of electrical efforts. From this rising,

falling, and average logical efforts are extracted as

g =
1
τ

d
dh

dabs

where τ is obtained from a reference inverter where g ≡ 1. The parasitic delay is

p =
dabs|h=0

τ

The total charge dissipated in the characterized gate flowing out of the Vdd and
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Figure 18. Input and output voltages versus time for input-a of a 2-input NAND gate for various h
for a rising output transition.
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Figure 19. Average propagation delays versus h for for switching either input of a NAND2 gate.
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Figure 20. Integrals of ivdd (solid lines) and ignd (dashed lines) versus time for various h for a 2-
input NAND gate.

GND networks per time is shown in Figure 20 for various electrical efforts. The active

energy parameter is then extracted from the active energy versus electrical effort plot

by the following relationship:

a =
Eact|h=0

V2
ddCin

The static current dissipation is dependent on the input vector to any complex gate.

The static internal coefficient for each input for multiple gates is shown in Figure 22 as

extracted from the following relationship:

si =
cin,inv

Pstat,inv

d
dcin,i

Pstat,i

This figure shows that the relationship of of how the static internal coefficient changes

with input number is very process dependent. The big difference here is that in the

130nm and 65nm LP models used, gate current is insignificant and not modeled. Be-

cause of this, simple relationships can be made for estimating how static internal coeffi-

cients will change with gate topology, however, these relationships are going to change

depending on the presence of significant gate current or not.

40



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

−15

electrical effort

E
ne

rg
y 

(J
)

 

 
a−input data
a−input fit
b−input data
b−input fit

Figure 21. Active Energy versus h for switching either input of a NAND2 gate. Since the B-input
is farther away from the output, it has to charge and discharge extra parasitic capaci-
tance for this transition.
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Figure 23. Randomly generated test circuit. A pool of 2 to 4 input NANDs and NORs and inverters
of random sizes (1 to 8x) are chosen to comprise the 12 stage circuit. Propagation
delay and energy consumption of the 3rd to 10th stage are measured in simulation
and predicted with LE and LP.

4.5 Statistical Path Analysis

The accuracy of the logical power method was verified through a test circuit of random

gate types. The test circuit was a 12 stage logic path composed of two to four input

NANDs and NORs as well as inverters all scaled to random sizes between 1 and 8x

minimum size, as illustrated in Figure 23. This structure of test circuit was chosen

because each gate has an activity factor of αi = 1. The most trivial of circuits have this

property, and the individual activity factors are dependent on circuit topology and input

vector. This circuit was chosen to evaluate the effectiveness of logical power in the limit

of perfect knowledge of activity factor, as the method itself is independent of whatever

system one uses to predict an activity factor.

Propagation delay and total power was measured from the 3rd through the 10th

stage, as well as predicted by LP and LE and the results were compared. Out of 1000

randomly generated circuits, LE had an average error of 0.8% while logical power an

error of 1.6% with a worst case of 5%. Histograms of these data are shown in Figures

24b and 24a.
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(a) (b)

Figure 24. a) LE Error mean 0.8%, b) Logical Power error mean 1.6%

Table 1. Statistical results for Logical Power

Tech Mean Error (%) Max Error (%) Active (%) Static (%)
130nm 0.7 4.5 99 1
90nm 5.3 10.2 84 16

65nm LP 10.4 18.4 99 1
65nm SF 6.0 9.5 77 23

Table 1 shows this same experiment for various processes from 65nm to 130nm as

well as a breakdown for each process what percent of total power was active power.

The best result was a 0.7% mean error from the 130nm process and the worst was a

10% mean error from the 65nm low power process.

4.6 Hand Optimization of Inverter Chain

Unfortunately, there appears to be no analytical solution to the non-linear programming

problem for gate sizings to minimize energy as specified by the Logical Power Equation

11 under the constraint of meeting a target delay specified by the Logical Effort Equa-

tion 5. These equations can be solved numerically by a method that will be referred
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to as the optimal sizing method. In this section, we present an approximation to this

solution for the optimization of inverter chains.

Consider an inverter chain of depth N with input driving capacitance c1 = cinv and

load cN+1 = xcinv, in order to calcualte the Pareto points in the energy delay space, we

start with the LE optimized delay as the minimum delay, maximum energy point (any

solution with higher energy than this would use different sizings, and thus be slower),

and then increase this delay with a method that decreases energy. We choose to

increase the delay of the final stage by decreasing its input capacitance, while keeping

all intermediate stage delays the same, which we refer to as the constant intermediate

delay method. This method fixes electrical effort (through subseqent decreases in their

input capacitances in order to maintain constant electrical effort) up until the first stage,

where delay must decrease.

To gain insight into this method, consider the differential amount of gate stage en-

ergy saved when that stage’s delay is increased by decreasing its input capacitance,

which is given by

dEi

d fi
= −(bi+1 + ai)gici+1 f −2

i (19)

This is obtained by plugging the equation for effort delay into Equation 9, which de-

scribes energy consumed by the entire path due to the ith stage’s input capacitance.

Only effort delay is considered as parasitic delay remains invariant under sizing choices.

This equation assumes that static power is negligible, which is true only for d << ds.

It is clear that if a differential amount of delay is to be introduced to any one stage,

that for for the case of an optimally sized inverter chain with monotonically increasing

stage capacitances (always true for H > 1) that the greatest amount of energy savings

per incremental delay is obtained when this delay is introduced into the last stage.

Keeping in mind that we desire to introduce delay only to the N th stage, but a decrease

in CN will lead to a decrease in hN−1 which in order to return fi = f̂ , cN−1 will also
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have to decrease. Which in order to keep f2 through fN−1 all equal to f̂ , all intermediate

stages will have to have their input capacitances reduced leading to even further energy

savings. While this method does not exactly minimize energy as a function of delay, it

does come very close and has an analytical solution for the required stage sizings.

Starting with the sizings necessary for minimum delay, we obtain an optimal stage

effort delay of f̂ , such that all stage efforts fi = f̂ :

fi = f̂ = gi
bici+1

ci

and

dmin = N f̂ + P

We then increase the delay of the last stage by decreasing CN from its optimal,

while all middle stages are sized such that their effort delays remain unchanged, this

is propagated back to the initial stage whose delay must naturally increase a big as c2

decreases without c1 decreasing:

d = g1b1
c2

c1
+ (N − 2) f̂ + gNbN

cL

cN
+ P (20)

Which considering the target application of an inverter chain, this reduces to

d =
c2

cinv
+ (N − 2)x

1
N +

xcinv

cN
+ N (21)

c2 and cN are not independent, but are related through recursive application of

Equation 6 to the intermediate stages:

cN = c2
f̂ N−2∏N
i=2 gibi

Which for an inverter chain reduces to, keeping in mind that f̂ simplifies to x1/N and that

all parameters like logical effort and branching effort are one in this case,
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cN = c2x1− 2
N

Plugging this into Equation 21 and applying the quadratic formula, c2 can be solved

for for any desired delay as:

c2 =
cinv

2

{
d − N − (N − 2)x

1
N (22)

±

√
[(N − 2)x

1
N − d + N]2 − 4x

2
N

}
(23)

This method is applied to a four stage buffer chain of inverters driving a fixed load

with fixed 1st stage size. Figure 25a shows stage effort delays versus target delay for

sizings picked by Equation 22 , the constant intermediate stage delay method. The

middle stages stay at a fixed effort delay of f̂ until sizings hit minimum sized. Figure

25b shows the same buf for sizings picked by the optimal sizing method. Figure 25c

shows the energy versus delay curves of the two different methods. Each point on the

curve represents a different cycle energy and cycle delay time obtained different gate

sizings. The constant intermediate delay method comes very close to the performance

obtained by the optimal method, the error in energy between the two methods is shown

in Figure 25d , and in this scenario it is shown that it produces energies around 1% of

optimal. The difference is due to the incremental savings in capacitance when delay

is allowed to increase. Since energy savings decrease with 1/ f 2, the optimal method

distributes marginal portions of the increase in delay to many stages and is able to save

a little more energy than the constant intermediate delay method.

The optimal sizing method is applied to various stage length inverter chains driving

a fixed load with F = 250 , and the energy delay curves are shown in Figure 26 .

Stage lengths of 2, 3 and 4 are shown. For this particular path effort an appropriately

sized N = 4 chain minimizes delay, with more or less stages leading to an increase

in minimum obtainable speed. Interestingly at speeds less than minimum, depending
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Figure 25. Stage effort delays of a four stage inverter chain ( F = 250) versus target delay. a)
Sizings picked via Equation 22 . The middle stages stay at fixed effort delay of f̂ until
sizings hit minimum sized. b) Sizings picked by numerically solving Equation 5 and
Equation 11 c) the energy-delay curves obtained by both methods, and d) the error in
the approximation method (a) from ideal (b).
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Figure 26. Energy-delay points obtained by different gate stage sizing choices of various inverter
chains of different depths driving a fixed load with path effort F=250. All points shown
are pareto-points in the sizing space in terms of energy and delay for their respective
chains. N=4 produces the fasted possible speed for this particular path effort, but at
speeds less than minimum, depending on the actual target delay, energy is minimized
by choosing not only the right sizing options but the right number of stages. In partic-
ular, there are some scenarios in which a higher number of stages can minmize energy
for a target delay obtainable with less stages.

on the actual target delay, energy is minimized by choosing not only the right sizing

options but the right number of stages. In particular, there are some scenarios in which

a higher number of stages can minmize energy for a target delay obtainable with fewer

stages.

4.7 Conclusion

The method of Logical Effort is extended to allow for energy delay tradeoffs by Logical

Power. This new method requires two new gate dependent parameters, active internal

and static internal , and uses gate sizing as the only variable, ignoring all sorts of

higher order effects including input slew rate, and is intended for hand analysis for gate

circuit topologies and logic paths. Nevertheless, it is hown to be accurate to within 10%

error when compared to detailed SPICE simulations across many technologies, and is

usually much more accurate than that.
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A hand analysis method for approximating one of the new parameters, active inter-

nal , is presented using many of the same approximations that Logical Effort uses to

estimate its gate dependent parameters. This method ends up being about as accurate

as approximation methods for estimating logical effort and is significantly better than

those used to approximate parasitic delay. Approximating the static internal coefficient

is difficult as different leakage mechanisms dominate in different technologies.

A method is suggested that approximates the optimal sizing problem for minimizing

energy under constrained delay. This method solves analytically for the stage sizes and

produces energy delay tradeoffs within 1.2% of optimal in the test case it was applied

to.
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CHAPTER 5

MEASURING SHORT-CIRCUIT POWER

In this chapter, A new method for accurately measuring short-circuit power dissipation

of simulated CMOS digital gates is presented. Previous methods have had difficulty in

differentiating between dynamic and short-circuit currents in the “turning off” network

during an active transition. This new method naturally converges on zero short-circuit

energy for infinitely fast switching inputs and outputs and never produces negative an-

swers for short-circuit energy- things previous methods have had difficulty with.

5.1 Components of Power

Power dissipated in a logic gate is a complicated function of the gate’s implementation

and its environment. The logic family, transistor topology, transistor sizings, and rail

voltages that all define a gate are only part of the picture. The load that the gate drives,

and transient inputs all factor into the power a gate will dissipate over time.

The power dissipated by the gate can be broken down into three well defined com-

ponents: dynamic power, static power, and short-circuit power. Dynamic power is sim-

ply defined as the amount of power consumed by charging and discharging capaci-

tances seen by the logic gate and can be expressed as:

Pdyn = α f V2
ddCtot (24)

Where αis the activity-factor defining the fraction of the cycles that the logic gate

makes an output transition, f the cycle frequency, Vddthe rail-to-rail voltage, and Ctotthe

total amount of capacitance seen by the driving gate.

Whereas dynamic power is dissipated during an output transition, static power is

the power consumed when the gate is not making a transition and is a simple function

of the static current draw Istat:
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Pstat = VddIstat (25)

The last portion of power, short-circuit power, is defined as the portion of power

consumed during an output transition that did not go to charging capacitances. This

portion of power is quite difficult to express compactly, and for even the most trivial of

logic gates, an inverter, has no closed-form analytical solution. Most approximations

are extremely cumbersome. Short-circuit power, is a function of input slew rate, output

slew rate, and gate topology.

5.2 Measuring Active Power

In order to extract the parameters of Logical Power, we need a method to accurately

measure the components of power for a given gate. To do so we observe various

currents associated with a gate, illustrated in figure 27:

IGND = Ib + Ipd + Ibd (26)

and

IVDD = Iw + Ipu + Ibu (27)

where IGND is the total amount of current supplied by the GND rail, whose components

are Ib, Ipd, Ibd being the currents leaving the bulk, pull down network, and any logic

level zero bias applied to the circuit respectively. IVDDbeing the Vdd rail equivalent.

The integrals of current are used to evaluate energy in:

E = Vq = V
ˆ

idt (28)

where the integral is taken over a time period that returns the gate to its starting state.

This ensures that all flux that enters through the positive terminal of the voltage leaves
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Figure 27. An arbitrary CMOS logic gate with pull up and pull down networks and corresponding
currents.

through the negative terminal with no net flux accumulating in the circuit. That is, that all

charge entering the circuit through Vdd leaves through GND. All power measurements

are done through explicit integration of saved values of currents post simulation, as

opposed to using power-meter sub circuits like the one proposed in [12] and used in

[13].

Integrals of IVDD and IGND for a rising then falling transition for an arbitrary inverter

in Figure 28. In this plot there are four distinct regions of interest. In Region I there is

a significant amount of charge leaving through VDD corresponding to a rising transition

at the output of the gate. This current goes to charging capacitances and thus does

not immediately show up through GND network of the gate. Region II is after the rising

transition has settled and the gate has entered a static region, with Region III being the

falling transition and Region IV the post falling static mode. One can see that after the

gate has been restored to its original state does all charge that has entered the circuit
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Figure 28. Integrals of current through the Vdd and GND rails

leaves the circuit.

Active energy is then extracted by integrating this current (either IVDDor IGND, both

being equivalent) over Region I and Region III:

Eact = VDD


t2ˆ

t1

IVDDdt +

t4ˆ

t3

IGNDdt

 (29)

In order to break active power down into its components, short-circuit power, and

dynamic power, we need to make some choices on how to handle an issue known as

voltage overshoot.

5.3 Voltage Overshoot and Miller Effect

The transient output voltage of a CMOS gate can go above the VDD and below the GND

for that particular gate during transitions as can be seen in Figure 29. This phenomena,

called voltage overshoot, is due to capacitive coupling of a gate’s input to its output by

the gate to drain capacitances of the transistors.
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Figure 29. Transient voltages and currents during a rising output transition showing voltage un-
dershoot at the output as well as the subsequent negative current flowing into GND.

Consider a falling output transition for a logic gate with the input voltage initially

at GND. The output voltage is initially settled to VDD when the input voltage starts

to rise. If the capacitive coupling between the input and output is called CM and the

total capacitance seen at the output is CL, then for instantaneous changes in the input

voltage equal to 4Vin the output voltage will go to

Vout = 4Vin
CM

CL
+ VDD (30)

The magnitude of the voltage overshoot depends on the input slew rate and the

speed by which the output can discharge. During the voltage overshoot the normal

polarity for VDS of the pull up network reverses and the output is helped to discharge

through the pull up network with a positive current flowing into VDD. Power is dissipated

in the pull up network due to this that is not short-circuit power, in fact, this phenomena

seems to reduce short-circuit power. Total power consumption is not increased by this
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effect, it just moves a fraction of the driving gate’s dynamic power to be dissipated in

the load gate.

To see this, consider the analongous circuit in Figure 30. The values of RU1 , RU2,

Cm’s, VDD1 and VDD2 from both circuits are equivalent to each other. In the first circuit

RU1 models the pull up or pull down network resistance of the driving gate, with the

switching between the two networks being modeled by the voltage source VDD1 pulsing

between VDD and 0V. The capacitance Cm models the input capacitance to the load

gate with Cm +CL being the total capacitance seen on the output of the load gate. The

output voltage of the load gate is Vo1, this is where the voltage overshoot will occur, and

R1 models an arbitrary discharging path for this overshoot (after a rising or falling input,

the output is always discharged to ground, which is not the case for CMOS gates,

nonetheless this circuit is sufficient to show the trends on how output voltage swing

can affect power and delay). The second circuit models this effect for when overshoot

is reduced to insignificance by either CL or R1 being sufficiently large or small with

respect to the other circuit elements. The transient voltage behavior of these circuits

is shown in Figure 31 showing both the voltage overshoot above VDD during the rising

input transition and below GND during the falling input.

For the second circuit under consideration, inspection of energy suggests that when

VDD2 increases to VDD, the voltage Vi2 eventually charges to VDD storing an amount

of energy on Cm equal to 1
2CmV2

DD with an equivalent amount of energy having been

dissipated in RU2. When VDD2 is brought back down to 0V, Vi2 eventually reduces to

0V with all of the potential energy stored in Cm discharged through RU2 . Total energy

dissipation of both transitions being CmV2
DD and all of it dissipated in RU2.

While the first circuit is much harder to solve out exactly, one can see that the final

amount of energy stored in the circuit upon settling after VDD1 goes to VDD is the same

as in the second circuit, 1
2CmV2

DD . It turns out that exactly this amount of energy is dissi-

pated in the circuit’s resistors during charging and dissipated again during discharging.
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Figure 30. Example circuits for demonstrating the principles of voltage overshoot in CMOS gates.
In the second circuit, Vi2 corresponds to the input voltage to a load gate with no ca-
pacitive coupling to the load gate’s output, whereas in the first circuit the input voltage
Vi1 is coupled to the load gate’s output voltage Vo1.
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Figure 31. Transient voltages for both circuits under consideration.

That is, total energy consumption of both transitions is the same as the second circuit,

but now the energy is dissipated across two resistors, one being the analog of the load

gate. The total energy dissipation of both circuits as well as the dissipation in each

resistor is shown in Figure 32.

The analogy then suggests that voltage overshoot does not increase dynamic power

dissipation above what is already incurred due to load capacitance, as in both cases

the energy dissipation was defined by Cm only. The phenomena only moves a fraction

of the energy dissipation into the resistances of the load gate. The magnitude of the

fraction being related to the magnitude of the voltage overshoot.

Even though this produces no effect on the total dynamic power, it can have a sig-

nificant effect on delay. To observe this, notice that the delay to 50% rail-to-rail of Vi1 is

less than that of Vi2 as can be seen in Figure 33 . This is because in the first circuit,

over this range of observation, the output voltage tracks the input voltage, effectively re-

ducing the voltage across the input capacitance Cm and reducing the amount of charge
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Figure 32. Energy dissipated by resistances and sourced by voltage sources as a function of
time for the two different circuits for a rise and a fall. As time tends towards infinity,
the energy dissipated in both circuits is identical.

necessary for a given change in input voltage. Whereas, in the second circuit the out-

put voltage is fixed. The net effect being that the delay over this range is less for the

first circuit.

This effect on delay can be explained by the Miller Effect on the effective input

capacitance, Ce f f ective , looking into the load:

Ce f f ective = Cm(1 − Av) (31)

where Cm is the capacitance coupling the input to the output, and Av is the gain from

the input to the output. In the example of circuit one, the gain is positive and less

than one over this range, and thus the effective capacitance is less than the case of

the second circuit with zero gain. For times larger than this range, where the output

voltage stops tracking the input voltage, the effective gain becomes negative, and an

increase in effective capacitance is observed. Therefore, the effect of the Miller Effect
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Figure 33. The Miller Effect on delay.

on the delay of the driving gate depends highly on the output slew rate of the load gate,

and therefore on the load seen by the load gate.

For standard CMOS circuits, depending on the load gate’s load size, the Miller

Effect can either increase or decrease propagation delay. For reasonable load sizes,

like shown in Figure 29, the net effect is trivial. However, if the load gate was not loaded,

the output voltage would swing much faster, and could cause a significant overlap of

Vout and Vin which would increase the gain over this region and thus the effective input

capacitance, which in turn would increase delay.

This means that in the characterization of a logic gate for power, one can safely

ignore the effects of the Miller Effect and voltage overshoot, whereas this is not quite

the case for delay characterization.
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5.4 Measuring Short-Circuit Power

Short-Circuit power contributes an additional energy cost to active gate transitions. It

arises from increased conductivity between VDD and GND during an output transi-

tion due to both pull up and pull down networks being in between their high and low

impedance states. Accurately measuring short-circuit power dissipation in simulation is

complicated by capacitive currents flowing in the turning-off network during transition.

Most methods for measuring short-circuit power, the methods used in [11, 14, 13] for

instance, involve integrating the supply current flowing through the turning-off network

during a transition and assuming that all of this charge contributes to short-circuit power

dissipation. The total short-circuit energy is then

Esc = Vdd


t2ˆ

t1

ignddt +

t4ˆ

t3

ivdddt

 (32)

where the first integral is over a rising output transition, and the second integral over a

falling.

The problem with this assumption is that that simply is not the case. One of the

contributions of this thesis is to show that a rather significant portion of this current is

due to capacitive charging and discharging in the turning-off network that should be

attributed to dynamic power and not short-circuit power, as well as to propose and

analyze a method of measuring short-circuit power that fixes this problem.

Figure 34 shows the major components of a MOSFET as modeled by the EKV v2.6

device model [15]. For this section we are only concerned with IDS , the DC channel cur-

rent, and the total effective terminal-to-terminal capacitances CGS , CGD, CS B, CDB and

we ignore the gate to bulk capacitance and various diodes and other current sources.

Figure 35 shows an inverter with these MOSFET capacitances explicitly drawn.

Consider a rising output transition. Prior to the transition the pull down network

provided a low impedance path to GND, the pull up network a high impedance path to
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Figure 34. The intrinsic and extrinsic elements of a MOSFET modeled in the EKV v2.6 device
model. It is the portion of the Source and Drain terminal currents not coming from
capacitances that should be used for calculating short-circuit power.

VDD. After the transition these paths are swapped and a strong path to VDD is connected

to the output while the path to GND is weakened. During the transition, however, both

networks enter intermediate states that can allow for relatively strong connections from

VDD and GND to be connected to the output, providing a low impedance path between

both voltage rails. That causes current to flow through both networks creating short-

circuit power dissipation.

Let ipd be the current going into GND from the pull down network minus the bulk

current, ib. Define qpd and qb to be the integrals of current with respect to time over

the rising transition, and qpu and qw to be integrated over the falling transition. If qsc−rise

and qsc− f all are the total amounts of charge flowing through the gate due to short circuit

during a rise and fall transition respectively, then the total energy dissipation of a rise

and fall transition due to short-circuit power is

Esc = VDD(qsc−rise + qsc− f all) (33)

Considering the rising output transition still, the problem is to relate qsc−rise to qpd

and qb. However, both of these quantities contain charge that flowed onto and off of

transistor capacitances. For instance, a large portion of qpd is due to the negative
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Figure 35. Differentiating between capacitive and static currents during a rising output transition.

current flowing out of GND from the discharging of the gate to source capacitance of

the nFET by the input transitioning low, as can be seen in Figure 35 . Capacitive feed

through from the input to the output causes the output to go below GND for a small

portion of time creating a negative VDS on the nFET and causing current to flow from

GND to the output node. Neither of these types of contributions to the current should

be considered as short-circuit power as they do not fit the definition of conduction from

one rail to the other.

In [16] the authors attempt to pull these currents out of the problem by integrating

the total positive current flowing into GND for a step input. This value is

E0 = Vdd


t2ˆ

t1

f (ignd)dt +

t4ˆ

t3

f (ivdd)dt

 (34)

where f (i) is the unit ramp function
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f (i) =


i i > 0

0 i ≤ 0
(35)

E0 is then subtracted out of out of subsequent measurements of ES C

Esc = Vdd


t2ˆ

t1

f (ignd)dt +

t4ˆ

t3

f (ivdd)dt

 − E0 (36)

This method forces the measurement of Escto converge on zero for infinitely fast

input transitions.

This work proposes a more direct measurement of short-circuit power. Consider-

ing the MOSFET model shown in Figure 34 there is a total amount of current flowing

into the source or drain that is due to MOSFET capacitances and a portion due to the

DC channel current iDS . By integrating the positive portion of this iDS of the switch-

ing transistor in the turning off network we directly measure total short-circuit charge

without having to manually deal with dynamic and feed through charge effects. Mea-

surements done in this manner inherently converge on zero (neglecting subthreshold

leakage currents, etc.) for increasingly fast input transitions.

Esc = Vdd


t2ˆ

t1

f (ipd−stat)dt +

t4ˆ

t3

f (ipu−stat)dt

 (37)

Where ipd−stat is the static current coming out of the source of the switching transistor

in the pull down network, ipu−stat the static current entering the source of the switching

transistor in the pull up network, and f () is the same unit ramp function as before.

Being able to differentiate between capacitive and static currents depends on whether

or not the simulator provides access and whether or not the model keeps track. For in-

stance, in the SPECTRE circuit simulator, the static and capacitive currents going into

the source of a transistor, M0, can be accessed by using:

save M0:s:static M0:s:displacement
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Figure 36. Test circuit with variable input slew rate and electrical effort.
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Figure 37. Integrals of current in the pull down network during a rising output transition.
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Figure 38. Integrals of current in the pull up network during a falling output transition.
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Figure 39. Integrals of current in the pull up network during a very fast rising input.
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Figure 40. Integrals of current in the pull down network during a very fast falling input.

Figures 37, 38, 39, and 40 show that charge measured by integrating the static current

through these devices produces something reasonable for real input transitions, and

something negligibly small for very fast input transitions.

A comparison of the short-circuit measurement methods is shown in Figure 41. An

inverter was simulated with increasing input slew rates for varying amounts of fanout.

The black line in the figure shows input slew rate divided by average propagation de-

lay (generated by that input slew rate) for a FO4 inverter. In each simulation, mea-

surements of short-circuit energy were computed using the three different methods

described in this section. Method 1 being the integral of GND current during a pull up

transition plus the integral of VDD current during a pull down as described by Equation

32 . Method 2 being the integrals of only the positive portions of these currents minus

the value obtained for a step input, Equation 36. And Method 3, the one proposed in

this thesis, where only the positive static currents in the off-switching transistors are

integrated as described by Equation 37.
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Figure 41. Comparison of short-circuit energy measurement techniques for an inverter for vary-
ing input transition times and various fanouts.

Method 1 does not trend to zero for increasingly fast inputs. Method 2 does but

only by manually setting this energy to be zero for step inputs. Method 3 obtains zero

naturally. Methods 1 and 2 both have negative trends initially for short circuit energy

with increasing slew rates. This produces negative answers with Method 2 for a large

range of slew rates. Intuitively, short-circuit energy should monotonically increases

for slower input slew rates, converging on zero for increasingly fast slew rates, and

monotonically decreases with output load size (higher load capacitance leads to slower

output transitions and thus less overlap between input voltage and output voltage). Only

Method 3 satisfies all of these trend expectations. Figure 42 shows the various methods

applied in the exact same fashion (only the FO4 case is shown) to a NAND2 gate’s b-

input (the input connected to the gate of the nFET farthest from the output). Here

Method 1 gets farther off as this gate has more parasitic capacitance to charge than

the inverter case, and Method 1 is incapable of differentiating the parasitic capacitance
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Figure 42. Comparison of short-circuit energy measurement techniques for the b-input (transis-
tor farthest from output) of a FO4 NAND2 gate for varying input transition times.

charging from short-circuit energy. Figure 43 shows the various methods applied to an

FO1 inverter. In this case, both Method 1 and Method 2 produce negative results for

some range of input slew rates.

5.5 Measuring Dynamic Power

If we are confident in our measurements of short-circuit energy, then dynamic energy

is simply the difference of active and short-circuit energy:

Edyn = Eact − Esc (38)

Dynamic power is not measured directly, it is simply the short-circuit power mea-

surement subtracted out of the active power measurement (something that is assumed

to be trivial to measure); thus correctness of the dynamic power extraction then de-

pends on the quality of our measurement of short-circuit power. Fortunately, we can
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Figure 43. Comparison of short-circuit energy as measured by the different techniques for a FO1
inverter sized roughly for equal rise and fall times. Here it can be seen that Method 1
can give negative answers as well.

at least make sure that our measurements of short-circuit power are causing dynamic

power to scale as expected.

We do that by observing our definition of Edyn and its dependence on h, and taking

the derivative of Edyn with respect to h:

Edyn = CtotV2
dd = V2

dd(Cout +Cp) = V2
dd(Cinh +Cp) (39)

so

Edyn,vh =
d
dh

Edyn = V2
ddCin (40)

where h = Cout/Cin is called the electrical effort of the gate and is related to the fanout.

The quantity h can be easily controlled by having the gate driving multiple copies of

itself, where the number of copies is equal to the electrical effort .
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Then by taking dynamic power to be the difference of active and short-circuit, we

arrive at a way to verify whether or not dynamic power is scaling linearly with output

load capacitance, but not whether or not we are confusing short-circuit power with the

portion of dynamic power associated with parasitic capacitance. Our error in measure-

ment is then

Err = 100

∣∣∣∣∣∣∣∣
Edyn,vh

Cin
− V2

dd

V2
dd

∣∣∣∣∣∣∣∣ (41)

Where this error metric is also sensitive to our measurements of the input capacitance

to the gate:

Cin =
−1

VDD

t2ˆ

t1

igdt =
1

VDD

t4ˆ

t3

igdt (42)

Where the limits of integration are defined by the Regions of Figure 28 as per usual, the

first integral being over RegionI which is a rising output transition and therefore current

is flowing off of the driving gate, and in the second integral taken over RegionIII the

output is undergoing a falling transition and therefore current is flowing onto the gate.

This total charge flowing onto or off of the gate in either region should be equal and

magnitude, it divided by VDD is the effective capacitance.

Results for an inverter versus input slew rate can be seen in Figure 44 for the

various different short-circuit measurement methods as described in Section 5.4 . In

general this will also depend on how well SPICE does at conserving charge and is

thus dependent on quite a few SPICE parameters. For all simulations reported in this

document, the following parameters were the same, are listed in Table 2.

It can be seen that Method 1, though incapable of distinguishing the parasitic portion

of dynamic power from short-circuit gets the scaling of dynamic with load capacitance

(in this case) better than the other two methods. Though, none of the methods have a

particularly high error in this metric over the entire range. As a useful point of reference,
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Table 2. Simulation parameters and tolerances

name value
iabstol 1e-14
vabstol 1e-6
reltol 1e-4
gmin 1e-12

method gear2only
simulator SPECTRE MMSIM70

model BSIM 4v4
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Figure 44. Error in expected dynamic power scaling (Equation 41) as extracted from active power
by varying short-circuit measurement methods. All simulation points are of an inverter
of h = 1 versus input slew rate.
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Figure 45. Measured effective input capacitance, Cin (Equation 42). All simulation points are of
an inverter of h = 1 versus input slew rate.

Figure 45 shows normalized measurements of input gate capacitance, Cin, versus slew

rate for various fanouts (in this case the fanout is equal to the electrical effort). It is

expected that this quantity be constant, but instead changed with the same relative

magnitude by which Methods 2 and 3 are erroneous in the dynamic scaling metric.

Figures 46 and 47 show the same simulations but this time for the b-input (the input

connected to the gate of the nFET farthest from the output) of a 2-input NAND gate.

For this more complicated gate, it can be seen that the measured Cin is much more

consistent and that Method 3 produces the least error.

5.6 Measuring Static Power

Assuming insignificant amounts of gate and load current in Regions II and IV, static

power is given by
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Figure 46. Error in expected dynamic power scaling (Equation 41) as extracted from active power
by varying short-circuit measurement methods. All simulation points are of the b-
input (input farthest from output) of a 2-input NAND gate with h = 1 versus input slew
rate.
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Figure 47. Measured effective input capacitance, Cin (Equation 42). All simulation points are of
the b-input (input farthest from output) of a 2-input NAND gate with h = 1 versus input
slew rate.
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Figure 48. Gate leakage current paths for a FO2 inverter after a rise transition.

Pstat,avg =
Vdd

2
[ivdd(t ∈ RegionII) + ivdd(t ∈ RegionIV)] (43)

where ivdd(t ∈ RegionII) means the current flowing out of the the VDD rail during some

time, t, in RegionII, etc. With RegionII and RegionIV being the static regions of opera-

tion after a pull up and a pull down transition as defined in Figure 28.

However, in modern processes, static gate current is a significant source of of leak-

age power and needs to be included in Pstat measurements for accuracy. This would at

first appear to cause a significant dependence on load size for leakage current. Larger

load sizes, when comprised of CMOS gates, mean a larger amount of gate leakage

current in the load gates that has to be sourced (after a rise) and sinked (after a fall) by

the driving gate.

Consider the FO2 inverter of Figure 48 . The driving gate has finished making a rise

transition, and its output has charged to VDD. Static currents flow through all terminals
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Figure 49. Static currents in a 3-stage path. In each gate the pull down network, pull up network,
and gate network are approximated as Rp , Rn , and Rg respectively. Solid red arrows
show currents dropping a voltage of VDD, whereas dashed red arrows represent cur-
rents flowing through no appreciable voltage drop. Static power then is measured as
Pstat = −Vdd[ignd + ig] for a gate that has risen and Pstat = Vdd[ivdd + ig]for a gate that has
fallen. With all currents referenced going into the logic gate.

of the gate: subthreshold currents in the off transistors in the pull down network, gate

currents flowing out of the logic gate, and load current flowing into the gates of the load

logic gates. This current flowing into the load depends on the load topology, and scales

linearly with fanout.

In this case Equation 43 would overestimate the amount of static power consumed

by this gate, as it simply measured the amount of current leaving the VDD rail and

assumes that this current passes to GND in this gate. Which is not the case, as the

current flowing into the load is just a source for the gate leakage power dissipation of the

load gates and does not get dissipated in the driving gate. To properly assign leakage

power dissipation to gates in a topology like this, it becomes much easier to make

approximations about the voltage drops across the pull up and pull down networks.
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Assuming that after a rise, that the output is charged near enough to VDD that the

voltage drop across the pull up network is negligible, then we can approximate that

no leakage power is dissipated in the pull up network. And after a fall approximate

that no leakage power is dissipated in the pull down network. These assumptions

about voltages and static current paths are shown in Figure 49 .Leakage power then

becomes:

Pstat,rise = −VDD[ignd + ig] (44)

Pstat, f all = VDD[ivdd + ig] (45)

Where Pstat,rise is the static power dissipation after a rise (RegionII) and Pstat, f all is

the static power dissipation after a fall (RegionIV). Average static power dissipation of

a gate driving multiple gates can then be expressed as

Pstat,avg = VDD[(ivdd + ig)|t∈RegionIV − (ignd + ig)|t∈RegionII] (46)

Figure 50 shows various ways to measure leakage currents in a gate with fanout.

From this figure it can be seen that measuring leakage power by Equation 46 has the

desired effect of being independent of fanout.
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Figure 50. Leakage currents versus h for an inverter with Wp/Wn = 3 in a 65nm process. Shown
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CHAPTER 6

A FLOATING GATE BASED FIELD PROGRAMMABLE
MIXED-SIGNAL ARRAY

We present the Field Programmable Array of Analog and Digital Devices (FPAADD)

as a novel implementation of a Field Programmable Mixed-signal Array (FPMA). The

FPAADD is a hybrid combination of a Field Programmable Analog Array (FPAA) and

a Field Programmable Gate Array (FPGA). Unlike other FPMAs where the FPGA and

FPAA portions are kept separate, this architecture closely integrates the two in a fine-

grained interleaved array. Instead of using hard-coded data converters, the FPAADD

synthesizes data converters out of its reconfigurable fabric. The analog and digital

portions share a common global interconnect. Floating Gate (FG) transistors are used

as the switch and memory elements of the chip, providing better switch performance

and power over traditional SRAM based approaches. The precise programmability of

the FG switches also allow for computation to take place in the interconnect. These

key differences make the FPAADD much more general purpose than previous FPMA

architectures. The FPAADD consists of 27 x 8 array of 108 digital and 108 analog tiles

and peripheral circuitry on 5 x 5 mm2 die fabricated in a 0.35-µm CMOS process, and

contains more than 130,000 FG transistors.

6.1 Introduction

Reconfigurable systems exist as an attractive alternative to custom ASIC design when

the monetary cost of fabrication, or the manufacturing time is too high. Digital systems

cater particularly well to reconfigurability in that any digitally solvable problem can be

implemented with a very small number of building blocks that are functionally insensitive

to fan-out and fan-in. FPGAs use look-up tables (LUTs) and flip flops to implement

arbitrary and small number-of-input Boolean equations and state machines. High level
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functions are built up from large numbers of these blocks being connected together by a

programmable interconnection network (the interconnect). With digital design’s ability

to be abstracted to very high level programming languages, systems can be rapidly

prototyped and implemented on FPGAs. Of course this flexibility does not come without

an associated cost increase to area, power, and degradation of system speed.

While all solvable problems can be solved in the digital domain, some problems

map more efficiently to other domains. Problems like integer factorization, searching

unsorted lists, and simulating quantum many-body systems, for instance, have solu-

tions implementable on quantum computers that are algorithmically more efficient than

the best known solutions on probabilistic Turing machines (classical digital computers).

The filtering, smoothing, or modulation of sensor signals are efficiently solved in the

domain of analog signal processing or analog computation. For a digital computer to

even begin to work on real world data, some sort of analog processing must take place

to convert it into a compatible format.

Analog solutions, when implemented in silicon, incur the same costs of fabrication

and design time (if not significantly more design time) iteration that makes reconfig-

urable solutions attractive for many applications. The FPAA is the analog equivalent of

the FPGA. In essence it is a set of low level analog computational elements in a recon-

figurable interconnect. Unlike FPGAs, however, the choice of computational elements

tends to vary quite a bit, and thus FPAAs come in many different flavors: some use

discrete-time, switched-capacitors, some are based on operational amplifiers and Gm-

C circuits, some use translinear elements as the building blocks, and some everything

in between [17, 18, 19, 20, 21, 22].

Prototyping and implementing mixed-signal systems, where both analog and digital

computation is taking place, could be done with a discrete FPGA, FPAA and data con-

verters [23]. But for single chip, system on a chip (SoC) solutions, one needs an FPMA,
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a reconfigurable system containing both low level digital and analog computational el-

ements. Such systems could also be used to tackle problems by partitioning them into

parts suited to being solved in the analog domain and parts in the digital domain.

A straightforward FPMA implementation is one that contains separate FPGA and

FPAA arrays, and data converters in between, such as the MADAR chip [24]. This

approach, while a single chip solution, offers no new functionality over discrete FPAAs,

FPGAs, ADCs and DACs. Another common approach is to also include a hard-coded

microprocessor [25][26][27]. These implementations generally have a very skewed

percentage of analog or digital components, with one or the other being highly special-

ized. Communication between the analog and digital portions is almost always through

hard coded dedicated data converters. We propose a new FPMA system, the Field

Programmable Array of Analog and Digital Devices (FPAADD), as a more general re-

configurable mixed-signal alternative.

Instead of partitioning and compartmentalizing the analog and digital portions of

the reconfigurable system, the FPAADD tightly interleaves the digital and analog com-

putational elements in a heterogeneous Manhattan style interconnect scheme. A key

difference with previous approaches are data converters being synthesized from the

FPAADD fabric as needed. This allows the system to be more flexible in the quantity

and type of data converters. A synthesized 8-bit data converter, while taking an effi-

ciency hit from the parasitics introduced by the interconnect, may still be more energy

efficient than using a hardcoded 16-bit data converter, when only 8-bits of accuracy are

needed. A second important difference is the global routing interconnect that shows

up as a shared resource between the analog and digital portions of the array. The

interleaving scheme of the FPAADD along with the above key differences allows for

a heavily skewed application to spend more resources on doing computation in one

domain or the other. The digital elements are LUTs and flip flops, while the analog

elements range in generality from discrete transistors and capacitors to operational
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amplifiers and multiple input translinear elements (MITEs). Unlike other approaches

that are SRAM based for their configuration, the FPAADD’s reconfigurable intercon-

nect is completely implemented by floating-gate (FG) transistors. FG transistors have

many benefits: on resistance comparable to transmission gates while maintaining the

parasitic capacitance of a single transistor, significantly reduced subthreshold leakage

current for the off devices, non-volatility, and precise programmability [28]. This last

part allows the interconnect itself to perform useful functions from low level analog bias

currents to analog vector matrix multiplication (VMM) [29].

The generality and flexibility of the FPAADD enable it to implement a vastly larger

application space over previous FPMA designs. Examples include, but are not limited

too: built-in self test, digitally assisted analog computation, industrial control, machine

learning, mixed-signal processing, digitally tunable analog circuits, to biologically in-

spired neuromorphic circuits.

The rest of the chapter is organized as follows. Section 6.2 describes the detailed

architecture and the building of the FPAADD, Section 6.3 introduces the software stack

used to place-and-route and program netlisted circuits onto the FPAADD. Section 6.4

has measurements of low-level computational elements, parasitic delay from switches,

and general system verification. Section 6.5 shows a subset of potential applications

and their mapping to the FPAADD are described as well as measured system results

for two applications: a VCO based ADC and a 2nd order sigma-delta modulator are

presented. Finally, Section 6.6 concludes the chapter.

6.2 FPAADD Architecture

The computational blocks are clusters of computational elements and an intercon-

nect network called the local interconnect. Analog components are clustered together

81



Figure 51. The general architecture of the FPAADD array.

to form the Computational Analog Blocks (CABs) while digital components are clus-

tered into Combinational Logic Blocks (CLBs).

In the FPAADD, the choice of analog devices range in complexity from discrete

transistors and capacitors to FG input operational transconductance amplifiers (FG-

OTAs). Other devices include: transmission gates, and multiple-input translinear ele-

ments (MITEs) [30]. The choice of digital devices are LUTs and flip flops.

CLBs and CABs are arranged in a tileable Manhattan style global interconnection

scheme (Figure 53). An analog tile comprises a CAB, two connection blocks (C-

Blocks), and a switch block (S-Blocks). The C-Blocks allow inputs and outputs from

the CAB to connect to the global routing tracks, while the S-Block routes nets on global
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Figure 52. Left, analog devices (MOSFETs, capacitors, etc.) are grouped together with local in-
terconnect, a sea of reconfigurable switches for connecting the devices together, to
form Computational Analog Blocks (CAB). Right, digital devices (Flip-Flops and look-
up tables) are grouped together with local interconnect to make Combinational Logic
Blocks (CLB)

Figure 53. Interchangeable digital and analog tiles are built from either a CLB or a CAB with
reconfigurable routing that allows signals to propagate between tiles (global intercon-
nect)
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tracks through the chip. The digital tile is the exact same but with a CLB. The two

different tiles are completely pin compatible.

FG transistors are used for the switches and state storing elements on the chip. The

dynamic range of the FG switches allow for ON performance comparable to transmis-

sion gates with parasitic capacitance of a single FET, with leakage currents an order of

magnitude less than standard SRAM based alternatives [31]. The non-volatile nature

of the floating-gates means the chip does not have to be reprogrammed on power up.

The continuum between the on and off states allow the routing infrastructure to perform

tasks other than just connecting nets: tunable delays, current biases, and vector matrix

multipliers (VMM), for instance, are all easily implementable by the interconnect. Figure

54 shows a small array of FG transistors.

The core of the FPAADD is an array of these tiles. The tiles are interleaved on a row

by row basis with a higher density of digital rows on the bottom and analog rows on the

top. The rest of the chip is floating-gate selection and programming infrastructure (con-

trolled by an SPI bus), and buffered and non-buffered I/O. The top level arrangement of

the chip is shown in Figure 51.

The Manhattan-style routing architecture chosen for the FPAADD is the parame-

terizable one as understood by the VTR software. Things like the number of global

tracks, track lengths, number of inputs and outputs from cells, etc. are all variables. In

general, arbitrarily cranking up these variables usually leads to an increase in routing

options. This can increase the chance that the place and route heuristics successfully

find a routing solution to any given target circuit, and or make impossible to route cir-

cuits routable. The biggest trade off in doing so, is that an increase in routing options

comes from an increase in the number of switches on any given net, and thus increases

the parasitic delay of any routed signal, the dynamic power consumed on transitions,

increases static power, and reduces the fraction of the silicon devoted to the actual

computational elements.
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Figure 54. Programming is achieved by globally removing charge from the floating-gate nodes
through CTUN via Fowler-Nordheim tunneling, and then selectively adding charge
through Mi, j with impact carrier hot channel electron injection. Injection of charge
per row is controlled by the selection lines CS i, and per column by the drain lines CS j.

The FPAADD routing architecture will be presented parameterizable, and with the

specific values of any variable. The choices for said variables was, to a certain extent, a

bit arbitrary. Though certain performance goals, i.e.. a minimum desired routed device

to device bandwidth did set upper bounds on the number of allowable connections on

certain nets.

6.2.1 Floating-Gate Switch

The most basic and ubiquitous component of any highly reconfigurable architecture is

the switch and the switch’s state storage. In the majority of modern FPGAs, this is
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Figure 55. a) pFET switch with floating-gate memory and circuit symbol, b) Circuit symbol for
a floating-gate memory element setting the gate input voltage of an inverter, c) a
pFET floating-gate switch connecting two abutting nets, d) a pFET floating-gate switch
connecting two crossing nets, e) six pFET floating-gate switches implementing an s-
switch.

implemented by a single nFET whose gate is driven by SRAM. The FPAADD, instead,

uses floating-gate transistors as the switch and memory.

Building up the local interconnect and high level portions of the chip is greatly fa-

cilitated by defining some circuit symbols: Figure 55a shows the symbol used for a

floating-gate pFET switch, and Figure 55b the symbol for when a floating-gate is used

as the gate input to a larger circuit like an inverter.

An open circle, as shown in Figure 55c, denotes when a switch is used to connect

two abutting net lines. When a switch is used to allow connectivity between two crossing

net lines an open circle is drawn over the crossing of the two nets (Figure 55d). Figure

55e shows the symbol for an s-switch connection topology, an open square. The s-

switch allows a signal entering from any side to propagate across, make a turn, split in

two directions, allows two nets to cross each other, or turn away from each other.
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6.2.2 Combinational Logic Block

The Basic Logic Element (BLE) is the building block of the digital circuits. The standard

BLE is a k-input look-up table whose output is either registered or not by a flip-flop.

Shown in Figure 56 is the BLE implementation used in the FPAADD. Instead of us-

ing a standard flip-flop, a JK-FF is used that can be configured as a T-FF or a D-FF.

The clock can be routed from the local interconnect, the BLE’s look-up-table, or come

from a global signal. These choices were made to allow of high density synthesis of

asynchronous counters.

Figure 57 shows that the CLB is comprised of NO number of BLEs and a sea of local

interconnect. The inputs to each BLE come from either any of the NI primary inputs

to the CLB or from the outputs of any BLE in the CLB. The NO outputs of the CLB

are hardwired to the outputs of the BLEs in a one-to-one fashion. The configuration of

the local interconnect allows for a deterministic and guaranteed routing solution for any

clustering of any NI inputs and NO BLEs. Where NO = 4 and NI = 8 .

6.2.3 Computational Analog Block

The CAB (Figure 58) is the analog equivalent of the CLB. It is a cluster of analog

devices and local interconnect, however, instead of a homogeneous set of devices,

the CAB in the FPAADD contains: floating-gate based operational transconductance

amplifiers (OTAs), switched capacitor optimized transmission gates, MOSFETs (either

common centroid pFETs or nFETs), capacitors, and multiple-input translinear elements

(MITEs: floating-gate pFETs with multiple input control gates). This set of devices

was chosen to make the FPAADD CABs compatible with the generic CABs from the

previous FPAA of [20]. Inputs to the devices come from the NI primary inputs, the

two hardwired VDD and gnd signals, or the outputs of any device in the CAB. The NO

outputs of the CAB are multiplexed from the set of CAB device outputs. This was

chosen because the number of devices in the CAB exceeded that in the BLE and it

was desired to keep the same number of I/O in the CAB as in the CLB: NO = 4 and
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Figure 56. The BLE is a 3-input LUT whose output can be registered with a FF. The register is
implemented as a JK-FF. It cab be configured as a standard FF or a T-FF, with the clock
originating from the local interconnect, the output of the LUT, or a global line.

NI = 8.

While the routability of the CLB was complete, this is not the case for the CAB. The

existence a completely deterministic and guaranteed routing solution for all combina-

tions of NI inputs, NO outputs and CAB devices depends on whether the clustering

can be partitioned such that the implied input/output relationship of the devices is pre-

served: an output can go to multiple inputs, but multiple outputs can not go to a single

input. In the CLB, the inputs and outputs are well defined, as is the case with CMOS

digital gates. While an OTA may have well defined inputs and outputs, and the gate of

a MOSFET is easily classified as an input, classifying the sources or drains of a MOS-

FET, for instance, as either inputs or outputs is rather arbitrary. If partitioning of the

circuit to be clustered in the CAB preserves these mappings then the cluster is guaran-

teed to route in a deterministic manner. Since many analog circuits do not partition this

way, this does not automatically mean they will not route, the output multiplexor allows

for limited support of shorting of outputs. If outputs are to be shorted, and if the output
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Figure 57. The CLB comprises multiple BLE devices and a sea of local interconnect. The outputs
from the NO number of BLEs are the primary outputs from the CLB, and the inputs to
the BLEs come from the NI number of primary CLB inputs and the NO BLE outputs.
NO = 4 and NI = 8 for the FPAADD.
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Figure 58. CAB architecture showing devices and local interconnect. Inputs to the local intercon-
nect are vertical lines and outputs from the local interconnect are horizontal. I and LI
are the primary inputs to the CAB and the outputs from the CAB devices respectively.
O and LO are the primary outputs from the CAB and inputs to the CAB devices respec-
tively. The example wiring shows a configured logarithmic amplifier circuit.
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Figure 59. The global interconnect comprises vertical and horizontal track segments isolated by
S-Blocks. The S-Blocks allow signals on tracks to propagate to neighbor tracks or to
change directions. The C-Blocks provide connectivity from the global tracks to the
primary inputs and outputs of the CLBs and CABs. Examples of allowable routings
shown highlighted.

is also a primary output, then the output multiplexor can handle this. The only time

output shorting will fail is if two devices are to short their outputs, and this net does not

propagate out of the CAB or to the input of any device in the CAB, and all CAB output

lines are already occupied with other nets.
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(a) (b)

Figure 60. a) The s-switch topology used in the digitally buffered s-switches. b) The analog
buffered s-switch topology. Some examples of allowable routings shown highlighted.

6.2.4 Global Interconnect

The global interconnect follows a standard track based scheme with C-Blocks getting

inputs and outputs out of the CABs and CLBs and onto the tracks. S-Blocks allow track

segments to be connected across, or to make turns. Figure 59 shows a two by two

array of tiles where each tile contains either a CAB or CLB and global interconnect:

two C-Blocks and an S-Block. There are 11 tracks in the north-south direction, and 11

in the east-west direction.

The C-Blocks in the FPAADD are implemented as a completely populated floating-

gate matrix. The C-Blocks are not fractional, all inputs and outputs from the computa-

tional blocks have access to every track, and all track segments span one tile length.

The S-Blocks are a diagonal arrangement of s-switches (one buffered, ten passive)

that allow signals to propagate across or to change directions into neighboring tiles, but
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the diagonal nature keeps the signals on the same track number as they started. The

standard s-switch is implemented as shown in Figure 55e, which passively passes both

analog and digital signals. Every s-switch is of this passive type except for the bottom

left ones on the first track.

These s-switches on the bottom track are buffered. Each digital tile’s S-Block has

a single digital buffered s-switch and each analog’s has a single analog buffered s-

switch. Two different buffered s-switch topologies can be seen in Figures 60a and

60b. Both circuits are bi-directional, and allow for the same direction choices of signal

propagation as the passive s-switch. The first circuit uses significantly less switches,

has less internal parasitics per track, forces all entering signals to leave buffered, and

requires four buffers. The second circuit is basically a passive s-switch with the ability

to insert a single buffer on the input from one of the directions. In general, the first

topology will be faster, but larger than the second topology. Because the analog buffers

(a 9T floating-gate programmable OTA based unity-gain buffers) are much bigger than

the digital ones (two-stage inverter chain) we chose the second topology for the analog

buffered s-switches and the first topology for the digital buffered s-switches.

Table 3 contains a list of specific parameter values used in the FPAADD.

6.2.5 Interconnect Comparison

The CAB devices, floating-gate design, and floating-gate programming infrastructure

were all derived from the RASP 2.9a chip, a next generation FPAA from the line devel-

oped by Hasler et. al. [32, 31, 20]. Significant differences from the RASP 2.9a include

the choice of a Manhattan style global routing architecture, and a feedback output lo-

cal interconnect scheme. The global interconnect has significantly less parasitics over

short distances than the RASP’s global scheme, where global tracks span the entire

length of the chip. There are buffers in the global interconnect whereas the generic

RASP line contains none. The local interconnect of the FPAADD has 68% lower par-

asitic capacitance and 50% less parasitic resistance between routed CAB devices in
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Array size 27x8: 108 digital tiles and 108 analog tiles.
Chip IO 33 generic IO pads, 11 digitally buffered

bi-directional pads
Devices per CAB 2 FG-OTAs, 2 TGATEs, 2 Capacitors, 2

FETs (nFET or pFET), 2 MITEs
Devices per CLB 4 BLEs
CAB / CLB I/O 8 inputs, 4 outputs

BLE 3-input LUT, routable clock and reset,
reconfigurable for asynchronous adders

C-BLOCK 11 Total tracks, all of segment length 1,
fully connected connection blocks

S-BLOCK diagonal with 1 digital or analog buffered
s-switch per tile on the first track

Process CMOS 0.35um Double-Poly, 4-M
Voltage 2.4V at runtime

Table 3. FPAADD specifications

the local interconnect (devices in the FPAADD can be connected with one switch, but

in the RASP chips require two at minimum) at the cost of slightly decreased routabil-

ity described earlier. This leads to a 4x improvement in bandwidth of signals routed

in the local interconnect over previous RASP based FPAAs. In the RASP line, CAB

devices were disconnected from the routing infrastructure during program time with

large transmission gates in order to not expose the devices to injection level program-

ming voltages, but with careful circuit consideration, these can be removed in almost

all cases.

The global interconnect scheme as well as the local interconnect and CLB devices

draw heavily from standard Manhattan style FPGAs [33, 34]. Ignoring semi-arbitrary

design decisions regarding architectural parameters, such as number of tracks, cluster

size, placement of buffers, etc. the digital tiles look very similar to previously made

FPGAs. The biggest difference being replacing the switch elements and SRAM with

programmable floating-gate pFET transistors[32, 31, 20].

Floating-gates are very similar in operation to non-volatile technologies such as
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EPROM, EEPROM, and FLASH; various FPGAs and CPLDs have been built using

these technologies [35, 36, 34]. The floating-gates transistors in the FPAADD are built

in a standard CMOS process. They have a higher dynamic range of programmed volt-

age leading to significant performance increases in power, speed, and signal integrity

at the cost of density compared to conventional EEPROM and FLASH devices.

In [34], they claim that switching from using the EPROMs as the actual switch to

simply using the EPROMs to control the gate of CMOS devices, that a 10x speedup was

achieved. This is similar to the problem that pass-transistor logic, often used in FPGAs,

face when trying to pass a logic-level (VDD for nFETs and GND for pFETs) that causes

the devices to enter subthreshold before completely passing the signal. This results in

logic level high voltages of about one threshold voltage less than VDD after reasonable

amounts of time, usually leading to speed degradation and an exponential increase in

leakage current in gates driven by these logic levels. Because the floating gate voltage

can be programmed to higher than one threshold voltage above VDD, the switches stay

in above threshold while passing the whole rail-to-rail voltage. Small signal resistance

sweeps in [31] show floating-gate switches being as good as transmission gates but at

half or better parasitic capacitance.

6.3 CAD Software

Much work has been done in the realm of synthesis for FPGAs; many software pack-

ages are available from industry and the open-source community alike. The field of

synthesis for FPAAs, however, is far from mature. While the algorithms for placement

and routing certainly have application to FPAAs, what does not translate so well are the

cost functions (other than trivial ones like area and routability) to evaluate the desire-

ability of routable solutions. FPGA synthesis is largely timing driven, where propagation

delay models are used to identify the worst case delay of the critical path (further effort
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can be spent to then reduce the amount of devices on non critical paths for power opti-

mization). While line delays certainly have some application to analog circuits, they are

by no means the appropriate metric for all circuit nets.

In [37] the authors successfully apply standard placement and routing algorithms to

map analog circuits to FPAAs with global parasitic reduction being the metric of choice.

Next, extraction of parasitic elements is performed and back annotated to the initial

input spice netlist for simulation, with fitness evaluation and iteration up to the user.

The strategy in [38, 39, 40] is to partition the mixed signal reconfigurable system into

the digital and analog subcircuits at data converter interfaces and apply different cost

functions to each. Models for SNR estimation are developed that start with known de-

vice SNR and its degradation by connection topology of interconnect: cascode, fan-out,

fan-in, and feedback. Bandwidth is also estimated using the data converter’s Nyquist

criterion as the bottleneck.

None of these approaches take into account the appropriateness of applying differ-

ent cost functions to different net types. For instance, an algorithm that places negative

weight on average parasitic capacitance of all nets will inefficiently try to reduce para-

sitic capacitance on nets that are insensitive to it, or that might actually benefit from it,

like the outputs of DC bias generators.

The software suite, Verilog To Routing (VTR), was extended and modified to perform

placement and routing on the FPAADD. As of writing, the flow is completely area driven.

6.3.1 Verilog To Routing

VTR is an open source, academic software suite that given an input Verilog circuit de-

scription and an input FPGA architectural description, performs synthesis and place

and route (Figure 61). The suite consists of the following programs: ODIN II, which

performs logic synthesis to standard cells (in this case, LUTs, FFs, and macro func-

tions) [41], ABC which performs logic optimization [42], and T-Vpack and VPR which

perform packing of LUTs and FFs into CLBs and then placement and routing [43].
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Figure 61. The software stack used for programming the FPAADD. From the VTR flow: ODIN takes
an input Verilog file and performs logic synthesis targeting LUTs, FFs, and macro
function blocks. ABC performs logic optimization. T-Vpack clusters LUTs and FFs
into CLBs. And VPR places and routes the result. VPR2P takes an input describing the
internal configuration of the CABs that are treated as black boxes in the VTR flow, and
all of the intermediate outputs of the VTR flow, and creates a switch list. The switch list
can be directly programmed or analyzed and modified by the detailed routing analysis
tool, RAT2. All programs in the flow take various pieces of architectural descriptions
of the target system.

97



While the flow supports synthesis of Verilog to the standard FPGA building blocks,

it also supports the targeting of larger functions that may exist as dedicated hardware

blocks on a heterogeneous FPGA. For instance, it is common to include hardware

adders or multipliers in FPGAs as the synthesis of these rather common functions are

often the bottlenecks in an FPGA implemented circuit design. In the same manner,

hardcoded data converters could also be added to supplement the array for applica-

tions where synthesized converters are simply not efficient or accurate enough.

The support of black boxes made VTR a very attractive starting point in creating a

software chain to provide placement and routing on the FPAADD. Digital circuitry could

be synthesized all the way from Verilog while the analog circuitry could be treated as

black boxes and simply placed and routed.

6.3.2 Routing on the FPAADD

While VTR will route circuits to arbitrary architecture graphs, it also supports a robust

and scalable XML based architecture description language for quick graph building.

Since the FPAADD was designed with a Manhattan style global and local intercon-

nect scheme, describing the FPAADD in the VTR architecture language was relatively

straight forward. Only a few minor modifications to VTR 5.0 were necessary.

The current flow starts with the circuit input as a blif and a net2 file. The blif file

contains all of the digital circuitry as described as netlists of LUTs and latches with

black boxes for the analog circuits. T-Vpack then packs the digital circuits into CLBs

and the CABs are already prepacked in the net2 file. VPR then places and routes the

CLBs and CABs.

The program VPR2P was written to take all of the intermediate file outputs of the

VTR flow, consolidate the information, fill in the blackboxes with information from the

net2 file, and then to translate the information into the corresponding physical switch

locations on the FPAADD. The output is a row column switch list that is the input into

our programming software. It also handles chip and board communication as well as
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the algorithms for erasing and programming the floating-gate memory elements.

Since VPR is not concerned with local interconnect, as routing at that level is de-

terministic, the GUI does not show the internals of the blocks. In order to analyze the

detailed routing solutions (global routing and local routing) and to provide for a way to

set and unset switches by hand, the RAT2 tool was created.

The RAT2 is a simple program written in MATLAB that can read in a switch list,

display the routing solution, modify by means of a point and click interface the switch

list, and dump out a switch list. This switch list can then be used to program the chip.

6.4 System Verification

The FPAADD as described in Section 6.2 was fabricated in a standard double-poly,

single n-well, 4 metal CMOS 0.35um process. A die photo of the FPAADD is shown in

Figure 62. All reported data are taken from the fabricated chip. The system is operated

at 2.4V during run time, as opposed to 3.3V, to increase retention of the stored charge

on all floating-gate transistors and to support legacy hardware that was designed to run

at 2.4V [20].

All CAB and CLB devices, as presented in Table 3, are verified to be functional,

via successful interconnect routing to I/O pads; global interconnect, local interconnect,

and interconnect buffers are all working as expected. Simple circuits have been built:

XOR gates and full-adders implemented in the CLB floating-gate based LUTs, asyn-

chronous adders generated from FFs and LUTs, MOSFET threshold and characteriza-

tion data extracted from transistor devices in the CABs, and ring oscillators built out of

the buffered global interconnect. Verification and programming of the the floating-gate

transistors were performed and found to be similar from results reported in [20]. The

design and layout of components for the CAB were re-used from previously designed

FPAAs and performance metrics were found to be comparable to published literature

in [20].
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Figure 62. Die photo of the fabricated FPAADD.
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Figure 63. Ring oscillator period versus number of additional interconnect stages (s-block to
s-block) for digitally buffered and passive s-blocks. The incremental delay due to a
digitally buffered s-block is 1.6ns.

To evaluate the performance of the interconnect network, we measured delay as

a function of routing distance (i.e. interconnect stages). Ring oscillators were imple-

mented to perform this measurement, each interconnect stage being a C-Block and

S-Block. Both buffered and unbuffered digital tracks are measured. In Figure 63, oscil-

lator period is plotted as function of the number of stages. As expected, the delay of the

oscillators using non-buffered tracks increases quadratically with the number of stages

as is typical of RC ladders. The delay of the buffered tracks increase linearly. The delay

of moving from one tile to the next through a digitally buffered s-switch is 1.6ns. Using

a similar method, the BLE to BLE delay was measured to be less than 7ns.
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Figure 64. An 8-bit ADC built on the FPAADD. A current or Voltage Controlled Oscillator’s (VCO)
output period is measured by a digital backend.

6.5 System Applications & Results

Previous FPAAs have been used to build continuous time filters, vector matrix multipli-

ers, AM receivers, analog speed processors, among others [19, 20]. The reconfigurable

and mixed-signal nature of the FPAADD allows the user to address a variety of appli-

cations from pure analog to mixed-mode to pure digital including FPAA applications in

previous literature. Two example system applications have been built to demonstrate

the configurability and performance of the FPAADD: a VCO-based ADC and a 2nd order

low-pass sigma delta modulator.

6.5.1 VCO ADC

An 8-bit VCO-based ADC was built in the FPAADD as shown in Figure 64. The volt-

age controlled oscillator was built using discrete transistor CAB components; the asyn-

chronous counters, state machines, and registers were built out of the CLBs. Figure 65

shows the frequency versus control voltage plot of the VCO. The linear dynamic range

of the VCO was measured to be from 0.18 MHz to 7 MHz. The digital back-end was

clocked externally at 2 MHz. However, the back-end was operational up to 18 MHz.

The ADC was measured to have no missing codes, and its operation can be seen in
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Figure 66 for a 200.137Hz, 0.4VPP input sine wave applied at Vin. INL and DNL data is

not presented due to the non-linearity inherent in VCO based ADCs. The non-linearity

of the ADC is due to the following effects: the voltage (Vin) to current converter is a

simple nFET operated in sub-threshold, so an exponential voltage to current conversion

is expected, while the rest of the VCO (a current controlled oscillator) performs a linear

conversion of input current to frequency. The digital back-end counts the number of

CLKADC transitions per VCO output pulse (VO), giving a measure of the period for VO.

Using expected circuit behavior, the input is reconstructed from the output by fitting it

to the following equation:

−ln[aTout + b] = Vout (47)

where Tout is the measured output, a and b are terms lumping subthreshold parameters

of the input V-to-I input stage and the linear current controlled oscillator stage. The

signal is then reconstructed from the ADC output and shows the circuit to be in excellent

agreement with expected circuit behavior, as seen in Figure 66.

The VCO based ADC system consumed a total of 10 tiles (four analog and six digi-

tal) representing 4.6% of the total number of tiles in the FPAADD array. The percentage

of device utilization within the six digital tiles was 88% while the utilization within the four

analog tiles was 23%. Low element utilization of the CAB is due to the heterogeneous

nature of the devices present within the CAB. The VCO used primarily discrete transis-

tors found in the CAB along with an OTA and 2 capacitors leading to the low utilization

value.

6.5.2 Delta-Sigma Modulator ADC

Figure 68 depicts the system diagram of a 2nd order low-pass sigma delta created in

the FPAADD. The low-pass filter was built using components from 2 CABs, and a single

CLB is utilized for the D Flip-Flop. The poles of the loop filter are designed to be located
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Figure 65. Measured response of the VCO over varying input voltage.
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Figure 66. 8-bit VCO based ADC digital output (dotted line) for a 200.137Hz input sine wave of
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Figure 67. A 2nd order sigma-delta modulator with 1-bit DAC feedback.
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Figure 68. A 2nd order sigma-delta modulator with 1-bit DAC feedback. Measured power spectrum
for an input of 1.0478 kHz at 2.5 MHz oversample frequency.

at zero. The sigma-delta modulator has a measured SNR of 24.1 dB and SFDR of 39.2

dB at a bandwidth of 20 kHz and over-sampling frequency of 2.5 MHz. Figure 68 is a

32k FFT of recorded data taken from the FPAADD at the previously stated input and

sampling frequencies. Insufficient gain of the loop filter is the probable reason for lower

than expected SNR. Further optimization of the loop filter is required to increase the

SNR.
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6.6 Conclusion

A mixed-signal heterogeneous tile array (FPAADD) of CAB and CLB components has

been built and presented. Verification testing of the system was performed at the com-

ponent, tile, and system level. Initial results of the FPAADD display 7ns BLE to BLE per-

formance and 1.6ns buffered tile to tile delay. Oversampling ADCs were implemented

to test the functionality of the tile array and show the reconfigurable nature of the chip.

The next stage of research will further characterize the FPAADD with emphasis in sys-

tem scalability, power and noise analysis, and optimum partitioning of analog/digital

functionality. This will allow realization of larger systems that take full advantage of all

the computation properties. The goal of the FPAADD is a bridge towards embedded

systems containing the reconfigurability of a FPAA and digital processors, resulting in

an embedded single chip reconfigurable solution to implementing complex systems.
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CHAPTER 7

UNIFIED SOC FPAA ARCHITECTURES

The FPAADD chip spent about equal parts by area on reconfigurable analog fabric as

it did reconfigurable digital fabric. This 50/50 area breakdown, and for that size of a

chip, resulted in having a very significant amount of analog parts to build systems with,

but was rather wanting in digital devices. Potential mixed-signal applications that we

wanted to explore and implement on the FPAADD were often immeditately rendered

impossible by the relatively small amount of FPGA-like fabric to implement the digital

hardward in. Most, if not all, modern FPGAs have significantly more reconfigurable

digital fabric than the FPAADD as well as contain hard-coded macroblocks for common

but cumbersome to synthesize circuits: memory arrays, multipliers, etc.

In this sense I am referring to macroblocks as devices in the system that are signif-

icantly larger, not only in physical size, but in functionality than the most basic building

blocks in the system. In the FPAADD, and FPGAs in general, the most basic digital

building blocks are flip-flops and look-up-tables. Even these blocks are not the most

basic one could choose for a reconfigurable array. Making the basic building blocks

out of pFETs and nFETs would do the job. In fact, this would go a long ways towards

being able to implement any analog or digital CMOS system. Simple logic gates or

amplifiers could be wired together from these devices, and then these wired together

to implement larger systems. The problem, of course, being that this level of generality,

while being practically as general purpose as possible in a VLSI system, would not

actually be able to do anything particularly well. It would simply take too much area to

really get anything done and the resulting implementations would subsequently suffer

from outrageous ammounts of parasitics, causing them to be very slow, and very power

inefficient, and likely completely non-functional for non-digital applications.
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The opposite end of the spectrum is the completely custom ASIC, with no reconfig-

urability, that solves one and only one problem, but does it incredibly efficiently and well.

It is, therefore, a completely inherent tradeoff of reconfigurable systems that in their de-

sign one has to choose between generality of problems it can solve versus optimality

of solutions. Classic FPGAs then eschew any notion of being able to implement analog

systems, and therefore make their most basic building blocks out of look-up-tables and

flip-flops. Which, admitedly, are still quite a bit higher functionally than the most basic

digital building blocks that could have been chosen. One could build FPGAs out of an

array of two-input NAND gates and interconnect. This would still be able to implement

the functionality of any CMOS digital system (if the array were large enough), while

being particularly more efficient than an array of pFETs and nFETs as building blocks.

Instead, many-input look-up-tables are used as the lowest level building blocks for

boolean logic, and flip-flops are used for memory. A k-way look-up-table can implement

any boolean equation of k or less input variables. And a single flip-flop can implement

one bit of digital storage. Higher values of k allow for smaller mappings of very high

fan-in logic to these building blocks, and can be very efficient when all inputs tend to

be used, but end up being inefficient when few inputs are used. Also, arbitrarily large

look-up-tables implemented as single gates quickly become slower than compound

gate solutions. This is because gate delays tend to increase polynomially with tran-

sistor stack heights and linearly with the number of gates. So while circuits with fewer

transistors tend to be smaller and more energy efficient, it is not always the fastest

implementation. Common numbers for k tend to be in the range of 4-6.

Since absolute generality tends to be poor at doing anything, and no generality has

no flexibility, it is then the job of the reconfigurable system architect to figure out what

subset of the entire concievable application space to be targetable by their architecture,

and then to optimize for that set of benchmarks. A good rule of thumb for this problem

is that if all of the applications you want to target all have some common high level
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functions of considerable complexity, put them in the architecture. For instance, digital

multipliers, DSP slices (multipliers with accumulators), and memory arrays are often

added to FGPA fabrics. Even the most general purpose FPGAs will have blocks of the

later, as implementing memory arrays out of flip-flops wired together through the inter-

connect network tends to be so area inefficient. Moreover, because memory storage is

such a common requirement of digital applications, FPGAs without embedded SRAM

arrays tend to be heavily restricted in the application pace that they can target. Since

many applications that we wanted to implement on the FPAADD required much more

memory than could be synthesized out of the fabric, we decided that future versions of

the chip would have to have some sort of embedded SRAM.

So the next generation of RASP architectures became full SoCs. They switched

over to an FPAADD-like reconfigurable array, gained embedded SRAM, a hardcoded

processor, and have a host of instrumentation and custom peripherals pushed on chip.

This would result in one of the most advanced, complicated, and flexible mixed-signal

reconfigurable SoCs ever attempted by an academic group.

7.1 RASP3.0 Architecture Family

The RASP3.0 architecture is used in a range of chips fabricated in 350 and 40nm pro-

cesses. At the heart of all RASP3.0 chips is an FPAADD like reconfigurable array that

is a fine-grained, heterogenous, interleaved array comprising varying complex block

types. In all verions CABs and CLBs exist, but some versions of chips have more spe-

cialized complex blocks, such as the RASP3.0n (Complex Neuron Blocks (CNB)) and

the RASP3.0rf (Complex RF Blocks (CRB)). The interconnect network is a two-level

hierarchy comprising a very highly connected and dense local interconnect network in-

ternal to each complex block, and a light weight global interconnect for moving signals

between the blocks. The general architecture for these chips is shown in Figure 69.

The name RASP3.0 refers to both a chip, the RASP3.0, and the architecture used
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RASP2.8 RASP2.9v FPAADD RASP3.0 3.0a 3.0n 3.0rf
CABs 32 78 108 98 49 84 42
CLBs 108 98 49 28 28
CNBs 63
CRBs 21

Devices /
CAB

10 10 8 13 13 13 11

Manhattan
Style

Y Y Y Y Y

Buffered
Interconnect

Y Y Y Y Y

Processor /
SRAM

Y Y Y Y

Analog
Memory

Y Y

ADCs / DACs Y Y Y
RF

Interconnect
Y

Die Size
(mm2)

9 23 23 84 54 84 6

Feature Size 350nm 350nm 350nm 350nm 350nm 350nm 40nm

Table 4. Comparison of various RASP chips.

in the following chips: RASP3.0a, RASP3.0n, and RASP3.0rf. Table 4 shows a com-

parison of features of the various flavors of RASP3.0 chips and some previous archi-

tectures.

These chips are all full-blown SoCs with integrated processors and SRAM. The in-

clusion of a processor and digital memory banks was to supplement and increase the

amount of flexible digital processing the chips can implement, as well as to push the

floating-gate programming algorithms and control on-chip. All chips use a modified ver-

sion of the openMSP430 processor, an MSP430 instruction set compatable processor.

In the 350nm versions of these chips, this processor was synthesized using a commer-

cially available digital standard cell library and uses vendor provided SRAM intellectual

property (IP) blocks. Because no IP blocks were available to us for the 40nm version,

a custom digital standard cell library and SRAM blocks were created.
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The processor is able to send information to and from the array through memory

mapped I/O special purpose peripherals. These peripherals include ADCs and DACs,

allowing measurements to be performed on chip, with the data taken by and stored

in the processor, and communicated off-chip through an two-wire serial interface, or

a multi-channel SPI port peripheral . Having a completely self-contained system for

implementing circuits and taking data is very convenient, for instance, for using these

systems in educational environments. This will also allow a significant speed-up to

floating-gate programming and a reduction in power for any application that puts recon-

figuration in the loop or algorithm.

However, the inclusion of the processor is not merely for convenience. As men-

tioned it is also there to supplement the processing power of the digital portion of the

system and increase overall implementation flexibility; portions of a problem can be

mapped to reconfigurable analog, reconfigurable digital, or a general purpose digital

processor.

7.2 The RASP3.0 and RASP3.0a

The RASP3.0 is a large reconfigurable array comprising 108 CABs and 108 CLBs in

an FPAADD like fabric, with embedded processor, memories, and a plethora of periph-

erals. This chip was fabricated in a 350nm process, occupying 12mm by 7mm of die

area. The layout of the chip can be seen in Figure 70 . The RASP3.0 and RASP3.0a

chips are identical except that the reconfigurable array in the RASP3.0a chip is about

half the size of that in the RASP3.0

There is a 32 by 1024 sample and hold based analog memory. The sample window

is variable, allowing the memory elements to also act as accumulators. It is designed

to be accessed much like traditional SRAM memory banks. A row of 32 analog values

can be read out or written to simultaneously with row selection based on a digital input

address. The memory can be directly controlled by the processor, or custom configured
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Figure 70. Layout of the RASP 3.0

digital logic from the array. The goal of this block is to be able to facilitate algorithmic

analog computation without having to constantly go through data converters to use

digital storage media. There is also a complementary 32 wide barrel shifter peripheral

that can be used in conjuction with this peripheral to further alter access patterns.

This analog memory and reconfigurable fabric can be used to explore a Von Neumann

machine with a completely analog datapath and memory with digital dataflow control.

Leveraging this idea and floating-gate based VMMs built from the fabric, a very novel

computer can be built to tackle problems like image convolution.

While we have shown that data converters can readily be synthesized in the FPAAD

like fabric- flexible in number, size, and topology- several dedicated data converters

exist as peripherals on this chip. There are 16 8bit DACs, and two 50MSPs 8Bit ADCs.

These can be used in the datapath for mixed-signal applications, or can simply be used

as instrumentation controlled by the processor.
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Target applications will initially include image transforms, synthesizable data con-

verters, PLLs, frequency synthesizers, PWMs, and analog datapaths with digital con-

trol. A particularly lofty goal might include handling the details of robot navigation and

control: high level decision making being done by programs running on the processor,

using image tracking data as computed through analog image transforms built from

VMMS in the routing fabric, analog data storage in the analog memory, and datapath

control by state machines in the digital fabric. Based on these decisions, servos could

then be driven directly by PWM generators synthesized from the array.

7.3 Direct and Indirect Switch Programming

To facilitate the creation of very accurate VMMs, some switch matrix arrays in the fabric

are implemented as directly programmed floating-gates.

When synthesizing analog VMMs out of a switch matrix, the coefficients are im-

plemented as effective threshold adjustments through accurately modifying the charge

stored on the floating-gates. Because of this, mismatch between the injection transistor

and the circuit transistor reduces analog VMM accuracy. Some of the CBLOCKs are

implemented as directly programmed floating-gates to facilitate the synthesis of highly

accurate analog VMMs out of the routing fabric. This idea was originally implemented

in the RASP2.9v.

The difference between directly programmed and indirectly programmed floating-

gates is whether or not current measurements are made on the circuit transistor or the

injection transistor during the programming algorithm (Figure 71). In the direct case,

both the circuit and injection transistor are the same transistor. But in the indirect case,

they are two seperate transistors. The indirect case leads to a more efficient switch

(less parasitic capacitance and resistance), but suffers from process variation mis-

match causing precisely programmed switches to be less accurate. The direct switch

architecture, while able to achieve higher bits of resolution in programmability, inserts
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Figure 71. A) The standard indirectly programmed switch element: The in-circuit transistor, MC ,
is programmed by the injection transistor, MI . B) A direct programmed switch element.
In this case the in-circuit transistor, MC , is also the injection transistor.

a transmission gate in series with the floating-gate circuit transistor. This extra trans-

mission gate is in the signal path during run time, tripling the parasitic capacitance,

and more than doubling the effective series resistance of the switch. Making the direct

switch significantly less efficient. It is for this reason that only some of the C-BLOCKs

are implemented as directly programmed switches (DCBLOCKs). The top CBLOCK in

every analog tile is directly programmed, all other CLBOCKs are indirect.

7.4 Volatile Switches as CAB Components

The RASP2.9v chip included some switches in the interconnect that were not controlled

by floating-gates, but by flip-flop based digital shift registers. Because they are not

controlled by floating-gates, we refer to these as the volatile switches. These volatile

switches allow for a quick run-time reconfiguration of some of the switches in the array.

This can be leveraged to build interesting devices: arbitrary waveform generators, data

converters, etc, or can simply be used as a quick and simple way to access nets in a

circuit for debug purposes.

In the RASP2.9v, the shift-registers were hard-wired together in chains. In the

RASP 3.0 the shift registers are treated as generic devices in the CABs (Figure 72),
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with all shift register control signals being locally routed inputs. This allows one to vary

the number and depth of any shift register through programming, as well as imense

flexibility in the detailed control of shift register operation: one register’s output could

clock another shift register, or clocking could be created from synthesized digital state

machines, or be driven directly by SPI peripheral blocks controlled by the processor.

By treating the shift registers as generic devicse in the CAB, we will be able to much

more easily incorporate their use into high level synthesis tools, something sorely lack-

ing from previous architectures. To facilitate the control of these volatile switches, a

custom mult-channel SPI peripheral was created.
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7.5 Floating-Gate Based Analog JTAG

Part of the floating-gate programming infrastructure is the ability to select any floating-

gate in the system and measure the current through the indirect injection transistor

stack. This is essential to feedback based precise floating-gate programming algo-

rithms, floating-gate characterization, and floating-gate programming error detection.

In previous architectures it was impossible to make this measurement without disturb-

ing run-time chip operation. This has been relaxed in this chip to facilitate a new,

interesting feature.

Figure 73 shows an indirect programmed switch. The transistor MC is used in

some arbitrary circuit, and MI is the injection transistor for programming the floating

gate voltage VFG. Because V1 and V2 capacitively couple onto the floating gate, any

measurement of IM will be affected by those voltages. The floating-gate programming

infrastructure allows the selection and measurement of any floating gate in the system.

Of course, comparing a runtime measurement of IM with the program time current

gives the lumped sum effect of how much V1 and V2 have moved from program time.

This means that to infer exactly what V1or V2 is, another relationship needs to be found.

Since most floating-gate switches are used to connect two nets together, and if the

switch is doing its job well, then V1 and V2 should be nearly equal. One could always

start at a node with a known potential, like vdd or ground, and work their way through

the circuit, net by net, until reaching the desired net.

In this case, being able to measure these currents at runtime turns the programming

infrastructure into sort of an analog equivalent of JTAG, allowing the user to probe any

routed signal. Of course, this feature could also be leveraged to read out values from

analog VMMs implemented in the indirectly programmed portions of the interconnect,

making it not just a tool for debugging puposes, but also a tool for computation.
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Figure 73. Changes in V1 and V2 change VFG through capacitive coupling. This modifies IM.
Comparing this current at runtime to program time can be leveraged to figure out
what V1 and V2 are.

This idea originated with a project that was building two-dimensional resistor lat-

tices out of switch-matricies, where each resistor was implemented as a precisely pro-

grammed floating-gate transistor operating in the ohmic regime. Certain problems can

be mapped to resistor lattices, where the solution to the problem is encoded in the

voltages at the various grid locations in the lattice. While the actual resistor lattice is

efficiently implemented in switch matricies on previous architectures, reading out the

grid voltages was incredibly cumbersome. This analog JTAG would be a more efficient

way to read out the grid voltages without the addition of any hardware.

7.6 The RASP3.0rf

The RASP3.0rf is a 40nm reconfigurable chip based on the RASP3.0 architecture. It

was specifically designed to support high speed reconfigurable RF applications. To

this end, the RASP3.0 array is extended and partitioned into two sections. One is the

general purpose FPAADD like array comprising interleaved CAB and CLB based tiles

for implementing baseband frequency computations. And the other portion of the array
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Figure 74. Layout of the RASP3.0rf.

is designed for routing high frequency RF signals and contains Complex RF BLocks

(CRB). The chip also includes IO blocks containing low noise amplifiers (LNAs) for

bringing in RF signals from the external world. Figure 74 shows a picture of the layout.

The CRBs contain devices useful in RF front-end applications: mixers, high speed

amplifiers, capacitors, and non-overlapping clock generators. Like the regular array, the

RF tiles containg both local and global interconnect arranged in a Manhattan style lay-

out. Figure 75 shows the partitioning of the array into RF and baseband portions. The

SBLOCKs are highly specialized to the task of routing reconfigurable and flexible delay

lines through the RF array. In addition to the standard routing options that SBLOCK

connections make, these also allow signals to jump to neighboring tracks and even re-

turn to the same CBLOCK. Inside the SBLOCKs are active inductor elements so that

routed signals move along a reconfigurable unity gain delay line implemented as an

L-C ladder.
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Figure 75. The RASP3.0rf array is comprised of a high speed RF section and a lower speed,
general purpose section.

7.7 Reconfigurable Delay Lines

The RF array can be used to implement all sorts of reconfigurable frontend architec-

tures for RF applications. Delay lines of arbitrary length can be built whose stages are

tapped through switch-matrix based VMMs such that analog FIR filters can be built op-

erating on the incoming RF signals. This allows some data processing to occur while

the data is still in the RF domain, and before being messed with by the process of

downmixing.

Figure 76 shows a portion of the RF array with some example routing options.

This example shows an 12-stage delay line zigzagging through a couple of tiles in the

array. Stages in the delay line are tapped through VMMs implemented from floating-

gate switch matricies in the CBLOCKs. The figure shows three tappings. The first

four stages in the delay line are tapped by two different VMMs, these taps are fed

into separate mixers and their baseband output signals routed out towards the lower
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Figure 76. The RF array routing a many stage delay line whose values are tapped out through
VMMs in the CBLOCKs, downmixed by mixers in the CRBs, and then the baseband
signals routed out and towards the general purpose array.

speed array for further computation. The third taps the last 8 stages using multiple

neighboring CBLOCKs and summing their outputs using local interconnect internal to

the CNB, where the signal is downmixed and sent on its way.

Figure 77 shows the array configured to perform beam forming on multiple RF in-

put signals. In this example a wavefrom would be sent at some angle towards three

different antennas arranged in a line. These signals x0(t) , x1(t), and x2(t) are sent into

the array through three LNAs and each proceed along three different delay lines. Two

different tapping of these delay lines are then shown approximating the equations

g(t) = x0(t) + x1(t − T ) + x2(t − 2T )
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and

h(t) = x0(t) + x1(t − 2T ) + x2(t − 4T ).

In this case the VMMs all have the same coefficients and act to simply sum their

corresponding signals, though differing weights could of course be implemented. The

amplitudes of equations g(t) and h(t) will vary with respect to incident angle of the

wavefrom with respect to the antenna array plane. Each equation will have a maximum

amplitude at distinct incident angles, effectively performing a bit of angle detection.

7.8 Custom Processor and Memory

The latest RASP chip architectures rely heavily on an onboard processor to handle the

details of floating-gate programming, chip communication, and on-chip instrumentation

control. The RASP3.0rf design is no different in this respect. Unfortunately, however,

we were unable to obtain IP blocks for digital standard cells or SRAM, so we set out to

create these ourselves.

Commercial digital standard cell libraries generally contain hundreds of standard

cells. The one library we used to synthesize the openMSP430 in the 350nm RASP3.0

chips contained about 500 standard cells. This number is made up of permutations

of many input gates and all of the possible logic functions they could implement. And

having a large number of different drive strengths for each cell. The average number of

different drive strengths is somewhere around four, with some cells having more drive

options, and some less. Then having logic gates with upwards of eight inputs, its easy

to see just how fast a library could grow. Some of these gates are compound gates,

whose only benefit is a slightly smaller footprint than building the gate out of other cells.

A lot of work has gone into the study of library gate choices versus quality of syn-

thesis results. In [44] they claim that going from a 200 cell standard cell library down to

a 20 cell library generally produced synthesis results with trivially different worst case
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Figure 77. A beam forming circuit above and how it would be routed and implemented on the RF
array.
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single level nand2, nand3, nand4, nor2, nor3, nor4
double level aoi21, aoi22, oai21, oai22
triple level aoi211, oai211
exclusive xor2
inverter inv1x, inv2x, inv4x, inv8x, inv16x
storage dff, latch

filler feed1, feed2

Table 5. List of gates in the cadsp_40nm digital standard cell library

critial path delays, and for synthesis results that varried between the two libraries, the

increase in delay using the smaller library was generally less than 10%. Consequently,

I designed a 22 cell library containing the gates listed in Table 5 . No compound gates

were included, and all gates have only a single drive strength with the exception of

inverters, for which five drive strengths were included. Initially only a single storage el-

ement was included, a simple D-flip-flop, however synthesis of the openMSP430 would

not complete without adding a transparent latch to the library. All logic gates were

sized for minimum average rising and fall propagation delays using a mix of simula-

tion and hand analysis techniques. Then all gates were made four times the minimum

width to reduce the standard deviation of fabricated delays from simulated delays due

to process variations.

The library was characterized using Cadence Encounter Library Characterizer, and

the openMSP430 was synthesized using Synopsys Design Compiler. Library design

was iterated upon until the results of synthesis were successful and expected perfor-

mace was reasonable. Then the library was laid out using Cadence Virtuoso (Figure

78) and abstracted using Cadence Abstract Generator, and the synthesized processor

was placed and routed using Cadence SoC Encounter. The worst path delay through

the processor was 1.2ns, and the layout was 300um by 200um.

The SRAM was built based on the design reported in [45] . The 8T SRAM cell was
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Figure 78. Layouts of all of the gates of the cadsp_40nm standard cell library
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chosen over traditional 6T designs for reliability and ease of implementation. Two 8kB

blocks were design and laid out to be used as the openMSP430’s program and data

memories. Figure 79 shows the layout of the openMSP430 with its SRAM arrays.

7.9 Floating-Gate Scaling to 40nm

There were several design challenges in migrating from a 350nm process to a 40nm

one: designing analog circuits to work on a 0.9V rail, threshold voltage is about a third

of the rail, transmission gates with poor midrail conductance, floating-gate leakage

uncertainty, lack of double poly silicon, etc.

All circuits, analog and digital, were designed to operate with a 0.9V rail. This

required significant redesign of some of out previous CAB components. Any time a

transmission gate was needed, we opted to use an overdriven nFET instead. That is,

an nFET whose gate is driven by a 3.3V rail source.

The floating-gates themselves had to be redesigned to use only moscap devices,

as we traditionally use poly-poly capacitors for our control gates, and most modern

processes do not have double poly. Much care was taken in the design of the floating

gate layouts to produce the safest design possible, that is, the design most likely to

retain charge. Test cells were created containing more aggressive and tighter layouts.

7.10 Results

The RASP3.0 was fabricated in January, 2013. It is back and currently being tested

in the CADSP lab at the Georgia Institute of Technology. The processor is alive, and

reliable floating-gate programming algorithms are currently being implemented on the

openMSP430 processor. Unfortunately, at the time of this writing, no large systems

have been implemented on the hardware yet. However, everything is looking very
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Figure 79. A custom 40nm openMSP430 and SRAM.
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promising and we look forward to using this platform to explore and implement non-

conventional computing solutions for years to come.

The RASP3.0rf was fabricated in November, 2013 and we have not gotten our

hands on the chips to start testing yet.
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7.11 RASP 3.0 CAD Tools

The new toolflow is a complete rewrite of the existing tools for the FPAADD and previous

generations of RASP chips. SciCos replaces MATLAB as the graphical frontend, with

sythesis, routing, and programming handled in custom Python, Assembly, and other

open source tools written primarily in C and running on Linux. The new code base is

faster, more flexible, more powerful, and easier to use than before, as well as relying

only on open source environments.

A particular amount of effort has been put into being able to utilize routing resources

as computational elements. All routing resources on the RASP chips are implemented

by floating-gate transistors, and as such make very efficient on and off switches, but

are also particularly well suited at implementing resistances and other non-linear two-

port devices. Using routing resources as explicit devices presents a particularly difficult

case to the place and route problem. As placement of devices into the interconnect

changes the interconnect graph, the problem is fundamentally changed.

7.11.1 VPR

The VPR tool was designed to be a platform for simulation based FPGA place and

route experiments. It was built to be an open-source academic platform for analyzing

the efficacy of place and route algorithms in the mapping of benchmark circuits to FPGA

architectures, the effects that varying the FPGA architecture has on the solution space,

and the circuit performance of any routing solution. Being open source, algorithms,

architectures, cost metrics, and benchmarks are easily swapped for large parametric

and statistical experiments. It is particularlly well suited for asking questions like “If I

were to increase the number of global tracks in my FPGA, how many new circuits would

I be able to route versus how much slower would my results be?”, etc.
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At its heart, VPR is simply a wrapper for applying off-the-shelf placement and rout-

ing algorithms to the problem of implementing a target circuit graph out of some sub-

graph of a target archiecture. In this sense, it can target a limitless variety of FPGA ar-

chitectures. The VPR toolchain can be interrupted and any custom architecture graph

could be inserted. However, the tool does implement a parametric architectural graph

generator.

This generator provided a quick interface to building parametric FPGA architectures

that were a subset of the architecture space it could target. That space was limited to

Manhattan style architectures. The fabric was a linear array of tiles comprising com-

plex logic blocks and global interconnect where the complex logic blocks contained the

computational devices (LUTs and FFs) and some reconfigurable wiring called the local

interconnect.

The local interconnect is used to wire devices together that have been clustered

together into these complex blocks, and then those groupings are wired together at a

higher level using the global interconnect. In this manner, some level of hierarchy is

applied to the global place and route problem. First, the target circuit is partitioned

into chunks that fit into complex logic blocks which, in the earlier versions of VPR were

guaranteed to be deterministicly routable, and then this new partitioned circuit was

placed and routed globally.

The global interconnect implements a way to route signals between complex blocks

and across the chip. It consists of a set of track segments arranged much like the

roads of Manhattan in a grid like fashion giving access to the buildings in between the

roads. Cars or signals move through the city going straight or making turns at stop

light junctions (SBLOCKs in the FPGA) or stopping and entering buildings (complex

blocks) through CBLOCKs. As a city planner could change the number of lanes on the

streets, the size of blocks and the number of buildings in each block, how stop lights

work, etc. and it would still fit the same sort of general over all architecture, so does
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the architecture builder in VPR allow quickly making these trade-offs.

Since we have built a lot of variations of reconfigurable chips, it is nice to have a

sort of unified code base for utilizing these chips that leverages as much code reuse as

possible. So to this end, we have been restricting our architectural decisions to those

that are more easily targetable by VPR’s architectural building language.

7.11.2 VMM Synthesis and Fan-In Elements

VPR is far from perfect for our application. It was designed to target circuits comprising

standard digital CMOS circuits implemented from look-up-tables and flip-flops. Circuits,

and thus graphs, built from these devices have some patterns that can be exploited.

It is assumed that devices have ports that are either inputs and outputs, and that

each device has at least one input and one output. Nets that connect these devices

together then have some rules about what kind of ports can be connected to a single

net: at least one input pin must be on every net, and exactly one output pin must be on

every net (Figure 80). That is, it is forbidden to route circuits that have two device output

pins shorted together. This of course would be an error in a CMOS digital circuit, where

output pins represent strong drivers, and connecting outputs together would produce

circuits that fight for control of that net, and thus be a violation of the CMOS requirement

that for all possible logic combinations, only a single pull-up or pull-down network will

be driving any net.

This, of course, is not a requirement of analog circuits. It is the very nature of

multiple drivers fighting on a single net that allows an analog circuit to produce net

voltages that are between the rails. Requireing analog circuits to be partitioned such

that all device pins are labeled as inputs or outputs, and enforcing that no two output

pins be connected together in a circuit is a bit unnecessarily restrictive. However, it is

a restriction one must put up with if one wants to use VPR to route analog circuits. It

turns out that a surprising number of analog circuits can be partitioned such that one

does not violate these rules.

132



In Out

In Out

In Out

XA

XC

XB

N0
N1

N2

N3

A net with a single 

driver and multiple

sinks is !ne

(a)

In Out

In Out

In Out

XA

XB

XC
N0

N1

N2
N3

Multiple drivers

on the same net

is not allowed

(b)

In Out

In Out

In Out

XA

XB

XC
N0

N1

N2

N3

N2_1

N2_2

XD

(c)

Figure 80. VPR treats all ports as either inputs or outputs and enforces some rules related to
these port conventions. One particular rule is that a net is not allowed to have multiple
output pins driving it. The topology in (a) is allowed whereas the topology in (b) is
forbidden. The addition of a fan-in circuit (c) fixes the problem.
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Figure 81. In this figure, open circles are floating-gates that are off, and solid circles are on.
Here an extra floating-gate switch in an input row in the local interconnect is used
to short two output nets together. The fan-in element is simply any row in the local
interconnect. It has many inputs and only one output that is hardwired to a specific
CAB device. Because of this, it can not support fan out at its output.

The multiple drivers on a single net problem is handled by explicitly inserting joining

circuits into the netlist. These circuits are implemented as a single row in the local

interconnect (Figure 81), and also provide a simple and easy way to insert floating

gates from the interconnect as explicit computational elements into the solution.

The fan-in circuits have limitations: since these are implemented at no additional

cost through targetting rows in the local interconnect as fan-in devices, this does im-

pose some restrictions on where they are inserted into circuits and how. The biggest

restriction is that the fan-in elements cannot support fanout, as their outputs are hard-

wired in the local interconnect to unique inputs to CAB devices.

This means for a net that has multiple drivers, but also goes to multiple inputs, a

single fan-in circuit will not suffice. A fan-in circuit will have to be added for each

connection from that net to the input of a device (Figure 82). For instance, a N-driver
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Figure 82. A net with multiple drivers and multiple sinks. Because the fan-in circuits do not
support fan-out, fixing this net requires adding multiple fan-in circuits, one for each
sink.

to M-sink net will require M fan-in circuits to be added, which, fortunately, does not

reduce the efficiency of any routed solution, it just makes netlist generation a bit more

tedious.

The number of inputs able to be consolidated by a fan-in circuit is also clearly related

to the size of the local interconnect. In the RASP3.0, though the number of inputs to a

CAB is 16, this number is functionally limited to 13 as some of those inputs are reserved

for the flexible shift register control signals.
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7.11.3 VMM with WTA circuit example

As an example I will show how to build and map a classifier circuit built from a vector

matrix multiplier (VMM) and winner-take-all (WTA). This circuit will use a lot of discrete

nFETs and OTAs from CAB devices, but will also heavily leverage using floating-gates

from routing resources to implement the VMM itself and some feedback elements.

Figure 86 shows the whole circuit we will eventually be mapping, and we could map

the whole thing at once, but since this section is supposed to be instructional, we will

first map the WTA portion by itself. The WTA circuit that we want to implement is shown

in Figure 83. It is a current mode circuit with IIN,0, IIN,1, and IIN,2 as the input currents

and IOUT,0, IOUT,1 and IOUT,2 as outputs. The output currents are split from the same

current source, with the largest input setting the common voltage, which tends to cutoff

the currents in the other legs. The result is that the plot of output currents is sharply

peaked around the largest input current. The details of this circuit’s operation are not

particularly relevant to this discussion. We just need to proceed to partitioning the ports

on the devices as inputs and outputs.

Figure 84 shows such a labeling. In this figure a new arrow type is used to em-

phasize that the arrows are labeling port direction on the devices, and not a marker

denoting current. Our goal here is to be able to eventually generate a netlist that is

targetable to the RASP architecture, that means that all components in the netlist cor-

respond to devices in complex blocks, and that there are no port related errors.

The nFETs in the RASP chips are implemented as three-port devices with two

inputs and one output. The gate and one of the source/drain terminals are inputs,

and the remaining source/drain terminal is an output. Because these source and drain

terminals are interchangeable, there is some ambiguity to the possible mappings one

can do. In Figure 84, the ground net is always an input to nFETs, but we could have

labeled the circuit with those ports as being outputs. The reason for labeling it the way

that it is was not actually arbitrary. Since the ground and vdd nets show up as inputs
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Figure 83. A simple winner-take-all circuit.

to the local interconnect, they are more immediately accessible as inputs to devices,

requiring only a single switch to be turned on to tie these nets to any device input.

This labeling produces a valid set of circuit components that will map to devices in

the RASP complex blocks. That is because all devices have valid port numbers and

directions. If we had labeled one of the nFET gates as an output pin, then the circuit

would not map, as the complex blocks do not have any nFET devices where the gate

is an output pin. This labeling, however, does produce some nets with multiple drivers.

A visual inspection of the port-labled circuit shows that all input nets have this prob-

lem. That is, it can be seen that these nets have multiple arrows entering them. We

will now add fan-in elements to the circuit at each of the problematic nets to fix this

problem. Figure 85 shows the circuit with fan-in elements added. In each case, the

offending net is broken into as many nets as there are drivers plus one with each port
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Figure 84. The WTA circuit with all ports labeled as inputs or outputs. In this partitioning, the
input nets have multiple drivers on them, and circuit would be rejected by VPR.

that was attempting to drive that net now going to a unique input to a fan-in element,

and the output of that fan-in element going to the single device that was using that net

as an input.

In each case, a single two-input fan-in element was necessary to fix each net. Since

these fan-in elements are implemented as rows in the local interconnect, and because

in this case we simply want the fan-in elements to short all of these nets together, each

of these fan-in elements will be implemented as two fully programmed on floating-gate

switches.

This circuit is now a completely valid candidate for placement and routing on the

RASP architectures using the VTR / RASP toolchain. However, since this example

only shows the fan-in elements being used as band-aids, we will go ahead and add a

VMM to this circuit, where the fan-in elements will be used to implement most of the
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Figure 85. The nets with multiple drivers are split and combined using fan-in elements. This
circuit is now a valid input to VPR.

VMM.

Figure 86 shows the circuit we will be mapping. This circuit uses a switch matrix

of floating-gates to implement the VMM, with transimpedence amplifiers (with floating-

gate feedback) as input stages. The goal will be to partition and label this circuit such

that all of these floating-gates are implemented as fan-in elements.

The first step is to label all ports and identify the locations where fan-in elements

have to be added. The second is to then absorb all floating-gates into these fan-in

elements. A summary of these steps and the rules involved is as follows:

1) Produce a valid labeling of all pins on all elements in the circuit. An invalid

labeling, for instance, might contain a device that had no input ports.

2) Split up all nets that have multiple drivers by inserting fan-in elements. The fan-in

elements are N-input and one output devices, where in the RASP3.0 chip, N can go up
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Figure 86. A VMM to WTA circuit using floating-gates for weight elements in the VMM and feed-
back elements for the OTA circuits.
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Figure 87. All device floating-gates have been lumped into fan-in elements. The fan-in elements
fixing all nets with multiple drivers and implementing the explicit and precisely pro-
grammed floating-gate elements. In this figure precisely programmed floating-gate
are shown as open circles, and floating-gates acting as on switches as solid circles.

to 13, and the output of each element has to be connected to one and only one input

pin of a valid CAB device.

3) Absord floating-gates into these fan-in elements.

4) If the circuit is valid, stop. If not, then go back to step 1 and try another valid

labeling of ports.

Figure 87 shows a completely valid paritioning. I have drawn the floating-gates in

the fan-in elements that are being used to simply short nets as filled in black circles,

and the floating-gates that are programmed to be computational elements as open

circles. This circuit will be implemented with seven discrete CAB devices (5 nFETs and

2 OTAs), with the four fan-in elements implementing the floating-gates and being built

out of rows of the local interconnect.

The following is a blif format netlist describing this circuit that is ready for placement
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and routing using the RASP toolchain. The extra numbers passed at the end of .subckt

lines correspond to FG values for programming, with zero being as off as possible

and one being as on as possible. The simple OTA devices in the CABs have FG

based current sources, so they take a FG value for setting this bias current. The fan-in

elements, called sm here in the .blif file, take a FG value for each input. Some of these

inputs are used to simply short nets together and so recieve the value of one, while

others are used to implement VMM weights, biases, resistors, etc. and therefore take

values in the range of one to zero. Where these values will be mapped to drain current

values, under some constant bias, of the injection transistor for that particular floating-

gate address. Where a value of one will get mapped to the highest current producable

by the floating-gate programmer, and a zero to the lowest, with the intermediate values

corresponding to currents in-between. Where once properly characterize, specific drain

current targets could be passed to the programmer instead.
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.model vmma_wta

.inputs in0 in1 iba ibb gnd

.outputs out0 out1

#OTAs w/ FG feedback

.subckt sm in[0]=vi0 in[1]=in0 out=in0_ # 0.5 1

.subckt ota p=iba m=in0_ out=vi0 # 0.5

.subckt sm in[0]=vi1 in[1]=in1 out=in1_ # 0.5 1

.subckt ota p=iba m=in1_ out=vi1 # 0.5

#VMM from SM

.subckt sm in[0]=vi0 in[1]=vi1 inv[2]=vo0 out=vo0_ # 0.11 0.21 1.00

.subckt sm in[0]=vi0 in[1]=vi1 inv[2]=vo1 out=vo1_ # 0.12 0.22 1.00

#WTA legs

.subckt nfet s=gnd g=nx out=vo0

.subckt nfet s=nx g=vo0_ out=out0

.subckt nfet s=gnd g=nx out=vo1

.subckt nfet s=nx g=vo1_ out=out1

.subckt nfet s=gnd g=ibb out=nx
Figure 88 shows how this circuit would be mapped into a ficticious, RASP3.0-like

CAB. In the drawing, the CAB is shown to contain exactly two OTAs, and 5 nFETs,

whereas CABs in the RASP3.0 chip contain four OTAs and only two nFETs. So in the

RASP3.0 this circuit would still route, but the placer portion of the toolflow would have

to split the circuit up into at least three CABs to find enough discrete nFET devices to

map the WTA portion.

7.12 VMM Synthesis and Macroblocks

One major new feature of the toolset is the ability to use preconfigured, black-boxed

circuits. This enables the creation of highly optimized circuits that do not get touched

by the synthesis and routing software, but placed anywhere in the array that they fit.
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Figure 88. The VMM plus WTA circuit mapped to a ficticious CAB similar to RASP3.0 CAB. Solid
circles are “ON” FGs being used simply to short nets, while the hollow circles are
precisely programmed FGs implementing weights in a VMM or resistors. “OFF” FGs
are not shown, but exist at all wire intersections in the local interconnect. The local
interconnect rows with multiple circles are implementing the fan-in elements.
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Figure 89. Preconfigured blocks implementing VMMs, lumped into larger blocks and presented
as blackboxes to the routing software.

While this works particularly well for leveraging custom analog circuits that are very

sensitive to the specific routing choices in their implementation, it also allows for the

first time the creation of a way to synthesize VMMs out of the global interconnect of the

chip.

Figure 89 shows a custom, preconfigured circuit implementing a VMM. This circuit

requires the use of multiple CABs and their intermediate global interconnect. In this

case, OTAs from the CAB devices and floating-gate switches from CBLOCKs are used

to create the VMM.

Figure90 shows what the array looks like in VPR without this preconfigured circuit,

and Figure 91 shows what the array looks like when a fraction of the CABs are lumped

together and preconfigured as 16x16 VMMs.
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Figure 90. A block diagram of the RASP3.0 array as viewed in VPR’s graphical tool. Heteroge-
neous columns of CLBs and CABs can be seen.
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Figure 91. This is the architectural view when lumping together sections of CABs and precon-
figuring them to implement hardwired macroblocks. In this instance, strings of three
CABs on one column are preconfigured to implemented 16-input, 16-output VMMs.
The routing tool is then free to place these VMMs in any of these prepacked locations.
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CHAPTER 8

CONCLUSION

Floating-gates were a core technology used throughout this work. Their ability to oper-

ate like a transistor where the threshold voltage can be precisely modified at run time

made them an attractive circuit solution for a host of problems. They were used to

implement the interconnect in reconfigurable architectures, and they were integrated

into many analog, digital, and neuromorphic circuits to modify their behavior. In analog

circuits they allowed for tunability of the functions being implemented, or to mitigate the

effects of process mismatch. When incorporated into digital circuits they allowed the

delay and power consumption of gates to be modified.

An application of floating-gate ideas led to the creation of the CCFG CMOS logic

family, which was shown to offer trade-offs similar to that of dynamic voltage scaling

(DVS) and multiple threshold technologies (MVT), but without a lof of the limitations of

either technology. CCFG CMOS were simulated to show the ability to go up to 15%

faster at the same energy per cycle as standard logic, or on non-critical paths, they

could be slowed down and were shown, in some cases, to reduce power as much as

90% over standard gates operating with positive slack. The analysis of the complicated

effects that using floating-gate transistors have on the various components of power

consumption in this logic family, led to the discovery of a better and more accurate

way to measure short-circuit power in simulation. This line of research then led to the

creation of a Logical Effort compatible power analysis technique.

The FPAADD was created to supplement the reconfigurable analog processing ca-

pabilities of previous RASP chips by adding reconfigurable digital circuitry to the arrays.

This allowed portions of problems to be partioned into pieces solved in either analog,

digital, or both. The architecture was designed to be much more general purpose than

existing architectures mixing FPGA and FPAA arrays. The goal of the FPAADD was
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to be able to target applications that were largely solved in analog, but needed small

amounts of digital circuitry for things like data flow control. The FPAADD was fabricated

in a 0.35um process and tested. Data converters were shown to be synthesizable from

the reconfigurable fabric in a range of topologies and parameters: A sigma delta con-

verter and a VCO-based DAC were tested. The VPR simulation suite, for FPGA archi-

tectural trade-off analysis, was modified to target and perform placement and routing

of circuits on the FPAADD.

Partly in order to target applications where more of the problem was solved in the

digital domain than could be solved on the FPAADD, the RASP3.0 architecture and line

of chips were created that added a processor, SRAM, and hard-coded data converters

and peripherals to an FPAADD array. Several different flavors of chips have been built:

the RASP3.0 is the most general chip, the RASP3.0a is a smaller verion for educational

purposes, the RASP3.0n supplements the CABs and CLBs with blocks containing neu-

rons, and the RASP3.0rf was dessigned for high speed RF applications and built in

a 40nm process. These new SoCs are designed to be larger, more self-contained,

and flexible in solution implementation than previous architectures. Hard-coded data

converters exist as peripherals to the processor, between the array and the processor,

and between data representations. These can serve as instrumentation- a way to take

measurements and apply signals to the circuits being implemented, or be used to put

the processor in the computational path itself. The place and route tool uses a newer

version of VPR, and has been modified to support the targetting of floating-gate tran-

sistors from the interconnect not only as switches, but as computational elements. For

the first time, efficient automated routing of circuits containing VMMs built from inter-

connect switch matricies was possible. The RASP3.0 chip was fabricated in a 0.35um

process. The system is currently being tested: the processor, peripherals, and floating-

gate programming have all been shown to be functional. And much of the software

infrastructure has been written and debuged.
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These chips will serve as powerful platforms for exploring and implementing non-

traditional solutions to problems; solutions able to leverage analog, digital, and neuro-

morphic computational techniques. I look forward to seeing what my colleagues are

able to do with them in the years to come.

150



REFERENCES

[1] P. Hasler, A. Basu, and S. Kozil, “Above threshold pfet injectionmodeling intended

for programmingfloating-gate systems,” in Circuits and Systems, 2007. ISCAS

2007. IEEE International Symposium on. IEEE, pp. 1557–1560.

[2] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and practical limits

of dynamic voltage scaling,” in Proceedings of the 41st annual Design Automation

Conference. ACM, 2004, pp. 868–873.

[3] J. T. Kao, M. Miyazaki, and A. Chandrakasan, “A 175-mv multiply-accumulate unit

using an adaptive supply voltage and body bias architecture,” Solid-State Circuits,

IEEE Journal of, vol. 37, no. 11, pp. 1545–1554, 2002.

[4] B. P. Degnan, R. B. Wunderlich, and P. Halser, “Programmable floating-gate tech-

niques for cmos inverters,” in IEEE International Symposium on Circuits and Sys-

tems, 2005, pp. 2441–2444.

[5] Y. Berg, D. Wisland, and T. Lande, “Ultra low-voltage/low-power digital floating-

gate circuits,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on, vol. 46, no. 7, July 1999.

[6] D. H. Ivan Sutherland, Bob Sproull, Logical Effort: designing fast CMOS circuits.

Morgan Kaufmann, 1999.

[7] D. Harris, “Logical effort of higher valency adders,” Conference

Record of the Thirty-Eighth Asilomar Conference on Signals, Sys-

tems and Computers, 2004., pp. 1358–1362, 2004. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1399375

151



[8] D. H. Ivan Sutherland, Bob Sproull, Logical Effort: designing fast CMOS circuits.

Morgan Kaufmann, 1999.

[9] J. Ebergen, J. Gainsley, and P. Cunningham, “Transistor siz-

ing: how to control the speed and energy consumption of a

circuit,” 10th International Symposium on Asynchronous Circuits and

Systems, 2004. Proceedings., pp. 51–61, 2004. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1299287

[10] J. Fishburn and S. Taneja, “Transistor sizing for high perfor-

mance and low power,” Proceedings of CICC 97 - Custom In-

tegrated Circuits Conference, pp. 591–594, 1997. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=606695

[11] H. J. M. Veendrick, “Short-circuit dissipation of static cmos circuitry and its impact

on the design of buffer circuits,” vol. 19, no. 4, pp. 468–473, 1984.

[12] S. M. Kang, “Accurate simulation of power dissipation in vlsi circuits,” IEEE JOUR-

NAL OF SOLID-STATE CIRCUITS.

[13] L. Bisdounis and O. Koufopavlou, “Short-circuit energy dissipation modeling for

submicrometer cmos gates,” IEEE TRANSACTIONS ON CIRCUITS AND SYS-

TEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, vol. 47, pp. 1350–1361,

2000.

[14] N. S. Srinivasa R. Vemuru, “Short-circuit power dissipation estimation of cmos

logic gates,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: FUNDA-

MENTAL THEORY AND APPLICATIONS, vol. 41, pp. 762–765, 1994.

[15] W. Grabinski, “Ekv model v2.6 and extraction methodologies,” 2001.

152



[16] T. S. Koichi Nose, “Analysis and future trend of short-circuit power,” IEEE TRANS-

ACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS, vol. 19, pp. 1023–1030, 2000.

[17] K. F. E. Lee and P. G. Gulak, “A transconductor-based field-programmable analog

array,” in ISSCC Digest of Technical Papers, Feb. 1995, pp. 198–199.

[18] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field pro-

grammable analog array for cmos continuous-time ota-c filter applications,” Solid-

State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 125–136, 2002.

[19] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli, “A field-

programmable analog array of 55 digitally tunable otas in a hexagonal lattice,”

Solid-State Circuits, IEEE Journal of, vol. 43, no. 12, pp. 2759–2768, 2008.

[20] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol,

F. Baskaya, C. M. Twigg, and P. Hasler, “A floating-gate-based field-programmable

analog array,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1781–1794,

2010.

[21] AN13x series AN23x Series AnadigmApex dpASP Family User Manual.

[22] D. Fernández, L. Martínez-Alvarado, and J. Madrenas, “A translinear, log-domain

fpaa on standard cmos technology,” Solid-State Circuits, IEEE Journal of, no. 99,

pp. 1–1, 2012.

[23] S. Ganesan, “Synthesis of mixed-signal systems based on rapid prototyping,”

2001.

[24] P. Chow and P. G. Gulak, “A field-programmable mixed-analog-digital array,” in

Proc. Third Int. ACM Symp. Field-Programmable Gate Arrays FPGA ’95, 1995,

pp. 104–109.

153



[25] J. Madrenas, J. M. Moreno, E. Canto, J. Cabestany, J. Faura, I. Lacadena, and

J. M. Insenser, “Rapid prototyping of electronic systems using fipsoc,” in Proc. 7th

IEEE Int. Conf. Emerging Technologies and Factory Automation ETFA ’99, vol. 1,

1999, pp. 287–296.

[26] M. Mar, B. Sullam, and E. Blom, “An architecture for a configurable mixed-signal

device,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 3, pp. 565–568, 2003.

[27] W. Fu, J. Jiang, X. Qin, T. Yi, and Z. Hong, “A reconfigurable analog proces-

sor using coarse-grained, heterogeneous configurable analog blocks for field pro-

grammable mixed-signal processing,” Analog Integrated Circuits and Signal Pro-

cessing, vol. 68, no. 1, pp. 93–100, 2011.

[28] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and programming

of floating-gate pfet switches in an fpaa crossbar network,” in Circuits and Sys-

tems, 2005. ISCAS 2005. IEEE International Symposium on. IEEE, 2005, pp.

468–471.

[29] C. Schlottmann, C. Petre, and P. Hasler, “Vector matrix multiplier on field pro-

grammable analog array,” in Acoustics Speech and Signal Processing (ICASSP),

2010 IEEE International Conference on. IEEE, 2010, pp. 1522–1525.

[30] B. A. Minch, C. Diorio, P. Hasler, and C. A. Mead, “Translinear circuits using sub-

threshold floating-gate MOS transistors,” Analog Integrated Circuits and Signal

Processing, vol. 9, no. 2, pp. 167–179, 1996.

[31] C. M. Twigg and P. Hasler, “A large-scale reconfigurable analog signal processor

(rasp) ic,” in Proc. IEEE Custom Integrated Circuits Conf. CICC ’06, 2006, pp. 5–8.

[32] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-scale field-

programmable analog arrays for analog signal processing,” Circuits and Systems

I: Regular Papers, IEEE Transactions on, vol. 52, no. 11, pp. 2298–2307, 2005.

154



[33] A. M. Vaughn Betz, Jonathan Rose, Architecture and CAD for Deep-Submicron

FPGAs. Kluwer Academic Publishers, 1999.

[34] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays,” vol. 81, no. 7, pp. 1013–1029, 1993.

[35] P. Leventis, B. Vest, M. Hutton, and D. Lewis, “Max ii: A low-cost, high-performance

lut-based cpld,” in Proc. Custom Integrated Circuits Conf the IEEE 2004, 2004, pp.

443–446.

[36] C. Hu, “Interconnect devices for field programmable gate array,” in Proc. Int. Elec-

tron Devices Meeting Technical Digest, 1992, pp. 591–594.

[37] F. Baskaya, S. Reddy, S. K. Lim, and D. V. Anderson, “Placement for large-scale

floating-gate field-programable analog arrays,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 14, no. 8, pp. 906–910, 2006.

[38] S. Ganesan and R. Vemuri, “Analog-digital partitioning for field–programmable

mixed signal systems,” in 2001 Conference on Advanced Research in VLSI,

E. Brunvand and C. Myers, Eds. IEEE Computer Society, March 2001, pp. 172–

185.

[39] ——, “Technology mapping and retargeting for field–programmable analog arrays,”

in DATE 2000 Proceedings: Design, Automation and Test in Europe Conference

2000, Mar. 2000.

[40] ——, “Behavioral partitioning in the synthesis of mixed analog-digital systems,” in

Proceedings of the 38th annual Design Automation Conference. ACM, 2001, pp.

133–138.

[41] P. A. Jamieson and K. B. Kent, “Odin ii: an open-source verilog hdl synthesis tool

for fpga cad flows (abstract only),” in Proceedings of the 18th annual ACM/SIGDA

155



international symposium on Field programmable gate arrays, ser. FPGA ’10. New

York, NY, USA: ACM, 2010, pp. 288–288.

[42] “Berkeley logic synthesis and verification group, abc: A system for sequential syn-

thesis and verification, release 70731. http://www.eecs.berkeley.edu/ alanmi/abc/,”

2007.

[43] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, and J. Rose, “VPR

5.0: FPGA CAD and architecture exploration tools with single-driver routing, het-

erogeneity and process scaling,” in Proceeding of the ACM/SIGDA international

symposium on Field programmable gate arrays. ACM, 2009, pp. 133–142.

[44] J. Noullet and A. Ferreira-Noullet, “Do we need so many cells for digital asic syn-

thesis?” ELECTRON TECHNOLOGY-WARSAW-, vol. 32, pp. 272–276, 1999.

[45] M. Qazi, K. Stawiasz, L. Chang, and A. P. Chandrakasan, “A 512kb 8t sram macro

operating down to 0.57 v with an ac-coupled sense amplifier and embedded data-

retention-voltage sensor in 45 nm soi cmos,” Solid-State Circuits, IEEE Journal of,

vol. 46, no. 1, pp. 85–96, 2011.

156



APPENDIX A

LOGICAL POWER EXTRACTION SOFTWARE

The software is readily available through a Subversion repository .

We want to characterize a logic gate. Take for example, this two-input NAND gate.

A.1 Characterization Circuit

In order to extract the parameters of Logical Effort and Logical Power the gate to be

characterized will be placed in a characterization circuit for simulation. The circuit is

composed of many paths constructed out of the gate. Each path has five stages, and

the electrical effort of each stage is constant within a path, with each path having a

different electrical effort for each stage.

Shown is the first stage of the first two paths. In the first path h = 1 , in the second

h = 2 . This structure is particularly convenient in that we do not actually need to know

the absolute values of the output and load capacitances to get h as we’ve set it up to

be the ratio of multiples of the same capacitance.

Measurements will actually be performed on the third stage of each path, with the

first two stages shaping the input pulse into something reasonable. Gates designed

to be loads, themselves are loaded, otherwise their outputs would swing unrealistically

fast skewing their own input capacitance. The measurements will be input and output

voltages, gate input, output, vdd, gnd, bulk, and well currents as a function of time.

A.2 Installation and Setup

From a command prompt:

svn checkout svn+ssh://<you>@ecelinsrv2.ece.gatech.edu/tools/cadsp/svn/mad/logical_power/trunk

logical_power

cd matlab
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Figure 92. 2-input NAND gate

Figure 93. gate char stage one
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matlab

At this point, the Cadence side of the software suite should be working as well. You

can try:

cd cadence

source cshrc.ncsu61.ece.lin

virtuoso

A.3 Simple Example

Start Matlab and then try:

>> inv = gateChar(’ibm_130n.scs’);

This sets up a simulation in a 130n technology defined by the file ibm_130n.scs. A

lot of defaults have been set at this point to quickly get to simulating. Check around

in the inv.params.cir, inv.params.dim, inv.params.tim, inv.params.ana structures. For

instance:

>> inv.params.cir

ans =

tech_file: ’"ptm_130n.scs"’

gate_to_char: ’gate_inv’

circuit_file: ’gateChar_6h.scs’

gates_file: ’"gates.scs"’

raw_out_file: ’temp.out’

simulator: ’spectre’

VDD: 1.2000
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>> inv.params.dim.W

ans =

n: 1.8000e-07

p: 5.4000e-07

The default gate to simulate is an inverter, labeled gate_inv, where the gate_ terminol-

ogy means we’ve wrapped the gate into a universal gate holder that can be plug and

placed with any other gate into the characterization circuitry.

The default voltages and dimensions are set based on the technology file used.

From here we can immediately simulate:

>> inv.runSim();

When this completes we can quickly generate some plots by:

>> inv.plotD

>> inv.plotI

>> inv.plotQ

Or we can access the data structures in the class gateChar directly to generate less ob-

vious plots. For more information on the data structures, see logical_power/matlab/@gateChar/gateChar.m

and take a good look at the comments in the properties section especially regarding

the properties rawData, extData, and anaData.

A.4 Modifying Default Parameters

There are a pile of default parameters set by the gateChar constructor.

Anywhere in any of the circuit files (gates.scs, tech_file.scs, gate_char.scs) vari-

ables can be made and set by matlab. The syntax for the variable placeholder in the

circuit as well as the structure definition for setting the variable in matlab is:

in gates.scs
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...

x0 1 0 res <resx>

in matlab

>> x = gateChar(’tech_lib.scs’);

>> x.params.some_category.res.x = val;

>> x.runSim();

Where some_category is any name you want it to be, its simply for organizational

purposes. dim holds transistor dimensions, cir holds gate type, vdd, etc, tim holds

timing information and so on. Evertying to the right of some_category gets turned into

the variable name to search for. In this case, res.x gets turned into resx. Again this is

just for convenience and the simulator supports any number of nestings in the structure.

When runSim is called it builds a new circuit file with the variables specified. The

resulting circuit file will have <resx> replaced with val when simulated.

A.5 Sweeps

The sweeps functionality allows one to sweep parameters and characterize tweaked

versions of a base gate. The syntax is as follows:

x = gateChar(’tech.scs’);

x.params = some_struct;

x.sweeps(1).some_category.vector_11;

x.sweeps(1).some_category.vector_12;

...

x.sweeps(2).some_category.vector_1n;

x.sweeps(2).some_category.vector_21;
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x.sweeps(2).some_category.vector_22;

...

x.sweeps(2).some_category.vector_2m;

...

x.sweeps(N).some_category.vector_N1;

x.sweeps(N).some_category.vector_N2;

...

x.sweeps(N).some_category.vector_Nz;

x.runSim();

Where some_struct contains whatever initial parameters you want to set. And the

vectors are values to be swept. All vectors within sweeps(1) will be swept together and

versus all vectors in sweeps(2) versus all vectors in sweeps(3) versus ... all vectors in

sweeps(N).

The software exploits the parallelization of the parametric simulation on multi-core

systems. Each sweep point is a new SPICE simulation independent of the previous, all

SPICE simulations are setup in advance and then dispatched to as many cores as the

system has access to (the current version of MATLAB 2009a supports a maximum of

eight cores).

A.6 2D Sweep Example: r, VDD

Lets try the following code:

>> inv2 = gateChar(’ptm_130n.scs’); %default is inverter

>> inv2.sweeps(1).dim.W.p = [1:0.5:2]*inv2.params.dim.W.n;

>> inv2.sweeps(2).cir.VDD = [0.8, 1.2];

>> inv2.runSim();
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From there we’ve told the suite that we want to characterize this gate for an array of

different parameters. The gate will be characterized for the following 2d space, various

r = Wp / Wn ratios and various VDD values. The results can then be accessed and

viewed in various ways.

>> inv2.plotD({1,1}) %plots delay for r = 1.0 vdd = 0.8

>> inv2.plotD({2,2}) %plots delay for r = 1.5 vdd = 1.2

In general, a netlist of gates for possible characterization is defined. These gates can

have many variables associated with them, for instance, widths and lengths of transis-

tors, operating voltages, etc. In fact, in the gate characterization netlist, the gate to be

characterized is itself a variable as well as the technology file defining the transistor

models.

In Matlab you set up a simulation by defining what all of these variables are, Matlab

then parses the netlist replacing the variables with actual values and calls Spectre to

simulate the netlist, Matlab then parses the output and analyzes the data produced,

extracting all of the relevant gate characterization parameters.

Matlab will also set up and simulate an arbitrary dimension of sweeps, 3d, 4d, ...

Nd there’s no limit.

A.7 1D Sweep Example: r

However, lets explore 1d with one more example. Sweeps make it easy to do things

like find the r that minimizes gavg for a variety of gates, etc. For instance:

>> r = [1:0.1:3];

>> inv3 = gateChar(’ibm_130n.scs’);

>> inv3.sweeps(1).dim.W.p = r*inv3.params.dim.W.n;

>> inv3.runSim(); >> figure, plot(r, inv3.extData(:,1:6), ’-’);
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Figure 94. Logical effort and parasitic delay for an Inverter versus r = Wp/Wn

>> xlabel(’Wp/Wn’); >> ylabel(’g,p’);

>> legend(’g_{avg}’, ’g_r’, ’g_f’, ’p_{avg}’, ’p_r’, ’p_f’);

And here’s the resulting plot to the right. Note that this is a good example of why equal

rise and fall times are unobtainable for arbitrary load sizes, as when gr = g f pr , p f .

Netlists describing the gates can be generated by hand, or graphically / schemacti-

cally through Cadence which will be the topic of the next section.

A.8 Generating Netlists

Ok, so you’ve got some gates in mind that you want to characterize, and you don’t want

to write netlists by hand. Here’s what we do. We’re going to generate a gates netlist file

like the one located in

logical_power/matlab/circuits/gates.scs
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So open it up, check it out, and keep it in mind as we go through the following. Move to

the cadence directory, then:

source cshrc.ncsu61.ece.lin virtuoso &

Open up the library manager (tools -> library manager) and go to the logical_power

library. We’ll be concerned with the following cells:

• GATES

• GATE_CHAR

• gate_nand2_a

• nand2

Open up GATES, this is the schematic that will hold all of the gates that we hope to

characterize. Notice that they all have the same ports. Each gate at this view repre-

sents a particular input of a particular gate to be characterized. For instance, there are

two for the nand2 gate, one for input a and one for input b. If you’ll notice, all gates have

the same number of ports so that they can be exchanged without headache into the

gate characterization circuit. Now descend all the way down to the nand2 schematic by

way of the gate_nand2_a schematic.
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Figure 95. Gates to be characterized
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Figure 96. PFET properties
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Figure 97. 2-input NAND gate

Figure 98. NAND2 input-a
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Figure 99. input-a of a NAND2 gate
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