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SUMMARY

Large-scale reconfigurable and programmable analog devices provide a new option

for prototyping and synthesizing analog circuits for analog signal processing and beyond.

Field-programmable analog arrays (FPAAs) built upon floating gate transistor technologies

provide the analog reconfigurability and programmability density required for large-scale

devices on a single integrated circuit (IC). A wide variety of synthesized circuits, such as

OTA followers, band-pass filters, and capacitively coupled summation/difference circuits,

were measured to demonstrate the flexibility of FPAAs. Three generations of devices were

designed and tested to verify the viability of such floating gate based large-scale FPAAs.

Various architectures and circuit topologies were also designed and tested to explore the

trade-offs present in reconfigurable analog systems. In addition, large-scale FPAAs have

been incorporated into class laboratory exercises, which provide students with a much

broader range of circuit and IC design experiences than have been previously possible.

By combining reconfigurable analog technologies with an equivalent large-scale digital

device, such as a field-programmable gate array (FPGA), an extremely powerful and flex-

ible mixed signal development system can be produced that will enable all of the benefits

possible through cooperative analog/digital signal processing (CADSP).

xi



CHAPTER 1

RECONFIGURABLE AND PROGRAMMABLE ANALOG

With an ever increasing demand to bring new portable devices to market quickly, it

would be extremely advantageous to have a reconfigurable and programmable prototyping

platform with which to test new ideas. The ideal device would be mixed signal and allow

any combination of analog and digital circuitry to be synthesized. With such a device, any

analog or digital component could be interfaced with any other analog or digital compo-

nent. It is not hard to imagine the digital part of this mixed-signal device, since FPGAs

have been used to synthesize very complex systems for many years. However, very little is

known about large-scale reconfigurable and programmable analog technologies. To build

the mixed signal platform of this example, more research needs to be performed on re-

configurable and programmable analog devices. This dissertation attempts to address this

research topic through the exploration of field-programmable analog arrays (FPAAs).

1.1 Analog Processing, the Past and the Future

It is hard to imagine in this digital world that there was once a time when everything was

analog. Real world signals are analog, so it was only natural to have analog processes

controlling these systems. However, digital controllers soon proved to be much easier

and quicker to develop new technologies and products. Digital systems quickly replaced

their analog predecessors, even though analog systems could perform significantly better

in some applications. Compared to digital signal processors (DSPs), analog equivalent

circuits could provide significant power savings, as illustrated in Figure 1.1. If the DSP

power consumption trend continues as projected, the power savings could be equivalent

to a 20 year leap in digital technology. In reality, DSP power consumption is reducing

at a significantly lower rate than projected, which only enhances analog’s advantage over

digital.
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Figure 1.1. DSP power consumption trend compared to power efficient analog equivalent
functions [1–5].

Figure 1.2a illustrates how DSPs interact with real world signals. In most of these

systems the analog input signal is immediately digitized using an analog to digital converter

(ADC). The digital signal is then processed and converted back into the analog domain via

a digital to analog converter (DAC). This process has made many current gadgets possible,

but it does not take advantage of the benefits possible with analog processing. Figure 1.2b

shows an improved system in which the real world signals interface directly to an analog

signal processor (ASP). Instead of directly converting to a digital signal, initial processing

ADC DSP DAC

Real World System

(a) DSP system

ASP

ADC DSP DAC

Real World System

(b) Mixed processing system

Figure 1.2. Signal processing in the real world.
(a) DSP systems require costly data converters to interact with real world signals.
(b) Mixed signal systems leverage analog and digital processing to increase efficiency.
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can begin in analog. In some instances the signal may pass only through the ASP and

avoid the DSP and data converters altogether. In other cases where the processing would

be better suited for digital algorithms, the ASP can preprocess the data before directing

the signal to the DSP via the ADC. After passing through the DSP and the DAC, the ASP

can then postprocess the signal before it returns to the real world. Although the benefits

of a mixed signal system are clear, the difficulty of designing and using analog processing

circuits could continue to prevent their widespread acceptance.

1.2 The FPAA Advantage

Figure 1.3a depicts the traditional analog design flow used for custom analog IC devel-

opment. Typically the design phase will lead to a simulation stage that verifies circuit

performance. If the circuit fails to achieve the required specifications in simulation, this

process may iterate through design and simulation multiple times. Once a design passes

the simulation phase, it progresses through the fabrication and testing steps. Although ev-

ery attempt is made to perfect the design in earlier stages, it is likely that the fabrication

and testing stages will require two or more iterations to obtain a product with the desired

performance. Since a single fabrication cycle can requires two or more months to complete,

productfabrication testingsimulationdesign

(a) Custom analog IC design flow

productfabricationtestingsimulationdesign synthesis

(b) FPAA design flow

Figure 1.3. Comparison of custom analog IC and FPAA design flows.
(a) The traditional analog design flow includes time consuming iterative fabrication loops.
(b) An FPAA flow iterates significantly faster using a synthesis step instead of fabrication.
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the final product may require many months or years to develop [6].

The use of a reconfigurable and programmable analog device, such as an FPAA, can

significantly reduce the time required for this design cycle. As Figure 1.3b depicts, an

FPAA introduces a synthesis phase that allows physical hardware to be generated and tested

before fabrication. By taking fabrication out of the iterative loop, a new design or algorithm

can be verified in a matter of hours or days. Additionally, a configured FPAA could be used

as the final product, thereby skipping the fabrication step, much like FPGAs are sometimes

used today.

An FPAA with significant functionality would not only reduce analog system design

time, it could also make analog systems easier to use. Proper design tools would abstract

most of the actual analog hardware design, much as FPGAs have done for digital systems.

This would make it possible for DSP engineers with little or no analog design expertise to

quickly synthesize and test analog replacements for traditional digital computation.

1.3 General FPAA Architecture

An FPAA can be generally depicted as in Figure 1.4. Reconfigurability is commonly

achieved through some interconnect network, which can be implemented by any num-

ber of switch topologies. This network connects the various analog components together

to form the desired circuit. Programmability is usually implemented using DACs or ra-

tios of standard components [7], such as transistors, capacitors, and resistors. Figure 1.5a

Analog
Components

Interconnect
Network

Programmable
Elements

Figure 1.4. Generic FPAA architecture.
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Memory
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Figure 1.5. Example FPAA switch and programmable element.
(a) Programmability is commonly implemented using arrays of selectable components.
(b) Memory controlled transmission gates are typically used as switches.

demonstrates how an array of binary weighted transistors could be used to implement a

current mode multiplier. Programmability implemented in this manner requires a signifi-

cant amount of area, since the device area approximately doubles for each bit of resolution.

This area requirement limits the number of programmable elements that can be integrated

on a single chip and therefore reduces the size of the system that can be synthesized, which

is the case for many previous FPAAs [8–13].

The switches in these devices are commonly transmission gates, each of which is con-

trolled by a memory element in the form of an SRAM or EEPROM cell, as seen in Fig-

ure 1.5b. Although these switches allow for great design flexibility, they also contribute

a significant amount of parasitic resistance and capacitance. To eliminate these parasitics,

various modifications to the general FPAA architecture have been attempted. Fuse based

FPAAs attempt to reduce these parasitics by creating or destroying metal wire connec-

tions between components. Since these fuses are made of metal instead of a transistor,

both the parasitic capacitance and resistance are reduced, but they are generally one-time

programmable. Some FPAAs are even built without any switches. These architectures

generally have a limited variety of analog components that interconnect directly to each

other, such as the hexagonally connected transconductance (GM) elements of Becker and

Manoli’s FPAA [9]. In these devices, reconfigurability is achieved through programming.

5



Since the outputs of GM stages with no bias current effectively float, connections are made

in these GM elements by digitally controlling the biases.

1.4 Large-Scale FPAAs

Current FPAA offerings are rather small and cannot handle large analog systems on a single

IC. These devices are similar in size and complexity to the early digital programmable

logic devices (PLDs) rather than modern FPGAs. However, larger or denser FPAAs will be

necessary to push reconfigurable and programmable analog technologies into widespread

use. The large-scale FPAAs discussed in this work are possible because of the incorporation

of floating-gate pFETs as the programmable element.

Instead of area consuming arrays of ratioed devices, a single transistor can be pro-

grammed to accurate analog values. This allows the large-scale FPAAs discussed in this

work to be significantly denser than previous FPAAs, which makes them capable of syn-

thesizing much larger systems. Figure 1.6a shows a floating gate transistor version of the

current mode multiplier example of Figure 1.5a. In addition to programmable parameters,

floating-gate transistors can be used as non-volatile switching elements in these FPAAs.

By using floating-gate transistors as the switch, the switch and memory elements have

been effectively combined in the form of a single transistor, as depicted in Figure 1.6b.

I
out

I
in

V
tun

V
tun

(a) Programmable element

V
tun

(b) Switch element

Figure 1.6. Example FPAA switch and programmable element using floating gate transistors.
(a) Programmability is implemented through charge storage on the floating gate.
(b) A floating gate transistor combines the switch and memory element.
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The density of FPAA devices can also be enhanced by correcting offsets and mis-

matches using floating gate transistors [14–17]. Analog design techniques traditionally

deal with offsets and mismatch by increasing device area and redundant layout schemes.

These techniques work fairly well, but they consume a large amount of die area. Laser

trimming is also commonly used for high accuracy circuits, but this requires costly post

fabrication processing. However, floating gate transistors can be used within various cir-

cuit topologies and electronically programmed to trim offsets. Since this can be done post

fabrication in a cheap manner, a significant area savings can be achieved in the FPAA ana-

log circuit designs in addition to the programmable elements and switches.
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CHAPTER 2

FLOATING-GATE TRANSISTORS

For years floating gate transistors have been used in commercial non-volatile digital

memories, but only recently have similar devices been considered viable as analog memo-

ries [18] and numerous other analog circuit elements. As memories, floating gate transis-

tors have been used to build data converters [17,19,20], programmable references [21,22],

and non-volatile switching arrays [23]. Floating gate transistors have been used in ana-

log circuits for such tasks as trimming offsets [14–16] and analog signal processing [24].

Industry has even begun to offer commercial floating gate technologies such as the electron-

ically trimmed zero threshold transistor [25] designed for extremely low power supplies.

However, all of these devices share common characteristics and programming techniques

despite their dissimilar usage.

2.1 Characteristics

A floating gate transistor is simply a normal transistor except that the gate terminal has

no DC path to a fixed potential. Instead, voltages are coupled to the floating gate via

coupling capacitors. Figure 2.1 shows the layout for a floating gate pFET with a single

drawn coupling capacitor and a special purpose coupling capacitor. The pFET can be seen

on the right side of the right N-well. To the left of the pFET is the coupling capacitor

made from a poly-poly capacitor. This capacitor is constructed above the N-well of the

pFET to reduce the parasitic coupling capacitor to the substrate. Poly-poly capacitors are

preferred for coupling because they maintain the same relative capacitance regardless of

the voltage across them, unlike MOS capacitors. Although only one of these capacitors is

drawn, there can be any number of coupling capacitors attached to the floating node. The

special purpose coupling capacitor is made of a MOS capacitor in its own N-well because

of the oxide quality needed for tunneling, which will be discussed later.
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Figure 2.1. Top view and cross-section layout of a floating gate transistor.

Figure 2.2a shows the schematic representation of the floating gate pFET with a tunnel-

ing junction, Ctun, and one drawn coupling capacitor, CC . These coupling capacitors allow

a ratio of the coupling voltage, VC , and the tunneling voltage, Vtun, to be seen as part of the

floating gate voltage, VFG, on the floating node. In addition to the drawn capacitors, there

are generally several parasitic capacitors that also couple voltages into the floating node.

Figure 2.2b shows the floating gate pFET schematic with both drawn and parasitic cou-

pling capacitors. The drawn capacitors are the same as the simple case. The well capacitor,

Cwell, is a result of the polysilicon area residing above the N-well of the pFET. Since this

polysilicon is mostly above thick field oxide, the capacitance is usually fairly small. How-

ever, large poly-poly coupling capacitors can significantly increase the amount of polysil-

icon area, which increases the significance of the well capacitor. The substrate capacitor,

Csub, is formed by the region of polysilicon that crosses above the substrate between the

two N-wells, as seen in Figure 2.1. This region of polysilicon is also over field oxide and

is thus relatively small. However, its effects can be observed during programming, as will

be discussed later. The final two capacitors, CS and CD, are the overlap capacitances of the

pFET, which means that the source and drain signals can couple into the floating node.
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Figure 2.2. Floating gate transistor schematic.
(a) Simplified schematic showing only drawn coupling capacitors.
(b) Elaborated schematic showing all coupling capacitors including parasitic capacitors.

The voltage to current equations used to model ordinary FETs can also be applied

to floating gate devices by substituting the floating gate voltage for the gate voltage, as

seen in (2.1), the sub-threshold saturation equation. The terminal voltages in (2.1) are

all referenced to the bulk material of the FET, which is the well voltage in the case of the

floating gate pFET. The floating gate voltage can be expressed by (2.2) where the individual

capacitors and voltages correspond to components in Figure 2.2b. The total capacitance,

CT , is the sum of the capacitances seen at the floating node, and the Q term represents

the charge stored on the floating gate. If the coupling capacitor and tunneling capacitor

comprise a significant portion of the total capacitance, this equation can be simplified to

(2.3).

ID = I0 e
κ VFG − VS

UT e
VD
VA (2.1)

VFG =
CCVC +CtunVtun +CwellVwell +CsubVsub + CS VS + CDVD + Q

CT
(2.2)

≈ CCVC + CtunVtun + Q
CT

(2.3)

10



2.2 Programming

Floating gate transistors can be programmed by modifying the charge term, Q, of (2.2).

Since the polysilicon gate of the transistor is completely surrounded by oxide, the charge

can be stored on the floating node for long periods of time [15, 16, 26]. Fowler-Nordheim

tunneling and hot electron injection are commonly used to move charge across the oxide

barrier. The result of these processes can be seen in the gate sweeps of Figure 2.3, which

depicts a single floating gate pFET programmed to three different levels of charge.

Tunneling removes electrons from the floating node, so the I-V relationship shifts to the

left, which looks like the effective threshold voltage of the pFET has been increased. Hot

electron injection adds electrons to the floating node and thereby decreases the effective

threshold voltage, which shifts the I-V curve to the right. If a single coupling voltage value

is examined for the floating gate pFET example, tunneling can be viewed as reducing the

amount of current flowing through the channel, and hot electron injection increases the

current. In this manner, a programmable current source can be constructed. Similarly, the

same processes can be used to change the conductance of the floating gate pFET, so it can
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Figure 2.3. Gate sweep measurements showing the programmability of floating gate transistors.
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Figure 2.4. Conduction band diagram depicting the tunneling process across an oxide.

be used as a programmable switch.

Under normal circumstances, the oxide barrier significantly reduces the probability of

electrons moving to and from the floating node. Figure 2.4a illustrates the conduction band

as seen across the tunneling junction capacitor. In the initial state, the floating gate voltage

and the tunneling voltage are equal. The phenomenon of Fowler-Nordheim tunneling can

then be observed by raising the tunneling voltage, which lowers the conduction band as seen

in Figure 2.4b. As the tunneling voltage increases, the probability of an electron crossing

the oxide barrier increases. The decreasing conduction band on the tunneling voltage side

has the effect of decreasing the barrier width observed by electrons on the floating node.

As the effective width of this barrier continues to shrink, more electrons will be able to

“tunnel” through the oxide, Figure 2.4c.

The process of hot electron injection is illustrated in Figure 2.5. To inject electrons onto
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Figure 2.5. Conduction band diagram depicting hot electron injection across an nFET channel.
(a) Moderate field between source and drain.
(b) High field between source and drain.
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the floating node, two conditions are required. The first is channel current, and the second is

a high field between the source and drain terminals. Under normal conditions, Figure 2.5a,

electrons flow through the channel from the source to the drain terminal. Upon reaching the

channel-to-drain junction, the electron can be seen to roll down the conduction band where

the electric field is highest. If the drain terminal voltage is increased, thereby lowering

the conduction band further, the field in this region is significantly increased, Figure 2.5b.

In this situation, the electron may now have enough energy to surmount the oxide barrier

due to the field. Once in the oxide, the electron will most likely drop back into the drain.

However, some of these electrons will cross the oxide and become trapped on the floating

node.

Hot electron injection is a positive feedback process in pFETs, since the number of

electrons injected onto the floating node is proportional to the amount of current flowing

through the channel. As the number of electrons increase on the floating node, the effective

floating gate voltage decreases, which increases the amount of current flowing through

the channel. In order to accurately program a floating gate transistor, an algorithm of

controlled injection pulses, Figure 2.6, has been developed [27–29]. The injection pulse

V
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V
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injection V
DD

operating V
DD

ramp up pulse drain ramp down

Figure 2.6. Timing diagram showing the steps involved in a hot electron injection pulse.
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has two distinct phases, ramp and pulse. During the ramp phases, the coupling voltages of

the FET are held constant relative to the bulk potential to prevent accidental injection. To

achieve a high field across the transistor during the pulse, the bulk potential is often raised

well above operating conditions, as seen in Figure 2.6. Once the terminals have reached the

desired supply voltage, the coupling voltages, in this case just VC , are adjusted to bias the

transistor such that current flows through the channel. The drain is then pulsed for a fixed

width and returned to the supply voltage. Another ramp phase returns the supply voltage

to normal operation levels.

The algorithm in [28] characterizes the injection pulses for a fixed pulse width, a fixed

coupling voltage with respect to VDD, and a range of source to drain voltages. A predictive

model is then generated such that given the initial current flowing through the transistor and

the desired target current, the model can estimate the source-to-drain voltage needed during

the pulse to reach the target. Since each floating gate transistor injects at slightly different

rates, the algorithm uses a conservative estimate and iterates between current measurement

and pulse phases in order to asymptotically approach the target current. This algorithm

is capable of .2% accuracy [28] over 3.5 decades of current, but it uses a fixed coupling
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Figure 2.7. Floating gate injection efficiency.
(a) Drain current measured after each injection pulse.
(b) Percent change in current for each initial current.
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voltage, which results in a significantly varying injection efficiency per pulse.

Figure 2.7a shows how the drain current of a floating gate pFET changes with each

drain pulse given a fixed source to drain voltage and coupling voltage. Figure 2.7b shows

the percent change in current for a given initial current. From these measurements it can

be seen that the injection efficiency varies significantly over the programmable range of

currents. Using this knowledge, the coupling voltage can be adjusted during the pulse

phase to maximize the injection efficiency. As a result, this modification should reduce the

number of pulses required to program larger target currents.

2.3 Floating Gate Transistor Arrays

In general, floating gate transistors are arranged into a two dimensional array during pro-

gramming, as seen in Figure 2.8. In this configuration, all of the transistor source terminals

are connected to VDD. The coupling voltages and drain voltages are switched between a

fixed potential, usually VDD, and a DAC voltage. A decoder, shift register, or combination
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Figure 2.8. Floating gate transistors arranged into an array for programming.
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of the two control which row and which column are selected at a time. In Figure 2.8, the

center column and center row are selected. The coupling voltages of the unselected rows

are connected to VDD, and the unselected drain lines are also connected to VDD. Since

channel current and high source-to-drain field are both required for hot electron injection,

this configuration allows individual transistor selection within the matrix without additional

isolation hardware. The high field is applied to the selected column, but only the selected

row allows a significant channel current to flow through the desired transistor.

The selectivity of individual devices within the array is only valid when the coupling

and drain voltages used for the unselected devices in the array can maintain isolation. Fig-

ure 2.9 graphically shows the conditions required to maintain isolation during program-

ming. Transistors M1 and M2 were programmed to have drain currents of 100 nA and 1 μA

respectively at a coupling voltage of 0 V, as seen by the dotted lines in Figure 2.9b. The

gate sweep for each of these transistors shows that the transistor current can still be shut
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Figure 2.9. Floating gate transistor isolation in arrays.
(a) A column of floating gate transistors.
(b) Gate sweep measurements depicting the concept of device isolation within floating gate
transistor arrays. The dotted lines show what M1 and M2 would look like if device isolation
was maintained.
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off with the coupling voltage at VDD, which is 2.4 V in Figure 2.9b. A third transistor, M3,

was then programmed to 20 μA at a coupling voltage of 0 V. This transistor can no longer

be turned off with the coupling voltage at VDD, so it will conduct whenever the column is

selected. The current contribution from this transistor now interferes with the current mea-

surements of M1 and M2, but it would completely mask currents less than 100 nA, which

makes accurately programming such currents impossible once isolation has been violated.

Even if another transistor along the column could be programmed given the state of M3,

the current flowing through M3 during the injection pulse would cause it to further inject.

2.4 Switch Characteristics

In addition to programmable biases, floating gate transistors can also be used as pro-

grammable conductance switches. An ideal switch is characterized by infinite impedance,

or no conductivity, in the “off” state and zero impedance, or infinite conductivity, in the

“on” state. Of course, no such device exists in reality. Figure 2.10 depicts the “on” and

“off” states of floating gate pFETs using gate sweeps. An “off” switch is tunneled such

that no measurable current flows through it. Although some minimum level of current is
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Figure 2.10. Gate sweeps depicting the “on” and “off” states of floating gate switches.
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observed in the figure, this is a result of the combined leakage currents of all the transis-

tors attached to a single column in the array plus the leakage current of the reverse biased

diodes formed by the ESD structure and the drain to well junctions. In the “on” state, the

floating gate transistor is injected as strongly as possible to provide the best conductivity.

However, floating gate transistor switches are not limited to simply “on” and “off” states

like their pass FET and transmission gate alternatives generally are. Instead, the floating

gate transistor can be programmed to any intermediate state, as seen in Figure 2.10.

Generally, pass FETs or transmission gates are used as switches, depending upon the

requirements of the system. Floating gate pFET switches are simply a form of pass pFET

in which the gate biasing is controlled through charge programming and coupling capac-

itors. However, a significant difference can be observed in Figure 2.11. The circuit in

Figure 2.11a was used to evaluate and compare the resistance of a pFET, a transmission

gate, and a floating gate pFET when used as a switch. Each switch element was biased
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Figure 2.11. Comparison of switch resistance for various devices.
(a) The resistance was measured with the depicted circuit.
(b) Measurements were taken for a pFET, a transmission gate, and a floating gate pFET
of similar sizes in a .5 μm process.
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such that a constant 25 mV drop was observed across the switch terminals. One end of

the switch was swept across the supply voltage range, and the current was measured at

each step. The resistance was then estimated using Ohm’s law, Figure 2.11b. As the fig-

ure shows, the pFET resistance increases dramatically as the signal passing through it is

reduced. This means that the pFET will have trouble passing low voltage signals when

connected to a low impedance. To solve this problem, transmission gates are generally

employed to cover the entire signal range at a cost of extra capacitance, which reduces the

switch bandwidth. The pFET in the transmission gate reduces the switches resistance for

the upper end of the signal range, and the nFET handles the lower end.

The floating gate pFET’s resistance in Figure 2.11b is on the same order as that of the

transmission gate, but it has significantly less parasitic capacitance because there is only

one transistor, which improves signal bandwidth. The floating gate pFET’s resistance is

monotonic with decreasing signal voltage and varies less than the transmission gate over

the entire signal range. For any DC signal bias, the relative change in resistance for an

AC signal is approximately the same. Although the floating gate pFET resistance curve

looks significantly different, it is actually very similar, except shift to the left. The charge

on the floating gate has been programmed such that the effective floating gate voltage is

below the negative supply. If a negative gate voltage were applied to the pFET, the resis-

tance curve would look very similar to the floating gate pFET. However, the floating gate

pFET’s floating gate voltage is also affected by the signal passing through it. The parasitic

overlap capacitors from the source and drain couple into the floating node. For higher sig-

nal voltages, this coupling increases the resistance slightly. For lower signal voltages, this

coupling decreases the resistance a bit. The effect is basically a horizontal stretching of the

negatively biased pFET resistance curve, which explains why the resistance of the floating

gate pFET is slightly higher than the pFET or the transmission gate for signals near the

supply rail.
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2.5 Switch Programming

Programming a floating gate transistor as a switch occurs in much the same manner as dis-

cussed before. For the intermediate switch conductance values, the precision programming

schemes [27–29] work in exactly the same fashion. However, the “on” state of Figure 2.10

requires programming the individual transistors beyond the point of isolation. This means

that multiple switches cannot be reliably turned “on” in a column by programming them

sequentially.

The current masking effect observed in Figure 2.9b would prevent additional transistors

along a column from being measured during the iterative programming scheme. However,

this is not crucial given that the transistor is not being accurately programmed to a specific

point. Rather, it is being injected as hard as possible to make the best possible switch. The

real problem is the amount of current flowing through the selection circuitry attached to

the drain terminal [30]. The selection circuitry has a finite conductance and therefore has

an associated voltage drop across its terminals when a significant amount of current flows

through it. This voltage drop reduces the field across the floating gate pFET during the

injection pulse, which also reduces the injection efficiency and maximum conduction level

of the switch. As such, it is very difficult to program multiple “on” transistors in a column

using this method.

The algorithm proposed in [30] attempts to solve this problem by incrementally inject-

ing each “on” transistor. The algorithm pulses each transistor to be turned “on” sequentially

before returning to pulse the first transistor a second time. After each iteration, the cou-

pling voltage is increased slightly, which decreases the current flowing through the devices

during the injection pulse thereby reducing the field dropped across the selection circuitry.

By repeating this method, each device is slowly injected up to and beyond the point of iso-

lation. However, the first transistor to breach the isolation point will then continue to inject

for every drain pulse on the column. If a large number of transistors are to be turned “on”

in a given column, this could result in the same diminishing field problem as before.
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An alternate method for programming “on” switches utilizes the substrate coupling ca-

pacitor, Csub, from Figure 2.2b. Figure 2.12 shows the effect of increasing the supply volt-

age during the injection pulse. Although all of the other terminals are adjusted with respect

to the supply voltage during an injection pulse, the substrate voltage cannot be. Therefore,

the substrate couples in an effectively lower voltage, which increases the current flowing

through the transistor when in the high supply voltage state. Therefore, the isolation point

is actually lower than observed during normal supply voltage operation. The shift of the

I-V curve is linearly dependent upon the difference between the operating and injection

supply voltages. To account for this shift, most programming algorithms will ramp the

supply voltage to a consistent injection supply voltage independent of the source to drain

voltage of the injection pulse. By characterizing the injection pulses under this constraint,

the substrate coupling has little affect upon the algorithm.
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Figure 2.12. Exploiting the substrate coupling capacitor for switch programming.

21



For switches, this substrate coupling can be used to inject all “on” devices simulta-

neously beyond the point of isolation. The first step programs each “on” transistor along

the column up to the point of breaching isolation. The coupling voltage is then held at

the supply voltage, and the injection supply voltage is increased beyond the characterized

value. By doing this, all of the transistors programmed to the isolation point will be pushed

slightly beyond isolation and conduct current with their coupling voltages at the supply

voltage. A drain pulse under these conditions will thus cause all of these devices to inject

at the same time, which means they all see the same source to drain field. In this manner,

any number of transistors should be programmable to the “on” state. Although all of the

“on” devices should be programmed to the same relative level, they may not conduct as

well as a single “on” switch, since the field will be reduced significantly the the selection

circuitry.

Floating-gate nFET transistors would seem like a more appropriate choice for a switch,

since the conductance of an nFET is significantly higher than that of an equally sized pFET.

However, most processes now use spacers around the gates of transistors to reduce the

amount of hot electron injection in order to lower the power consumption caused by gate

leakage in high-speed digital systems. This means a drastically reduced injection efficiency

in nFETs, since the injection mechanism occurs near the drain junction. In pFETs, injection

occurs further away from the drain than in the nFET case, which means the spacers have

less of an effect. Therefore, floating gate pFETs have been the floating gate transistor of

choice for this work.

2.6 Indirect Programming

In some instances, the selection circuitry necessary to pull a floating gate transistor out of

an analog circuit is undesirable. Figure 2.13a shows an example circuit using a floating gate

transistor to set a bias voltage. Although the switches in this example are not detrimental to

the operation of the diode-connected nFET, the simplicity better illustrates the mechanisms
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Figure 2.13. Direct versus indirect floating gate transistor programming.
(a) Direct programming requiring selection switches.
(b) Indirect programming requiring no additional switches.

required for programming floating gate transistors within a circuit. During program mode,

the “prog” signal, as seen in Figure 2.13a, is driven high. This switches the drain of the

floating gate pFET from the circuit to the programming drain line. In run mode, the “prog”

signal is held low, which switches the floating gate pFET back into the circuit.

A way to avoid extra selection switches can be seen in Figure 2.13b. Instead of a single

pFET, there are now two pFETs that share a common floating node [31]. One of these

pFETs is attached directly to the circuit of interest. The other is wired into the programming

circuitry. In this configuration, the charge on the floating node can be modified using the

programmer pFET, the pFET connected to the programming circuitry, without disturbing

the terminals of the agent pFET, the pFET connected to the circuit of interest.

Indirect programming also provides an effective way to use floating gate nFETs in cir-

cuits. By replacing the agent pFET with an agent nFET, the programmer pFET can now be

used to modify the charge controlling the floating gate of the nFET, which avoids the low

injection efficiency problem of the nFET. However, this makes programming the nFET a

little trickier than in the pFET case. Tunneling removes electrons from the floating node,
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which increases the effective floating gate voltage. This turns off the pFET, but it turns on

the nFET. This is not a significant problem, but it does require injection to turn “off” the

nFET. In a large system, such as an FPAA, this can be disadvantageous because of the time

required to program “off” these devices. Tunneling is generally a global procedure in that

it affects all of the devices simultaneously. For pFETs, this can be viewed as a global erase,

but for nFETs, all of the devices are turned on very hard. In a reconfigurable system, global

erasure makes sense, since a majority of the devices will not be used in any given system.

The process of injecting these nFET devices “off” makes this impractical on a large scale,

such as would be the case for switches. However, using these devices in a few special case

circuits or biases within large-scale devices may be practical.

2.7 Modified Tunneling Junctions

In most reconfigurable systems, the switching fabric consumes a significant portion of the

die area, which is also the case for the FPAAs described in this work. Most of the space in

floating gate pFET switches is consumed by the tunneling junction. Since this junction is

formed by a MOS capacitor residing in its own well, it requires an isolating substrate space

between its well and the well of the pFET, as seen in Figure 2.1. Because the tunneling

voltage is significantly higher than the operating voltage of the process, this substrate space

between the wells cannot be used for active components, so it is mostly wasted space.

One way to conserve space in floating gate transistor switch networks is to eliminate

the special tunneling junction, as seen in Figure 2.14. In this switch topology, the well

potential can be raised to a high enough voltage to cause the tunneling phenomenon across

the capacitor formed between the pFET’s gate and the well. Using this and the hot electron

injection mechanism discussed earlier, the charge on these well tunneled devices can be

modified, as seen in Figure 2.15.

Although this structure functionally works, it may not be practical for large-scale sys-

tems. When increasing the well potential during tunneling, it is also necessary to increase
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Figure 2.15. Gate sweep data showing well tunneling results.
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the source and drain voltages at the same time. The junctions between the source/drain ac-

tive regions and the well form parasitic diodes. During normal operation, the well is biased

at or above the highest potential of the pFET’s source terminal. In this manner, these diodes

are reverse biased and conduct only leakage current. However, raising the well voltage sig-

nificantly higher than the process voltage causes these diodes to break down and conduct

high levels of current, which can cause damage to the device or IC. To compensate for this

issue, the source and drain terminals were raised along with the well to prevent breakdown.

In an array of floating gate transistors, this would require special level shifting capabilities

and other high-voltage interface circuits to handle the higher source and drain potentials.

The raising of the source and drain potentials also couples into the floating node thereby

increasing the effective floating gate voltage. This reduces the effectiveness of the tunnel-

ing voltage, but increasing the coupling capacitor size and driving the coupling voltage to

ground can help compensate for this effect.

The possibility of replacing the MOS tunneling capacitor with a poly-poly capacitor

was also investigated. Figure 2.16 depicts the layout of such a floating gate transistor. In

this topology, the tunneling capacitors work much in the same manner as the MOS capacitor

used in the standard floating gate pFET design. The charge stored on the floating node was
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Figure 2.16. Layout for a floating gate transistor using poly-poly cap tunneling.
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modified using the same techniques as with the standard floating gate transistor. However,

the voltage required to tunnel the device was significantly higher than the standard pFET

case, since the oxide thickness of the poly-poly capacitor is greater than that of the gate

oxide used in MOS capacitors. Interestingly, this structure also allows electrons to be

tunneled onto the floating node by decreasing the tunneling voltage. A negative voltage is

usually required to do this, and a MOS capacitor would not be able to handle such voltages,

since it would forward bias the junction diodes. However, this is not the case with the poly-

poly cap, and a negative tunneling voltage can be used.

2.8 Improving Isolation

Indirect programming may be helpful in dealing with the isolation issues involved with

programming switches. Figure 2.17 shows a new switch topology based upon indirect

injection. In this circuit, the injection mechanism occurs within the programmer pFET, so

an extra selection pFET can be added just below the programmer pFET, which allows the

current to be shut off for unselected rows. This configuration allows “on” switches to be

injected individually and ensures that all of the “on” transistors along a column are injected

to the maximum possible level.

V
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V
C

row

columnV
D

row select

Figure 2.17. Switch element using indirect programming.
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Figure 2.18 shows some measured gate sweep results for this switch topology. With

the selection pFET shut off, no current from the programmer pFET can be observed. After

turning on the selection pFET, current can be seen to flow through the programmer pFET.

The initial current flowing through the pFET is in between an “off” and “on” transistor

switch, as seen in Figure 2.18. After injecting the programmer pFET, the current seen

flowing through the programmer pFET looks more like an “on” switch. However, the

observability of this current is being limited by the selection pFET, because it is within

the signal path. Performing a gate sweep on the switch pFET, or agent pFET as described

earlier, results in the much higher current levels expected of “on” switches, as seen in

Figure 2.18.
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Figure 2.18. Gate sweep results from the indirectly programmed switch topology.
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CHAPTER 3

PROGRAMMABLE VOLTAGE / CURRENT REFERENCE

Analog systems generally require many different bias voltages and currents to set var-

ious circuit parameters. For large scale analog systems, such as those synthesizable with

large-scale FPAAs, the number of biases could easily number in the 100s to 1000s. It is

impractical to dedicate IC pins for this level of biasing, so an on-chip solution is required.

Since many process parameters are temperature dependent, the analog circuit characteris-

tics will also be temperature dependent unless the biasing structures compensate for these

temperature effects. For programmable and reconfigurable systems, such as FPAAs, the

synthesized analog circuits must maintain their performance characteristics over a reason-

able range of temperatures to gain commercial acceptance.

Although temperature independent circuit topologies, such as the very popular bandgap

reference [32–34], are in common use, they tend to consume a large die area and have a

fixed reference value. The fixed reference is obviously a problem for programmable sys-

tems, but this can be overcome through the use of selectable references, which are effec-

tively DACs. The real issue is the area requirement for the large number of on-chip biases.

Accuracy requirements and large DAC array structures force the significant area consump-

tion in standard reference designs. High accuracy often also comes at the expense of post

fabrication trimming using lasers or other techniques. However, floating gate transistors

can be introduced to increase the initial accuracy and decrease the die area through pro-

gramming.

3.1 Architecture and Theory

A floating gate based programmable voltage reference has been developed1 [19] based

upon the common beta-multiplier reference circuit [35]. As seen in Figure 3.1a, the pFET

1This work was done in collaboration with Venkatesh Srinivasan and Guillermo Serrano. It was partially
funded by the JPL Self-Reconfigurable Electronics for Extreme Environments (SREE) project.
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Figure 3.1. Programmable floating gate based reference.
(a) Schematic of the floating gate reference.
(b) Die photo of the floating gate reference with relevant dimensions.

transistors M1 and M2 have been replaced with floating gate pFETs. An on-chip resistor,

in conjunction with the programmed reference voltage, is used to set the current flowing

through each leg of the circuit. Assuming M1 and M2 are sized the same and M3 and M4 are

matched, the current flowing through M1 and M2 should be the same. Figure 3.1b shows a

die photo of the programmable reference designed in a .35 μm process using a 2.5 V supply.

The dimensions for the circuit in Figure 3.1a are given in the die photo. The long rectangle

along the right edge of the photo is the on-chip resistance, which can be significantly larger

or smaller, depending upon the region of operation, above or sub-threshold. The extra

circuitry shown in the photo was simply used for testing purposes and is not required by

the reference.

Assuming perfect device matching and ignoring the Early effect, the current flowing

through M1 and M2 are equal. In the saturated sub-threshold region, a bulk referenced

30



expression comparing the currents flowing through M1 and M2 can be seen in (3.1) and

simplified in (3.2).

I2 = I1

I0 e
(
κ VFG2

UT

)
= I0 e

(
κ VFG1−Vre f

UT

)
(3.1)

κVFG2 = κVFG1 − Vre f (3.2)

In a similar fashion, the same result can be seen in (3.3) assuming above-threshold saturated

operation and using a bulk referenced model.

K
2κ

[κ (VFG2 − Vth)]
2 =

K
2κ

[
κ (VFG1 − Vth) + Vre f

]2

κVFG2 = κVFG1 − Vre f (3.3)

With the results of (3.2) and (3.3), the floating gate voltages can be expanded using (2.3) to

form (3.4) and simplified to (3.5).

Vre f = κ (VFG1 − VFG2)

= κ

[(
CCVC + CtunVtun + Q1

CT

)
−

(
CCVC + CtunVtun + Q2

CT

)]
(3.4)

= κ

(
Q1 − Q2

CT

)

= κ
ΔQ
CT

(3.5)

From (3.5) it is easily seen that the reference voltage is proportional to the charge difference,

ΔQ, between floating gate transistors M1 and M2.

3.2 Programmability

Using the programming techniques described in Chapter 2, the reference voltage can be

set according to (3.5). Figure 3.2 shows the programmable reference circuit with switches

needed to take the floating gate transistors out of the circuit and connect them to the pro-

gramming lines. The source terminals are tied to VDD, the drain terminals to independent
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Figure 3.2. Programmable reference schematic showing programming switches.

drain lines, and the coupling voltage is switched from its normal diode connection to a

control voltage.

In addition to providing connectivity to the programming lines, the switches in Fig-

ure 3.2 eliminate the need for a start-up circuit. This particular reference topology has two

stable operating points. One stable point is the desired operating condition in which a cur-

rent flows through both legs of the circuit as set by the resistor. The second stability point

occurs when no current flows through either leg. In this case, the current through each

leg is still equal, just zero. To ensure proper reference operation, a start-up circuit is often

used to inject a current into one of the circuit legs until the reference reaches the desired

operating point. The programmable reference utilizes the selection switches to ensure a

correct start-up condition by connecting the drains and the coupling voltage of the floating

gate transistors to a low potential, which causes current to flow. A power-on-reset circuit is

used to keep the circuit in program mode for a short period of time before switching to run

mode.
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Figure 3.3. Reference programmability and accuracy.
(a) The voltage reference is a linear function of the threshold difference.
(b) Initial accuracy of programmed reference voltages.

Figure 3.3a shows the reference circuit programmed to output values between 50 mV

and 500 mV. The charge difference is estimated as the difference of the effective threshold

voltages of M1 and M2. As predicted, the reference voltage is linearly proportional to the

charge difference. Taking a closer examination of the programming, Figure 3.3b shows the

reference programmed between 250 mV and 260 mV and the initial accuracy observed.

The worst case initial offset was measured to be approximately 40 μV. However, a better

characterized programming algorithm should be capable of even better.

3.3 Temperature Dependence

From (3.5) the dominant temperature dependence of this circuit is primarily due to the κ

term, which is expanded in (3.6).

κ = 1 − γ

2

√
VFG − Vth +

(
γ

2+
√
φ0

)2
(3.6)
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The various parameters of (3.6) are given by (3.7) through (3.10).

Vth = Vt0 + α (T − T0) (3.7)

UT = 8.62 · 10−5 T (3.8)

φ0 = −2UT ln

(
ni

NA

)
(3.9)

ni = 3.1 · 1016 T 3/2e−7000/T (3.10)

The capacitance will also have some dependence upon temperature due to the physical

expansion and contraction of the oxide, but this should be relatively low compared to that

of κ.

Figure 3.4a shows measured temperature data between -60◦ C and 140◦ C for six differ-

ent reference voltages between 100 mV and 600 mV. Figure 3.4b shows a detailed view of

the temperature data for a reference voltage of 400 mV. From this data, a maximum temper-

ature dependence of 110 μV/◦C was observed with the reference programmed to 600 mV,

and a minimum of 10 μV/◦C was measured for the 100 mV case.

The first-order temperature dependence observed in the reference circuit could have

been significantly reduced by connecting the source and bulk of M1, assuming it resides in
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Figure 3.4. Reference voltage change as a function of temperature.
(a) Reference circuit programmed to several output voltages.
(b) A closer view of a single programmed voltage.
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its own well, as seen in the following sub-threshold derivation.

I2 = I1

I0 e
(
κ VFG2

UT

)
= I0 e

(
κ VFG1

UT

)

VFG2 = VFG1 (3.11)

As expected, the effective floating gate voltages referenced to the bulk of the transistor are

equal (3.11). Substituting (2.2a) into (3.11) results in (3.12).

CCVC + CtunVtun + Q2

CT
=

CC

(
VC − Vre f

)
+Ctun

(
Vtun − Vre f

)
+ Q1

CT
(3.12)

Since the bulk potential for transistors M1 and M2 are different in this case, the coupling

voltage VC and Vtun have been referred to the bulk of M2 in (3.12). The coupling terms of

M1 have been adjusted to accommodate the difference between the bulk terminals, which

is the reference voltage. Simplifying (3.12) results in (3.13).

(CC +Ctun) Vre f = Q1 − Q2 (3.13)

This equation can be further simplified by recognizing that the total capacitance at the float-

ing node is a summation of the coupling capacitor and tunneling capacitor in the simplified

case, which results in (3.14).

Vre f =
Q1 − Q2

CT

=
ΔQ
CT

(3.14)

Thus the reference voltage is only dependent upon the charge difference and the total ca-

pacitance seen at the floating node. The charge is not directly dependent upon temperature,

although it can affect the long-term drift as discussed in the following section. Therefore,

the temperature dependence of this modified circuit is primarily due to the temperature

coefficient of the capacitors.
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3.4 Long-Term Retention

From (3.5) it is easy to see that the long term drift of the reference voltage is proportional

to the change in the charge difference. The change in charge over time is believe to be

primarily due to thermionic emission [36]. The fractional change in the charge difference,

and therefore the fractional change in the reference voltage, can be expressed as a function

of time and temperature as seen in (3.15).

Vre f (t)

Vre f (0)
=
ΔQ(t)
ΔQ(0)

= e−tυe
−φB
kT (3.15)

Vre f (0) is the initial programmed reference voltage, and Vre f (t) is the reference voltage at

time t. Likewise, ΔQ(0) is the initial charge difference, and ΔQ(t) is the charge difference

at time t. υ is the relaxation frequency of electrons in polysilicon, φB is the Si / SiO2 barrier

potential, k is Boltzmann’s constant, and T is the absolute temperature in Kelvin.

Accelerated lifetime retention data was measured according to the method previously

used in [16] and is summarized in Table 3.1. Figure 3.5a shows negligible drift in the

reference voltage for over 100 hours at a temperature of 25◦ C. At 125◦ C, the reference

voltage changed by 400 μV over a period of 450 hours, as seen in Figure 3.5b. Using

this data, the high temperature data from Table 3.1, and (3.15), υ and φB were found to be

55 m/s and .618 eV, respectively. This results in a 10 year drift of 400 μV using (3.15) at

25◦ C.

Table 3.1. Reference Voltage Drift Data

Temperature (◦C) 325 325 125
Time (hours) 24 48 400

Vre f (t)
Vre f (0) .967 .953 .998
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Figure 3.5. Long term reference voltage drift at low and high temperatures.
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CHAPTER 4

FIRST GENERATION FLOATING GATE FPAA

The RASP 1.x ICs were the first attempt at an FPAA based upon floating gate transis-

tors1. The RASP 1.0 and RASP 1.5, as seen in Figure 4.1, were fabricated on 1.5 mm x

1.5 mm dies in a .5 μm process available through MOSIS. Before developing large-scale

FPAAs, it was necessary to demonstrate the feasibility of using floating gate transistors as

both the programmable and switching elements within an array structure. The RASP 1.x

FPAAs therefore served as characterization chips for potentially larger devices. Although

they are fairly small in size, the RASP 1.x FPAAs have nearly the same functionality as

commercially available FPAA ICs [6, 23].

Figure 4.1. RASP 1.5 die photograph.

1This work was done in collaboration with Tyson S. Hall and Jordan D. Gray
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4.1 Architecture

As seen in Figure 4.2, the RASP 1.x FPAA [23] is composed of two vertically aligned gen-

eral purpose configurable analog blocks (CABs) connected via a single crossbar switching

network. This switch matrix (SM) allows any CAB component in either CAB to be con-

nected to any other CAB component with just two switches. Input / Output (I/O) pins

connect directly to several of the rows in the switch network of the RASP 1.0. Some I/O

lines also contain dedicated output buffers for driving signals off chip. The later revision of

the chip, RASP 1.5, also included I/O pin connections to some of the column routing lines.

This provided another level of I/O that had half the routing impedance of the original IC’s

I/O lines, since it requires only one switch to make a connection instead of two.

SM

CAB

CAB

I/O

I/O

I/O

I/O

29

29

Figure 4.2. RASP 1.x FPAA architecture and CAB components.

4.1.1 CAB Component Selection

In the case of most FPGAs, the core elements used to synthesize digital circuits are look-

up tables (LUTs) and D-type flip-flops (DFFs). Using a cascade of asynchronous LUTs,

any combinational logic chain can be implemented. The addition of DFFs enable a wide

variety of synchronous circuits, such as simple state machines and soft core processors.

Since these two components are rather simple, they can be arrayed in a regular manner to

create a large-scale reconfigurable and programmable digital device.
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Determining a core set of components for reconfigurable analog ICs, such as FPAAs,

is somewhat more difficult. Some FPAAs, such as the field programmable transistor ar-

ray [37], utilize fine-grain components such as transistors and capacitors as the core ele-

ments. This is very advantageous from the perspective of flexibility, since any circuit can

be built from a large enough array of transistors. However, this flexibility comes at the cost

of performance. By building the circuit from these primitive elements, switch parasitics

are introduced at every junction in the circuit. Figure 4.3 shows an example five transistor

OTA topology and the corresponding circuit as synthesized within an FPAA using only

transistor primitives. Floating gate transistor switches used to connect the individual CAB

transistors are depicted in Figure 4.3b as light grey pFETs. Each of these switches adds

a little impedance in the signal path and a little capacitance at each junction. To help im-

prove performance, commonly used circuits, such as OTAs or OPAMPs, are also included

V-V+

V
out

V
b

(a)

V-V+

V
out

V
b

(b)

Figure 4.3. Example OTA implemented using transistors within an FPAA.
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as medium-grain components. Medium-grain components provide improved circuit param-

eters without a significant loss of generality or flexibility. Finally, course-grain components

are generally added as specialized circuits, which have been highly optimized to perform a

specific task.

The CAB components, as seen in Figure 4.4, were chosen to provide a balanced mix-

ture of granularity [6] in order to achieve an effective trade-off between performance and

flexibility. The transistors and capacitors provide fine-grain flexibility, which allows almost

any circuit to be synthesized with a sufficiently large CAB array. OTAs and C4 band-pass

elements were included as medium-grain components, since these elements can be used in

a significant number of circuit topologies. Special purpose course-grain components, such

as the min/max detectors and the vector-matrix multiplier (VMM) are also included.
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+

-

C4

X X X X

X X X X

X X X X

X X X X

Figure 4.4. RASP 1.x FPAA CAB components.
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4.1.2 Floating Gate Transistor Array Structure

Figure 4.5 shows the inner details of the FPAA architecture, which has two modes of op-

eration, run and program. In program mode, indicated by the “prog” signal going high,

the floating gate transistors used for switches and biases are configured into one large ma-

trix for global addressing. As seen in Figure 4.5, pull-up transistors drive the sources of

floating gate switch transistors, and drain lines are connected to the column programming

logic. Bias transistors are disconnected from the circuits they control and are connected to
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Figure 4.5. Floating gate transistor array architecture for programming.
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the same programming lines used for the switches. The row selection circuitry, left side of

Figure 4.5, is used to switch the external coupling voltage, VC , to the selected row. All uns-

elected rows have their coupling capacitors pulled up to VDD. A decoder is used to generate

the row select signals, rsel<x>. In a similar fashion, the column selection circuitry, bottom

of Figure 4.5, connects the selected column’s drain line to the external drain signal, VD.

All unselected drain lines are tied to VDD. Another decoder generates the column select

signals, csel<x>.

Run mode is defined when the “prog” signal in Figure 4.5 is low. In this configuration,

the source and drain terminals of the floating gate switches are left floating as the rows and

columns of the routing fabric, and the bias floating gate transistors are switched into their

corresponding CAB components. In this example, the floating gate bias controls the tail

current of an OTA. The current flowing through the transistor is set during program mode.

A diode-connected nFET converts this current into a voltage that drives the bias transistor

of the OTA. The terminals of the OTA connect to the routing rows. Likewise, all other CAB

component terminals connect to rows of the routing matrix. By programming the switch

transistors, connections can be made between these component terminals via the routing

columns.

4.2 Synthesized Circuits and Results

Testing this first generation FPAA began by characterizing the floating gate transistors.

Since this was the first time that floating gate transistors had been used as switches, not

much was known about how to program them. Initial attempts used pulse width modulated

schemes for programming both biases and switches. Although this worked fairly well for

biases, switch conductivity was limited by standard array isolation techniques. These initial

tests illustrated the need for a new programming scheme designed specifically for switches.

The methods described in Chapter 2 were developed in response to this limitation and

allowed for significantly better switches.

43



4.2.1 Follower, Low-Pass Filter

With the bias and switch programming characterized, the first circuit synthesized was a

simple follower acting as a GM-C low-pass filter, as seen in Figure 4.6a. The OTA is a nine-

transistor topology with nFET inputs and a tail current set by a bias voltage. Figure 4.6a

shows the floating gate pFET and diode-connected nFET that sets the OTA bias. The

3 dB corner frequency, (4.1), is directly determined by the OTA transconductance, which

is determined by the bias current, and the load capacitor.

f3dB =
GM

2πC
(4.1)

By programming the tail current of the OTA, the corner frequency of the circuit can be set.
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Figure 4.6. GM-C low-pass filter implemented on the RASP 1.5.
(a) Low-pass filter circuit schematic.
(b) FPAA implementation showing “on” switches.
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The follower circuit was routed in the RASP 1.5 as depicted in Figure 4.6b. As dis-

cussed earlier, the terminals of CAB components are connected to the rows of the switch

matrix. Connections between CAB components are made by turning “on” the transistors,

represented in this diagram by filled circles at the intersections of rows and columns. For

this circuit, two column I/O lines were used for the input and output waveforms. The output

of this circuit was isolated from external parasitic capacitances by using one of the column

I/O lines with a dedicated output buffer.

The bias transistor, which is not shown in Figure 4.6b, was programmed and swept

from 10 nA to 20 μA. For each bias current, a frequency response was measured, as seen

in Figure 4.7. For the programmed current range, the 3 dB corder frequency range was

between 700 Hz and 20 kHz, which nearly covers the spectrum typically used for audio

applications.
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Figure 4.7. Frequency response of GM-C low-pass filter.
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4.2.2 Second-Order Section

A second-order section was next synthesized on the RASP 1.5, as seen in Figure 4.8a. The

transfer function of this circuit topology is given by (4.2).

Vout(s)
Vin(s)

=
ω2

n

s2 + ωn
Q s + ω2

n

(4.2)

The natural frequency of the circuit is determined by (4.3).

ωn =
GM1

C
(4.3)

The quality factor, Q, is given by (4.4).

Q =
1

2 − GM3
GM1

(4.4)
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Figure 4.8. Second-order section implemented on the RASP 1.5.
(a) Circuit schematic.
(b) FPAA implementation showing “on” switches.
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Figure 4.9. Frequency response of the second-order section circuit.

These equations assume that GM2 = GM1 and the load capacitances are equal. Therefore,

the bias currents of OTA 1 and 2 set the corner frequency, and the bias current of OTA 3

sets the Q of the circuit. Figure 4.8b shows the circuit routed within a single CAB of the

RASP 1.5 using three OTAs and two drawn capacitors. Frequency response data was also

taken for this circuit and is shown in Figure 4.9. The bias currents of OTAs 1 and 2 were

programmed to approximately 100 pA, and the bias current was programmed to various

values around 100 pA to change the Q.

4.2.3 Capacitively Coupled Current Conveyor

The C4 CAB component is commonly used as a compact band-pass filter. As seen in Fig-

ure 4.10a, the C4 is a 4-transistor circuit with capacitively coupled inputs. A 5 th transistor,

which is biased with the circuit depicted in Figure 4.10b, was added to increase the in-

put linear range using source degeneration [38]. A drain induced barrier lowering (DIBL)

transistor was chosen for this 5th transistor to provide a strong exponential relationship the
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Figure 4.10. Capacitively coupled current conveyor (C4) band-pass element.
(a) Schematic of C4 circuit.
(b) Schematic of automatic DIBL bias generator.

drain potential and the current flowing through it. This is achieved by reducing the length

of this transistor just below the minimum feature size of the process.

The transfer function of this C4 circuit [38] is given by (4.8).

Vout(s)
Vin(s)

= −
(
Cin

Cov

) ⎡⎢⎢⎢⎢⎢⎢⎣ sτl (1 − sτ f )

s2τlτh + s
[
τl + τ f

(
Cov+CL

κCov
− 1

)]
+ 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.5)

The time constants are defined by (4.6) through (4.5).

τl =
Cov

gMl
(4.6)

τh =
Cov

gMh
(4.7)

τ f =

(
CT (Cov + CL) − C2

ov

Cov gMh

)
(4.8)

where CT is the total capacitance seen at the gate of M1, CL is the load capacitance seen at

the output of the circuit, and Cov is the overlap capacitance between the gate and drain of
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M1. The center frequency of the band-pass transfer function is then defined by (4.9).

τ =
√
τlτh (4.9)

The high and low corners are independently tunable by adjusting the Vh and Vl biases,

respectively. This also allows the circuit to be used as an effective low-pass or high-pass

filter by programming the opposite corner frequency outside the relevant frequency band.

The C4 block used in the RASP 1.5 is actually a cascade of two C4 elements, which

yields a second-order section. Frequency response results for one of the C4 elements was

obtained, as seen in Figure 4.11. One C4 element was programmed with a very wide band-

width, which effectively nullifies its affect on the output in the observable band. This allows

the center frequencies of the second C4 element to be adjusted and observed independently,

as seen in Figure 4.11. For each center frequency, the high and low bias corners were

programmed such that they overlap at the desired center frequency.
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Figure 4.11. Frequency response of the C4 band-pass element.
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4.2.4 Third-Order Ladder Filter

A third-order ladder filter, as seen in Figure 4.12a, was also synthesized to demonstrate a

multi-CAB circuit. The circuit was routed in the RASP 1.5 across two CABs, as seen in

Figure 4.12b. This topology produces a low-pass third-order Butterworth filter, which was

chosen for its sharp roll-off and flat passband region. The transfer function of this circuit is

given by (4.10).

Vout(s)
Vin(s)

=
GM1 GM3 GM4

b3 s3 + b2 s2 + b1 s + b0
(4.10)
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Figure 4.12. Third-order ladder circuit implemented on the RASP 1.5.
(a) Circuit schematic.
(b) FPAA implementation showing “on” switches.
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The coefficients are defined by

b3 = C3

b2 = (GM1 +GM4) C2

b1 = (GM1 GM4 +GM2 GM3 +GM3 GM4) C

b0 = GM3 GM4 (GM1 +GM2)

where the transconductance, GMx, corresponds to OTA x and C is a single drawn capacitor.

To meet the Butterworth filter conditions, the OTAs are biased such that GM1 = GM2 = GM4

= 2 GM3. With these constraints, (4.10) simplifies to (4.11), where GM = GM1.

Vout(s)
Vin(s)

=
G3

M

2 C3 s3 + 4 GM s2 + 5 G2
MC s + 2 G3

M

(4.11)

Frequency response data was also obtained for several corner frequencies, as seen in Fig-

ure 4.13.
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Figure 4.13. Frequency response of the third-order ladder circuit.
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4.3 Observations and Conclusions

The results of testing the RASP 1.0 and RASP 1.5 demonstrated the feasibility of using

floating gate transistors as both the programmable and reconfigurable elements within an

FPAA. A single floating gate pFET switch performed as well as a standard transmission

gate of comparable size, and required no additional memory elements, such as SRAM, to

maintain connection information. As programmable elements, floating gate biases provided

a method for setting analog circuit parameters over several orders of magnitude without

requiring a significant amount of die area. With both programmable and reconfigurable

elements tested, it seemed likely that a large-scale FPAA based upon this technology would

be possible.
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CHAPTER 5

SECOND GENERATION FLOATING GATE FPAA

The RASP 2.x ICs1 are the first large-scale FPAAs based upon floating gate transistors,

and the only reconfigurable analog device comparable in scale is the analog coprocessor

discussed in [39]. These ICs were all fabricated in .35 μm processes available through

MOSIS. The RASP 2.5 contains 56 CABs and fills a 3 mm x 3 mm die. The RASP 2.7

occupies a 3 mm x 4.5 mm die and consists of 72 CABs, as seen in Figure 5.1. Although

the results of the RASP 1.x line demonstrated the feasibility of creating dense analog com-

ponents, the RASP 2.x FPAAs would illustrate the issues involved in programming and

using components located across the chip in a synthesized analog system.

Figure 5.1. RASP 2.7 die photograph.

1This work was done in collaboration with Tyson S. Hall and Jordan D. Gray
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5.1 Architecture

The RASP 2.x line of floating gate FPAAs is composed of a two-dimensional array of

CABs, as seen in Figure 5.2. Instead of a single crossbar network connecting the CABs,

there are now multiple routing options. The first layer of routing consists of the local

crossbar switch matrix, which allows CAB component terminals to be connected within

a single CAB. This switch matrix also connects to vertical global routing lines, which

connect all of the local switch matrices along a column. Global horizontal routing lines

are located just below each CAB row and are connected to the vertical global routing lines

via a smaller switch matrix located at the intersection of the global horizontal and vertical

routing lines. These global routing lines make up the second routing layer, which also

connects to the I/O pins. Level 1 I/O pins, those that require only a single switch to connect

to a CAB component terminal, are connected to select vertical global routing lines. Level

2 I/O pins, which require two switches to reach CAB component terminals, are connected

to select horizontal global routing lines.

I/O

I/O

I/O

SM CAB

SM CAB

I/O

SM CAB

SM CAB

Figure 5.2. The two-dimensional CAB array, RASP 2.x FPAA architecture.
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Figure 5.3. The RASP 2.5 CAB array with row and column addressing offsets.
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Figure 5.4. The RASP 2.7 CAB array with row and column addressing offsets.
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The RASP 2.x FPAAs feature multiple CAB types, since some components are used

less often than others for typical circuits. The VMM CAB is the same as in Figure 4.4, and

the general purpose CAB contains all of the components in the VMM CAB except for the

vector-matrix multiplier. For both the RASP 2.5 and 2.7, the top and bottom rows of CABs

consist of VMM CABs, while the remaining CABs are general purpose. As depicted in

Figure 5.3, the RASP 2.5 has a 7 x 8 array of CABs with the VMM CABs highlighted by

a grey background. The RASP 2.7 contains a 9 x 8 array of CABs, as seen in Figure 5.4.

Each floating gate transistor within the FPAA is addressed using a global addressing

scheme, which gives each transistor a unique row and column address. For routing pur-

poses, it is often useful to refer the floating gate transistors within a local switch matrix to

the CAB to which it is attached. For this purpose, each CAB within the array is given the

address of the first floating gate transistor contained within the CAB, as seen in Figures 5.3

and 5.4. Using this CAB address, the floating gate transistors are given offset addresses

based upon the routing lines, as seen in Figure 5.5.

With proper CAD tools, routing would be performed by software based upon some

description of the hardware, whether schematics or HDL. However, the tools for reconfig-

urable and programmable hardware are still in early development, so much of the routing

has been performed manually. Figure 5.5 depicts a condensed version of the RASP 2.x

switch plot diagram, similar to fuse plots used in the early days of programmable digital

devices. Connections between routing lines are graphically illustrated by drawing bubbles

over the intersections, similar to that seen earlier in Figure 4.6b. The switch locations are

then determined by adding the CAB address to the routing line offsets. For example, a

simple buffer circuit has been routed using CAB A2 in Figure 5.5. To connect an I/O pin to

the positive OTA terminal, switch (56 + 12, 252 + 23) is selected to be turned “on” during

programming. The CAB offset (56, 252) was added to the switch’s relative position within

the CAB, (12, 23). Similarly, the second I/O pin is connected to the OTA’s negative and

output terminals via switches (56 + 13, 252 + 22) and (56 + 14, 252 + 22).
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5.2 Characterization

As was the case with the first generation floating gate FPAA, testing began by character-

izing the floating gate transistors in this process. Switch programming was achieved by

utilizing the methods described in Chapter 2. A modified version of the algorithm de-

scribed in [28] was used to characterize and program biases. During the characterization

and programming steps, the coupling voltage was also modulated in an attempt to increase

injection efficiency by biasing the floating gate pFET to a specific point during the drain

pulse phase. Although this was marginally successful, it is not clear that this method is bet-

ter than that described in [28]. Injection efficiency was increased, but accuracy decreased,

most likely because of the additional approximation made while biasing the coupling volt-

age. A better solution would be to use gate modulation during initial pulses to quickly

program the pFET close to the desired value. Then the programming scheme of [28] could

be used to accurately tweak the pFET to the exact value. However, this significantly com-

plicates the circuitry required to implement on-chip programming and may prove more

difficult than beneficial.

Besides the floating gate transistors, the drawn CAB capacitors and parasitic routing

capacitances were also characterized. Figure 5.6a depicts the circuit used to accomplish

this task. OTA 2 in combination with the drawn and parasitic capacitances form a GM-C

element, which has a time constant proportional to the load capacitance. OTA 1 is used

simply as a buffer to isolate the global routing capacitance from OTA 2. The black bubbles

indicate the initial connections made, and the grey bubbles represent incremental connec-

tions made to observe the various capacitive load conditions. OTA 2 was biased with a

small sub-threshold current, and OTA 1 was biased with a significantly larger current such

that it would not affect the time constant of OTA 2.

Select step responses for this circuit are shown in Figure 5.6b to illustrate the effect

of adding additional routing and drawn capacitance to the output of OTA 2. From these

step responses and others, the individual capacitances were extracted, as summarized in
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Figure 5.6. Characterization of drawn capacitors and parasitic routing capacitance.
(a) Circuit used to characterize capacitance.
(b) Step response data for various configurations. DC levels were shifted for clarity.

Table 5.1. From the measured routing capacitance values, the parasitic capacitance contri-

bution of a single switch transistor was also estimated.

Table 5.1. Extracted Parasitic and Drawn Capacitances.

Global line 640 fF
Drawn Capacitor 130 fF
Local Line 75 fF
Closed Switch 10 fF
Open Switch 2.5 fF

5.3 Synthesized Circuits and Results

After the various characterization procedures were completed, many of the same circuits

synthesized during the RASP 1.x testing were also analyzed on the RASP 2.x FPAAs, such

as the follower circuit. However, additional capabilities were also explored when desired

circuit elements were not available within the CABs. Capacitively coupled circuits are
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often desirable for linear voltage operations. Unfortunately, none of these devices were in-

cluded within the CAB, but they can be synthesized with some success. Another interesting

area involves computational uses for switch fabric transistors. In most reconfigurable de-

vices, the routing switches are mostly wasted space as far as signal processing. However,

the floating gate switch provides a unique opportunity to utilize these transistors within

circuit topologies, as will be discussed in the following sections.

5.3.1 Follower, Low-Pass Filter

The low-pass follower circuit design was migrated from the RASP 1.5 to the RASP 2.7

and synthesized in the same manner as depicted in Figure 4.6b. Instead of using the drawn

capacitor, the load capacitance was dominated by the parasitic routing capacitance. In these

large-scale device, the routing capacitance was significantly larger than in the RASP 1.x

case, as would be expected. However, the drawn capacitor in the RASP 2.x devices is

significantly smaller than the parasitic capacitance of the global routing lines. Figure 5.7

shows the results of using this parasitic capacitance of a single global routing line as the

load capacitor of the GM-C low-pass filter.

The corner frequency was programmed by adjusting the OTA transconductance accord-

ing to (4.1). For sub-threshold bias currents, the transconductance is defined by (5.1).

GM =
κIbias

UT
(5.1)

Substituting (5.1) into (4.1) yields a proportional relationship between the programmed

OTA bias current and the 3 dB corner frequency, (5.2).

f3dB =
κIbias

2πC UT
(5.2)

The corner frequency was extracted for each bias current in Figure 5.7 and plotted against

the programmed bias current, as seen in Figure 5.8. A linear fit is also plotted in Figure 5.8

to show the conformance to (5.2).
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Figure 5.7. Low-pass follower data from the RASP 2.7.
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Figure 5.8. Corner frequency relationship to sub-threshold OTA bias currents.
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5.3.2 Capacitively Coupled Summation

Some of the new systems intended for the RASP 2.x FPAAs required circuits and compo-

nents that were not explicitly present in the CABs, so equivalent circuits were synthesized

from the available components. One example is the summation block illustrated in Fig-

ure 5.9. Voltage summation is a fairly trivial task with resistors and operational amplifiers,

but resistors are not commonly fabricated in ICs due to the large area requirements and

variation between identically drawn resistors. However, capacitively coupled circuits, such

as that depicted in Figure 5.9, can also perform this task.

Each input of this circuit is capacitively coupled to the negative terminal of the OTA.

Another capacitor provides feedback while the pFET across this capacitor establishes the

DC operating point of the output. If this was not a reconfigurable implementation of the

circuit, the negative terminal of the OTA would be floating. The charge on this floating node

would then need to be programmed in order to set the DC point of the circuit. An alternate

topology uses a high resistance between a reference voltage and the pseudo floating node

to set the DC point. However, a pFET, like the one in Figure 5.9, weakly biased in the

sub-threshold region allows a leakage path from the output back to the negative terminal.

This also creates a pseudo floating node and allows the OTA to set its own DC point to the

reference voltage applied to the positive terminal of the OTA.

-

+

V
in1

V
bias

V
in2

V
ref

V
out

Figure 5.9. A capacitively coupled summation circuit using a pFET leakage resistance.
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Figure 5.10. Summation circuit ideal and measured results.
(a) Ideal inverting summation with normalized amplitudes.
(b) Measured data from audio card inputs and circuit output.

To test the circuit, two sinusoids of frequencies 1 kHz and 2 kHz were generated using

MATLAB and played over the PC’s left and right audio channels. These signals were used

as the input to the summation circuit and the output was captured using an oscilloscope.

Figure 5.10 depicts the theoretical and measured responses of the summation circuit. The

output is clearly the inverted summation of the two input signals. If desired, the original

signal polarity could be recovered by simply using a single input version of this same

circuit cascaded to the output. A frequency response of the circuit confirms the expected

high-pass behavior, with the corner frequency determined by the size of the capacitors and

the conductivity of the leakage pFET. For this circuit, high-pass corner frequencies below

100 Hz were observed, which is adequate for audio spectrum signals.

An interesting modification can be made to the circuit to reduce the component count

and eliminate the I/O pin required for the leakage pFET’s bias voltage. Instead of using

one of the CAB’s pFETs as the leakage path, switch transistors can be used, as seen in

Figure 5.11. Since these are floating gate transistors, the conductivity of these switches can

be adjusted to control the amount of leakage and therefore the high-pass corner frequency.
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Figure 5.11. Summation circuit using the switch fabric as a resistance.

5.3.3 Capacitively Coupled Difference

The subtraction of two signals could also have been done with the inverting summation

circuit of Figure 5.11. All of the positive terms would be summed and inverted using the

structure and then fed into a second circuit cascaded to the output of the first. By attaching

the negative signals to the second summation amplifier, the output would be the difference

of the signals in the correct polarity. However, the circuit of Figure 5.12 can perform

the same task in a more compact form. The form of this amplifier is very similar to the

summation amplifier except that signals are now coupled into the positive terminal of the

OTA as well. The positive terminal is also a pseudo floating node, which is set by another

switch fabric leakage resistor to a reference voltage.

An interesting issue arose when examining the frequency response of this circuit, as

seen in Figure 5.13. An imbalance in the capacitances at the pseudo floating nodes can be

seen as a gain error for the individual inputs. In this case, the positive input, Figure 5.13b,

has a slightly higher gain than that of the negative input, Figure 5.13a. By tweaking the

routing a bit, the parasitic capacitance contribution from the routing can be used to help

balance these nodes using the capacitive characterization data discussed earlier.
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Figure 5.12. Capacitively coupled difference circuit.
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Figure 5.13. Frequency response of the capacitive difference amplifier.
(a) Negative input.
(b) Positive input.
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5.3.4 Programmable Switch Fabric Current Source

Although no current sources were explicitly included as CAB components, the occasional

need for them did arise. The transistors included in each CAB could easily serve as a

current source, but this requires several I/O pins for each current value desired. However,

another solution can be found within the routing fabric. Figure 5.14a depicts the routing

configuration used to generate a current source. The only external signal required is VDD,

which can be shared across any number of current sources.

The drain of this device was swept to determine how good a current source the switch

fabric can provide. For the first sweep, M1 was programmed to the desired current, and

M2 was programmed as an “on” switch. M2 was then programmed to a bias level slightly

higher than that of M1 in order to act as a cascode for M1. This increases the output

resistance of the current source, thereby making it more ideal. Figure 5.14b shows the

results of these sweeps. When M2 was programmed as an “on” switch, the current flowing
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Figure 5.14. Current source/reference built within switch fabric.
(a) Circuit schematic showing a pair of switch transistors.
(b) Sweep showing current source value as a function of drain voltage.
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through M1 changed significantly with VD. Cascoding the current source with another

switch dramatically reduce the current dependence upon VD. Additional switches could be

added as extra cascode stages to further improve the current source at the cost of headroom.

5.3.5 Programmable Voltage Reference

In addition to current sources, voltage references can also be generated on-chip. Figure 5.15

shows one example of a voltage reference that uses a switch fabric current source to set

the output voltage via a diode connect nFET. This voltage is then buffered by an OTA

configured as a follower to isolate the reference circuit from any current loading.

For characterization purposes, the switch fabric current source was replaced by a pFET

in order to quickly sweep the device over the operating range. Figure 5.16 shows the

transfer function between the bias voltage applied to the pFET and the measured output

voltage. The current flowing through the device was also measured during this sweep in

order to derive a relationship between the programmed switch fabric current source and the

output voltage, as shown in Figure 5.17. For verification, several points along the curve

were programmed via the switch fabric current source and were also plotted.

V
c

V
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V
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-

Figure 5.15. Reference voltage constructed using switch fabric current source.
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Figure 5.16. Voltage reference characterization using a voltage biased pFET.
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Figure 5.17. Voltage reference output set by a switch fabric current source.
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5.3.6 Envelope Detector

Another interesting circuit is the synthesized minimum envelope detector of Figure 5.18.

The minimum detector included within the CABs was functional, but somewhat difficult

to use as a result of a design issue. The synthesized circuit was a bit more flexible and

significantly easier to bias. The design is fairly simple, as seen in Figure 5.18a, but it does

require components from two CABs as drawn. However, the second pFET transistor can

be replaced with a switch fabric current source, as seen in Figure 5.18b, which reduces the

circuit requirements to a single CAB.

The time constant programmability is demonstrated in Figure 5.19. The input signal is

presented as a dotted line, while the output responses are given as thicker solid lines. By

adjusting the bias voltage or programming a different switch fabric current, the slope of

the rising edge can be significantly altered. Figure 5.20 shows the output response of the

envelope detector to frequencies of 100, 200, 400, and 800 Hz. Again, the circuit input

signals are given as dotted lines, while the output responses are thicker solid lines. As seen

in Figure 5.20, the detector tracks the falling signals and slowly rises at the programmed

rate on rising signals. By adjusting the current source, the circuit can be tuned for the

desired frequency band.
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Figure 5.18. Synthesized envelope detector circuit.
(a) Minimum detector using an OTA, two pFETs, and a capacitor.
(b) Minimum detector circuit using switch fabric as a current source.
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Figure 5.19. Programming the synthesized envelope detector’s time constant.
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Figure 5.20. Measured minimum detector’s response to various frequencies.
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5.3.7 Band-Pass Resonator

A multiple CAB band-pass circuit was also synthesized using a resonator topology, as seen

in Figure 5.21. The C4 circuit topology discussed in Chapter 4 is generally preferable due

to its compact size. However, the biasing for this particular implementation can sometimes

be difficult when trying to obtain lower center frequencies, such as those needed for the

audio spectrum. Fortunately, this is not a problem, since another band-pass topology can

be easily synthesized as shown in Figure 5.21. The transfer function of this circuit is given

by (5.3).

Vout(s)
Vin(s)

=
GM1 C s

C2 s2 +GM2 C s +GM3 GM4
(5.3)

The gain of the circuit is then controlled by the ratio of GM1 and GM2 as seen in (5.4).

Gain =
GM1

GM2
(5.4)
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Figure 5.21. Synthesized band-pass filter using an OTA resonator topology.

5.4 Observations and Conclusions

The many successfully synthesized circuits have demonstrated the viability of large-scale

FPAAs based upon floating gate transistors. These devices provide a new option for pro-

totyping and designing large analog systems based upon reconfigurable and programmable
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Figure 5.22. Switch isolation variation across die.

technologies that have been previously unavailable. Not only were floating gate transistors

useful as programmable biases for the CAB components, but they proved useful as biases

and programmable conductances within the switch fabric. This feature eliminates the no-

tion of switches as “wasted” space and moves them closer to computational elements.

Although all of the results were encouraging, there were a few areas that could be

improved. One issue revolves around the programming of the switches. As discussed in

Chapter 2, the switch programming can be a bit tricky with the given architecture. The

point of isolation for the floating gate transistors can vary significantly across the die, as

seen in Figure 5.22. Transistors with a higher value have a higher isolation point, which

requires that they be programmed to a higher level in order to program them as an “on”

switch in parallel with other switches.

Part of this isolation variation across the die could be caused by processing variation,
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which affects the properties of transistors as a gradient across the wafer. As seen in Fig-

ure 5.22, there is definitely a gradient from top to bottom present. However, there may

also be an architectural and layout component involved as well. The external drain line

connects to a pin in the upper left corner of the die. This also corresponds to the area where

the switches have the lowest isolation points. Unfortunately, the on-chip routing lines for

the drain signal were made fairly thin, which results in an increased line resistance over

long distances. This line resistance appears directly in the programming path and increases

in value as the locations get further away from the upper left corner. The affect of adding

a series resistance to the drain has been studied [30] and is known to degrade the qual-

ity of floating gate switches. However, this does not account for the significant difference

between the first column and the rest.

Fabrication defects may also be responsible for some of the variance in Figure 5.22. A

couple of the CABs in the bottom center had extreme difficulties that make the switches

nearly unusable. This could be the result of wafer defects, which drastically affect the

transistor parameters. A fabrication defect could also be responsible for the significant

difference between the first column and the rest. The external drain line runs across the top

of the IC from left to right. Since this was routed as a fairly thin wire, it is conceivable

that the wire was overly etched in the section between the first and second columns, which

would significantly increase the resistance seen by the later columns, thereby decreasing

the effectiveness of the drain pulses.

Figure 5.23 shows a histogram of the isolation points observed across the die. The

values are fairly evenly distributed across a wide range of currents. Because of this, a sin-

gle programming isolation point cannot be chosen, which makes programming multiple

switches along a column difficult. To account for this, the isolation point used for pro-

gramming “on” switches may need to reflect the gradients shown in Figure 5.22. Another

potential and perhaps more practical solution to this problem may be the indirectly pro-

grammed switches discussed in Chapter 2. Since these switches can be isolated using row

73



0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

Figure 5.23. Switch isolation breakpoint histogram.

selection circuitry, they do not require complicated or coordinated programming schemes,

such as those currently being used.

CAB component selection could also be improved. Quite often circuits synthesized in

the RASP 2.x ICs could have benefited from additional transistors or two terminal capaci-

tors within the CABs. Several components included within the general purpose CABs were

not used very often, such as the min and max detectors and the C4 band-pass elements. In-

stead of including these elements, more transistors and capacitors should be included on

future revisions. Another useful item would be a dynamic switch, such as a transmission

gate. Discrete time circuits would significantly benefit from such switches, since synthe-

sizing these elements utilizes a significant amount of CAB resources for a fairly primitive

and useful device. Capacitor sizing could also be improved. Although it was convenient

to use the parasitic routing capacitance, it would be easier to design circuits based upon a

drawn dominant capacitor within the CABs.
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Signal routing quickly became a problem within the RASP 2.x FPAAs. The inclusion

of only local and global routing severely limited the utilization possible with these devices.

Most circuits tended to route from one CAB to an adjacent CAB, which meant that the

global routing lines being used to connect these two CABs were being mostly wasted. A

more efficient routing scheme would also include nearest neighbor routing, which should

significantly improve the routing density as well as the component utilization across the

IC.
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CHAPTER 6

HIGH PERFORMANCE FPAA

Since the maximum bandwidth of a system degrades with the number of switches in

the signal path, it is desirable to reduce or somehow eliminate these switches in high-

performance applications. Many approaches have been suggested, such as the digitally

controlled GM cell architecture described in [9] or the metal-to-metal antifuses [7]. Most

of these devices use redundant components with controllable biases, such as Becker’s GM

cells, to make connections to other components. This redundancy can lead to significant

space requirements and diminished utilization efficiency. However, floating gate transistors

may provide an advantage in such architectures by saving a significant amount of area for

programmability. The high-performance FPAA1, as seen in Figure 6.1, was developed to

investigate this possibility.

Figure 6.1. High-performance FPAA die photograph.

1This work was partially funded by the JPL Self-Reconfigurable Electronics for Extreme Environments
(SREE) project.
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6.1 Architecture

The high-performance FPAA architecture, as seen in Figure 6.2, contains a number of

CABs with direct input and output connections to pins. This allows high bandwidth cir-

cuits to have a degree of programmability and reconfigurability without any switches in the

signal path. However, more complex computations may require multiple CABs. For this

reason, rows 1 through 4 in the high-performance FPAA have switched inputs. The output

of each CAB is routed back to a switch matrix connected to the inputs of the CABs. By

disconnecting the switch between a pin and one of the switched input CAB rows, the out-

put of any other CAB can then be routed to the input of this CAB through a single switch.

Although there is now a switch in the path, the bandwidth of this signal is still fairly high

since it is only a single switch, as opposed to the switch pairs required in the previous

FPAA architectures.
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out1
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V
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CAB
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in8
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out8

CAB

Figure 6.2. High-performance FPAA architecture.
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The switches on this IC, represented by squares inside the switch matrix block of Fig-

ure 6.2, were composed of transmission gates controlled by a shift register. This was done

to provide a very fast way to switch between several pre-programmed transfer functions.

Floating gate transistor switches would also work in this situation, except that the program-

ming time would have been slower than desired. As the programming circuitry moves on-

chip, the programming time should dramatically decrease and make floating gate switches

a more viable option for high-speed dynamic reconfigurability.

The CAB of this FPAA was chosen to contain a single biquad circuit, as depicted in

Figure 6.3. This particular biquad configuration allows any two-pole, two-zero system to

be synthesized simply by controlling the size of the capacitors and the transconductance of

each OTA in the biquad. The transfer function is given by (6.1).

Vout(s)
Vin(s)

=
Cx C f s2 +GM2 Cx s +GM1 GM4

Cx (CL +C f ) s2 +GM5 Cx s +GM3 GM4
(6.1)

The transconductances, GMx, correspond to OTA x. As was the case with the OTAs in

the general purpose CABs, floating gate transistors are used to set the bias current in the
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Figure 6.3. Biquad circuit topology used for the high-performance FPAA CAB.
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OTAs, thereby determining the transconductance. Although the OTA transconductances are

the primary programmable parameters in this design, the capacitors were also made to be

selectable, as seen in Figure 6.4a, to extend the possible range of operation. The fabricated

IC contains the three capacitors illustrated in Figure 6.4a and is digitally selectable using a

shift register. In this manner, any combination of these capacitors can be selected. If none

are selected, the dominant capacitance will be parasitic.

Each OTA in the biquad is actually a parallel combination of various OTA architectures

each with its own programmable floating gate bias, as seen in Figure 6.4b. Since each

OTA design is independently biased, individual OTAs within the block can be shut down

by simply depriving them of bias current. This provides another degree of reconfigurability

by allowing the user to select the OTA with specifications appropriate for the application.

The user can even mix the output responses from the different OTA designs within a block

by programming their respective biases.
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Figure 6.4. Reconfigurability in the high-performance FPAA biquad.
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6.2 Low-Pass Filter Implementation and Results

A low-pass filter was synthesized using a single biquad, as shown in Figure 6.5. This

configuration is achieved by programming the biases of OTAs 1, 3, and 4 as low as possible

and unselecting capacitors Cx and C f . This reduces (6.1) to (6.2).

Vout(s)
Vin(s)

=
GM2

s CL +GM5
(6.2)

The gain of this circuit it set by the ratio of the transconductances, as seen in (6.3).

Gain =
GM2

GM5
(6.3)

The time constant is then given by (6.4).

τ =
CL

GM5
(6.4)

Frequency response data was taken for various values of CL as seen in Figure 6.6.

The biases of OTA 2 and OTA 5 were programmed to the same level, which should have

resulted in a gain of 1 given (6.3). However, a slight mismatch between the diode connected

nFETs used to convert the programmed floating gate pFET currents into bias voltages and

the nFETs within the OTAs that set the tail current. This mismatch would multiply the

programmed bias current by the ratio of the fabricated device geometries, W/L. As seen in
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Figure 6.5. Low-pass filter synthesized using the biquad CAB.
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the data of Figure 6.6, GM2 seems to be about twice the magnitude of GM5, which results in

a gain of approximately 3 dB. Most likely the current mirrors were mismatched such that

GM5 was lower than programmed, and GM2 was higher than programmed giving the net

factor of 2 difference. Programming error could also have contributed a small amount of

this gain error.

The results in Figure 6.6 also deviate from the ideal transfer function, (6.2), in that they

exhibit a resonance peak at the corner frequency. The first-order circuit in Figure 6.5 should

have a relatively flat passband with no peak, but the biquad synthesizes a pseudo first-order

circuit by canceling some of the parameters in (6.1). This peak is most likely a result

of the various other biquad parameters not being equal to precisely zero. For instance, the

capacitor Cx is assumed to be 0, but the parasitic capacitance seen at that node in the biquad

circuit will contribute to the output response.
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Figure 6.6. Biquad synthesized low-pass filter frequency responses for several load capacitances.
(a) Drawn load capacitance = 0 pF
(b) Drawn load capacitance = 1 pF
(c) Drawn load capacitance = 2 pF
(d) Drawn load capacitance = 4 pF
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CHAPTER 7

LARGE-SCALE FPAAS, THE NEXT GENERATION

The third-generation RASP FPAAs, RASP 3.x, combine aspects of the general purpose

RASP 2.x line with the higher bandwidths possible in the high-performance FPAA. These

devices retain much of the generality and flexibility of the RASP 2.x FPAAs by including

similar general purpose CABs. Specialized computational blocks have been added at key

points in the array to provide higher functionality and bandwidth. The RASP 3.0, as seen

in Figure 7.1, is the first IC of this class and was fabricated on a 4.5 mm x 8 mm die in

a .35 μm process available through MOSIS. The specialized blocks within the RASP 3.0

were designed for audio and other similar signal processing algorithms.

Figure 7.1. RASP 3.0 die photograph.
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7.1 Architecture

The RASP 3.0 design began by examining common audio signal processing systems such

as equalizers, feature extraction front-ends, and hearing aids. Most of these and other algo-

rithms shared a common set of operations, as illustrated in Figure 7.2. The first operation is

typically a frequency decomposition, which is commonly performed by an FFT in a DSP.

The frequency decomposition step can be viewed as a filter bank operation, which is de-

picted as a parallel set of band-pass filters in Figure 7.2. The output of each filter bank

element is then passed through a series of transforms such as envelope detectors, expansive

or contractive power laws, and signal-by-signal multipliers. Some algorithms also include

a measure of interaction between these signal bands, which is not depicted in Figure 7.2.

Typcally, the end result of each column is then recombined by some weighted summation

to generate one or more outputs.
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Figure 7.2. Common algorithm steps in audio signal processing.
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Considering Figure 7.2, the RASP 3.0 was designed specifically for frequency decom-

position and channel based processing. Each band, or channel, in Figure 7.2 appeared to

be mostly independent of the surrounding channels. The structure is somewhat analogous

to the bit slice concept in digital processing. Since the architecture for a single channel, or

bit in the digital equivalent, is identical to the architecture of any other channel, a single

processing slice can be designed, laid out, and tiled to produce a processor of arbitrary

channel length, or register length in the digital case. Utilizing this concept, the core of the

RASP 3.0 is comprised of sixteen fully differential channel slices, as depicted in Figure 7.3.
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Figure 7.3. The RASP 3.0 FPAA architecture.

85



V
tun

V
D

V
C

col
 
-col

 
+

row
 
+

row
 
-

row
select

Figure 7.4. Indirectly programmed differential switch used in the RASP 3.0.

Each channel slice contains several general purpose CABs and special purpose func-

tional blocks. The signal flow starts at the top of the IC and flows down along the columns.

An improved switch fabric interconnects the various CABs and specialized blocks. Since

the components and therefore the routing within this FPAA were differential, an interest-

ing architectural issue arose. The switches used within the previous generations were all

directly programmed, but an indirectly programmed switch would allow both positive and

negative routing to be controlled by a single floating node, as depicted in Figure 7.4. This

would save considerable programming time by simplifying the programming to a single

pFET instead of two. To improve switch isolation and observability, a row selection switch

was added to the programmer pFET.

The routing network of the RASP 3.0 has also been updated to reflect lessons learned

while working with the RASP 2.x line of FPAAs. Instead of relying upon global routing

for CAB-to-CAB connections, the RASP 3.0 contains local nearest neighbor routing, as

seen in Figure 7.3. Most signals routed on the RASP 2.x FPAAs were not broadcast to

multiple destinations across the chip. Instead, many signals simply required point-to-point

connections with an adjacent CAB. On the RASP 2.x, signals such as these would have to
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Figure 7.5. Differential biquad circuit topology.

be routed along global vertical and horizontal lines, which were very limited in number.

Very quickly the global routing lines would become completely utilized and limit imple-

mentable system size. However, local routing lines that connect adjacent blocks allow for

more routing lines in the same amount of space as before. Local horizontal routing lines

also enable intermixing between adjacent channels.

This biquad is a two-pole, two-zero topology similar to the high-performance FPAA’s

biquad, except that it is fully differential [40], as seen in Figure 7.5. The transfer function

of this circuit is given by (7.1).

Vout(s)
Vin(s)

=
a s2 + b s + c
s2 + ωn

Q s + ω2
n

(7.1)
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The various parameters of (7.1) are given by (7.2) through (7.6).

a =
Cz

Cy +Cz
(7.2)

b =
GM5

Cy +Cz
(7.3)

c =
GM4 ωn

Cx
(7.4)

Q =

√(
GM1GM2

GM3

) (
Cy + Cz

Cx

)
(7.5)

ωn =

√
GM1GM2

Cx (Cy + Cz)
(7.6)

The biquad terminals, Vin and Vout, are routed to rows of the local switch matrix. Vx is

also routed to a row to provide access to individual OTAs. As was the case with the high-

performance FPAA, the bias currents of all other OTAs would be shut down.

In addition to the biquad circuit, the RASP 3.0 CAB is also composed of transistors

and capacitors, which come in pairs to accommodate the differential signals. In addition

to standard nFETs and pFETs, these CABs also include floating gate pFETS. There are

also more capacitors in the RASP 3.0 CAB than there were in the RASP 2.x line. With the

successful implementation of numerous capacitively coupled circuits in the RASP 2.x ICs,

it was clearly evident that more capacitors would be needed to implement large systems

based upon these circuits on future generations of FPAAs.

7.2 The Channel Slice

As seen in Figure 7.3, the channel signal processing begins with a common input routed on

a dedicated line to each channel, which contains a single element of the programmable filter

bank (PFB) [41]. This element band-pass filters the input signal, using a C4 second-order

section similar to those described in Chapter 4, into the specific frequency range for the

particular channel slice. The signal is then routed out to a local or global vertical routing

line or passed through a min/max detector. Flowing down the channel stack, the signal

passes through or by the first general purpose CAB.
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Just below the PFB/CAB block sits the SSM/CAB block in the channel stack. A signal-

by-signal multiplier (SSM) is located here and provides a way to mix two signals. Below

this block resides the nonlinear transform (NLT) circuit in the NLT/CAB block. This circuit

is composed of a specialized multiple-input translinear element (MITE) network [42–44]

which performs compressive or expansive power law transforms on the signal. The next

block in the stack, LCB/CAB, contains part of the linear combiner block. This capacitively

coupled structure allows the individual signals from each channel to be recombined into a

single output signal. This is useful for audio applications that perform frequency dependent

transformations on the individual bands and recombines them as an output audio signal,

such as an equalizer.

The final block in the stack is the vector-matrix multiplier slice. The full vector-matrix

multiplier is composed of the individual slices from each channel. The outputs of these

slices are tied to dedicated global lines that are shared by each slice. Since the output

of each individual multiplier is a current, summation is achieved through simple KCL. A

current-to-voltage converter restores the individual signals to a voltage that is transmittable

throughout the FPAA.
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CHAPTER 8

THE FPAA IN EDUCATION

FPAAs could significantly impact analog design and embedded systems education. A

common part of analog design educational laboratory exercises is the selection and wiring

of discrete components, which is rather similar to the way digital design used to be taught

using discrete TTL or CMOS ICs. However, PLDs and FPGAs were eventually introduced

to the class laboratory as another design option. They provided greater design freedom and

quicker circuit implementation, which is something FPAAs could also do for analog. At the

IC design level, FPAAs could be used as functional prototyping or development platforms,

just as FPGAs have done. Instead of fabricating and testing individual analog circuits on

individual analog ICs, one mass produced FPAA could be used to synthesize circuits for an

unlimited number of laboratory exercises.

Although the effect on analog design seems impressive, the impact on embedded sys-

tems could be even greater. Embedded systems generally involve the integration of various

sensors, displays, and mechanical systems using an FPGA, DSP, or microcontroller because

of the design flexibility they afford. As such, many analog sensors require data converters

to produce a signal that can be processed by the digital device. These data converters can

consume a significant amount of power, which is a concern for portable embedded systems

running on batteries. However, the incorporation of an FPAA would provide another op-

tion, analog signal processing. An FPAA would not eliminate the need for a programmable

digital device in all of these systems, but it could be used to enhance the capabilities of

such devices. Systems with both analog inputs and outputs could potentially be synthe-

sized completely within the FPAA. However, systems with digital outputs, such is the case

with digital displays and wireless transmitters, could use the FPAA to perform analog pre-

processing on the input signal before digitizing it. By incorporating these devices into

embedded systems laboratory exercises, students would be able to explore these analog
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possibilities in addition to the digital integration already being used.

8.1 First-Generation Educational FPAA Board

The first attempt at introducing a large-scale FPAA into the class environment was using

the conceptual setup depicted in Figure 8.1. The class was a senior level analog IC design

course, and this laboratory bench configuration is fairly typical for analog IC testing, ex-

cept for the FPGA and FPAA boards. MATLAB or a similar data manipulation software

package is commonly used to control bench test equipment or PC instrumentation cards,

which are used to generate input signals for the device-under-test (DUT) and to observe

the outputs. The simplest way to incorporate an FPAA into this existing laboratory envi-

ronment was as the DUT. A board was thus designed to handle some of the programming

and basic I/O interfacing for the RASP 2.5 FPAA. A commercial FPGA board was also

used to precisely control the analog programming circuitry timing on the FPAA board and

to provide local digital signals to the FPAA IC.

FPAA
Board

Power
Supply

FPGA
Board

Picoammeter
Lock-in

AmplifierOscilloscope

ADC / DAC
Card

MATLAB

PC

ethernet

ethernet, GPIB, RS232

Figure 8.1. Educational laboratory setup using the RASP 2.5 FPAA.
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Figure 8.2. Laboratory setup used to prototype and design analog circuits on an FPAA.

Figure 8.2 depicts the FPAA laboratory setup used for various workshops and a class

at Georgia Tech. The FPGA board can be seen at the top left of Figure 8.2. A synthesized

Nios processor core was used to interface with the FPAA boards and the picoammeter,

located on top of the power supply, as seen on the right side of Figure 8.2. Communication

between MATLAB running on the PC and the Nios processor was achieved using TCP/IP

over a direct ethernet cable between the PC and FPGA board. The FPAA board is located

in the lower left of Figure 8.2 and is connected to the FPGA board via a ribbon cable.

In addition to bench test equipment, a PC DAC/ADC card was used for test signal

generation and measurement. The interface board is seen at the top of the figure towards the

center and connects to the PC via a large ribbon cable. During initial experiments involving

students, several RASP 2.5 ICs were damaged because they lacked disconnection circuitry

for programming. Test signals applied to the I/O pins connected directly to the array drain

lines, which interfered with programming. In response to this, the small wire-wrap board
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prog(1);
erase;

select(56 + 11, 252 + 3);
recover;
program(1e-9);

sprogram_col(56 + [13 14], 252 + 23);
sprogram_col(56 + [12], 252 + 5);

prog(0)

Figure 8.3. RASP 2.5 FPAA board interface commands.

seen at the bottom of Figure 8.2 was added as a buffer between the FPAA board and the

DAC/ADC interface board. This slowed down the rate at which FPAA ICs were damaged,

but did not completely resolve the issue, since the students still had to make the connections

correctly between the FPAA and interface boards.

To control the FPAA board and program the RASP 2.5 IC, MATLAB commands, such

as that seen in Figure 8.3, are used. This code example programs the follower circuit from

Figure 4.6. The user is given a higher level of commands which erase, select, and program

the individual floating gate biases and switches. These high level commands call low level

routines in MATLAB and on the Nios processor. This abstracts the details of the floating

gate transistor programming such that the user can concentrate on the circuit and system

levels.

An early version of the setup depicted in Figure 8.2 was tested at the 2005 Telluride

Workshop on Neuromorphic Engineering located in Telluride, Colorado. Participants came

from diverse backgrounds including engineering, biology, and computational neuroscience.

Most of these individuals had not designed or tested an analog IC before, so they were

ideal candidates for learning this new approach to analog design. Within three weeks this

group of individuals had completed many of the lab exercises characterizing the various

CAB components. Using the fuse-plot sheets depicted in Figure 5.5, these individuals
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routed circuits given to them in schematic form and tested them using the laboratory bench

equipment. By the third week, several of the participants had begun to compile their own

circuits from the characterized CAB components in an attempt to integrate these FPAAs

within their own research.

With the success at the Telluride workshop, the FPAA was then integrated into a senior

level analog IC design class. Instead of analyzing discrete components and circuits, the

class was given FPAA synthesized circuits to characterize for laboratory exercises, like

the transistor characterization circuit in Figure 8.4. Example data sweeps of the pFET are

depicted in Figure 8.5. Using the synthesized pFET, students are able to extract the same

parameters as they could with a custom IC or discrete component. Figure 8.5a shows a

drain sweep with the pFET biased in the sub-threshold region. The thermal voltage, UT ,

can be extracted from the sub-threshold slope of the source sweep, as seen in Figure 8.5b.
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Figure 8.4. Transistor characterization using a pFET within an FPAA CAB.
(a) Circuit used to measure and characterize the pFET.
(b) Routing used to connect the pFET within the RASP FPAA.
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From gate sweeps in Figures 8.5c and 8.5d, the sub-threshold κ and the above-threshold Vth

can be calculated. In a similar manner, many basic circuit components were characterized.

One interesting effect observed in Figure 8.5d is the switch resistance current limiting

the gate sweep. At low gate voltages, those below .5 V in Figure 8.5d, the switches clamp

the current that would normally flow through the pFET being tested. Since most circuits in

these FPAAs were designed to operate in the sub-threshold region or just above threshold,

this current limitation should not be a problem in the general case.
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Figure 8.5. Characterizing a pFET using the educational setup.
(a) Drain sweep
(b) Source sweep
(c) Gate sweep showing logarithmic sub-threshold region
(d) Gate sweep showing square root above-threshold region
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8.2 Second-Generation Educational FPAA Board

A second-generation FPAA board was designed around the RASP 2.7 IC to reduce the

dependence upon expensive laboratory bench equipment and PC instrumentation boards,

as seen in Figure 8.6. In the previous setup, current measurements for programming were

handled by a picoammeter residing on the test bench. On the new board, these current

measurements are made using a logarithmic amplifier IC and an ADC chip. Additional

DACs and an ADC were added to eliminate the need for the PC DAC/ADC cards. Audio

coupling circuitry was also added to aid in audio signal processing applications. As an

additional precaution, isolation circuitry was added to the I/O pins of the FPAA to prevent

external signals from interfering with the programming signals and thereby damaging the

RASP IC.

For portability, the FPAA and FPGA boards were integrated within a box, as seen in

Figure 8.7. The FPGA board is located in the top left corner, and the FPAA board, located

in the center of the figure, connects directly to one of the FPGA board’s I/O headers. A

power supply board, located in the top right of Figure 8.7, was designed and fabricated

to minimize the number of connections required to operate this portable laboratory setup.

Power
Supply

FPGA
Board

Bench
Equipment

MATLAB

PC

ethernet

ethernet, GPIB, RS232

FPAA
Board

Audio,
Sensors, etc

box

Figure 8.6. Educational laboratory setup using the RASP 2.7 FPAA.
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Figure 8.7. Portable FPAA laboratory in a box.

With this setup, most laboratory exercises can be performed with only an ethernet cable,

a power cable, and a PC running MATLAB. No external bench equipment is required for

programming or general testing, but some items, like lock-in amplifiers and spectrum ana-

lyzers, may still be used for measurements requiring higher accuracy or special functions

than are available with the on-board instrumentation ICs.

The high level MATLAB commands were also updated for this new setup, as seen in

Figure 8.8. Instead of issuing individual programming commands, the user now only needs

to point the programming algorithm to a configuration file. As seen in Figure 8.8b, the

program file contains no MATLAB commands, only floating gate transistor locations and

bias currents, unless the transistor is being programmed as an “on” switch. This format is

particularly useful when translating the fuse-plot drawings into global addresses for pro-

gramming. Further improvements to the programming interface have also been made by

collaborative researchers at Georgia Tech, who have developed routing tools to map netlists

to the RASP architecture [45–47]. An open source schematic capture tool has even been

modified to support the RASP 2.7 functional blocks, as seen in Figure 8.9.

In the laboratory and workshop environments, many circuits have been synthesized
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>> program(’follower’);

(a)

% follower.prg
67 255 10e-9  % A2 OTA 1 bias

68 274        % A2 OTA 1 vp
69 275        % A2 OTA 1 vn
70 275        % A2 OTA 1 vout

(b)

Figure 8.8. RASP 2.7 FPAA board interface commands.
(a) MATLAB command window executing the ’follower’ program.
(b) Contents of the ’follower’ program file.

Figure 8.9. Xcircuit schematic capture tool.
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Figure 8.10. Comparator circuit synthesized on the RASP 2.7.
(a) Circuit schematic.
(b) FPAA implementation showing “on” switches.

and measured using only the resources available on the portable FPAA laboratory setup.

Figure 8.10 shows the schematic and FPAA mappings used to compile a simple inverting

comparator structure. The reference terminal sets the comparator trip point, which can also

be set by the switch fabric voltage reference of Figure 5.15 to save an I/O pin. For char-

acterization purposes, the reference voltage was set using one of the on-board DACs. The

input voltage was swept using another on-board DAC while the output was measured using

the on-board ADC, as seen in Figure 8.11. The follower circuit of Figure 4.6 was also

synthesized and measured. Figure 8.12a shows the result of sweeping the input and mea-

suring the output using the on-board DAC and ADC. From this transfer function, the gain

of this OTA topology was calculated, as seen in Figure 8.12b. These results demonstrate

that typical analog laboratory exercises can be performed using only the portable FPAA
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setup.
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Figure 8.11. Results from a simple comparator synthesized using the RASP 2.7 FPAA board.

8.3 Next-Generation Educational FPAA Board

The next-generation educational FPAA board is planned to integrate even more function-

ality onto a single board, as seen in Figure 8.13. The planned RASP 2.8 FPAA will have

integrated much of the programming circuitry currently on the RASP 2.7 board onto the

IC. This will free up a significant portion of the board area and enable more instrumenta-

tion circuits to be integrated on-board. This board will also feature a much more power

efficient microcontroller with USB or ethernet support built directly into the chip. This

will dramatically reduce the power budget of the entire laboratory setup and should enable

the possibility of using battery power. Battery operation would significantly improve the

portability of the system, which could lead to in-class laboratory exercises using physical

hardware.
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Figure 8.12. Results from a follower synthesized on the RASP 2.7 IC.
(a) DC transfer function.
(b) Gain measured from the output of the DC sweep.

A logarithmic amplifier and ADC combination have been included for on-board current

measurement, as was the case for the RASP 2.7 board. However, this circuit would be

dedicated to testing circuits synthesized on the FPAA rather than floating gate transistor

programming, since the programming circuitry will be integrated within the FPAA. A direct
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Figure 8.13. Future educational laboratory setup using the planned RASP 2.8 FPAA.
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digital synthesis (DDS) chip will also be included along with another couple of ADCs on

this board in order to replace the bench lock-in amplifier for generating frequency/phase

data. Additional I/O interface circuits will also be included, such as the audio circuitry

used on the RASP 2.7 board design. Unlike previous generations, this new board will

also feature a small prototyping area. This will allow the functionality of the board to be

expanded using ICs and wires soldered directly to the board, which is a common feature of

embedded systems development boards.
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CHAPTER 9

FPAA DIRECTIONS

The FPAAs developed and discussed within this dissertation have demonstrated the

feasibility of large-scale reconfigurable and programmable analog devices. However, the

long-term goal for maximum flexibility and programmability is the mixed signal devel-

opment system depicted in Figure 1.2b. In a cooperative analog/digital signal processing

(CADSP) system such as this, analog and digital devices, such as sensors and displays, can

be integrated using a single programmable device. Figure 9.1 shows the road map that links

the FPAAs developed to date to the mixed signal IC of the future.

The first-generation devices proved the viability of FPAAs based upon floating gate

transistors. These devices were fairly low in complexity and functionality, much like the

commercial devices currently available. However, these commercial ICs are significantly

Proof of
Concept

Large-Scale
Devices

Specialized
Architectures

Mixed Signal
Processing

RASP 1.0

RASP 1.5

RASP 2.0

RASP 2.5

RASP 2.7

HP FPAA

RASP 3.0

RASP 3.x

RASP 2.8

RADSP

Projected
Directions

Figure 9.1. Road map for the RASP FPAA and beyond.
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larger in die area than the RASP 1.x FPAAs. Scaling up the CAB array architecture led to

the second-generation RASP FPAA. As a result of the analog component density provided

by floating gate transistors, this generation of large-scale FPAAs is capable of synthesizing

larger analog systems. Although this generation of FPAAs is a significant step toward

large-scale mixed signal reconfigurable systems, there are still a few issues to resolve.

The RASP 2.8 FPAA is the next revision of the second-generation RASP FPAA. This

IC will contain a number of improvements over the RASP 2.5 and 2.7. The number of

different CAB types will be increased to better reflect component utilization observed while

working with systems on the RASP 2.7 IC. A general purpose CAB containing OTAs,

transistors, and capacitors will still comprise the majority of the FPAA. More specialized

CABs containing optimized circuits, such as signal-by-signal multipliers and vector-matrix

multipliers, will be distributed throughout the CAB array. The programming structures

currently found on the RASP 2.7 educational board will be integrated on the IC to improve

accuracy and speed. On-chip data converters allow direct interactions between the FPAA

and an FPGA or microcontroller. This will provide a mixed signal development system

integrated at the board level, which is another step closer to a mixed signal reconfigurable

IC.

The third-generation RASP FPAAs are just entering the testing phase and are distin-

guished from previous generations by the specialized hardware blocks included within the

CAB array. The inspiration for these ICs again came from digital parallels. In modern

FPGAs, it is fairly common for highly specialized hardware blocks, such as memory cells,

DSP functions, and microprocessors to be included on the same die connected to the inter-

connect network. Some FPGAs even include basic analog blocks on the periphery of the IC

for very simple analog preprocessing [48]. Using this idea, specialized components, such

as the programmable filter bank and capacitively coupled linear combiner, have been in-

cluded in the RASP 3.0 for audio signal processing applications. Several future RASP 3.x

FPAAs for adaptive signal processing and neuron interconnection modeling are currently
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being planned.

The fourth-generation device will no longer be part of the RASP family of FPAAs.

Instead, this IC is planned to be the first mixed signal large-scale reconfigurable and pro-

grammable device based upon floating gate transistors. The reconfigurable analog/digital

signal processor (RADSP) line will contain all the features of a large-scale FPAA coupled

via data converters to an integrated FPGA structure. The initial design will most likely be

two separate architectures, FPAA and FPGA, which will have their own I/O lines. Future

revisions of the IC will investigate integrating the two devices within the same array ar-

chitecture, which should provide greater coupling between analog and digital as well as

more I/O pin flexibility. The successful demonstration of this device will mark a significant

achievement in mixed signal processing hardware and could fundamentally alter the way

in which hardware design is approached.
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