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SUMMARY

Large-scale reconfigurable and programmable analog devices provide a new option
for prototyping and synthesizing analog circuits for analog signal processing and beyond.
Field-programmable analog arrays (FPAAS) built upon floating gate transistor technologies
provide the analog reconfigurability and programmability density required for large-scale
devices on a single integrated circuit (IC). A wide variety of synthesized circuits, such as
OTA followers, band-pass filters, and capacitively coupled summation/difference circuits,
were measured to demonstrate the flexibility of FPAAS. Three generations of deviceswere
designed and tested to verify the viability of such floating gate based large-scale FPAAS.
Various architectures and circuit topologies were also designed and tested to explore the
trade-offs present in reconfigurable analog systems. In addition, large-scale FPAAS have
been incorporated into class laboratory exercises, which provide students with a much
broader range of circuit and IC design experiences than have been previously possible.
By combining reconfigurable analog technologies with an equivalent large-scale digital
device, such as afield-programmable gate array (FPGA), an extremely powerful and flex-
ible mixed signal development system can be produced that will enable all of the benefits

possible through cooperative analog/digital signal processing (CADSP).
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CHAPTER 1
RECONFIGURABLE AND PROGRAMMABLE ANALOG

With an ever increasing demand to bring new portable devices to market quickly, it
would be extremely advantageous to have a reconfigurable and programmable prototyping
platform with which to test new ideas. The ideal device would be mixed signal and allow
any combination of analog and digital circuitry to be synthesized. With such a device, any
analog or digital component could be interfaced with any other analog or digital compo-
nent. It is not hard to imagine the digital part of this mixed-signal device, since FPGAs
have been used to synthesize very complex systemsfor many years. However, very littleis
known about large-scale reconfigurable and programmable analog technologies. To build
the mixed signal platform of this example, more research needs to be performed on re-
configurable and programmable analog devices. This dissertation attempts to address this

research topic through the exploration of field-programmable analog arrays (FPAAS).

1.1 Analog Processing, the Past and the Future

It is hard to imagine in this digital world that there was once a time when everything was
analog. Real world signals are analog, so it was only natural to have analog processes
controlling these systems. However, digital controllers soon proved to be much easier
and quicker to develop new technologies and products. Digital systems quickly replaced
their analog predecessors, even though analog systems could perform significantly better
in some applications. Compared to digital signal processors (DSPs), analog equivalent
circuits could provide significant power savings, as illustrated in Figure 1.1. If the DSP
power consumption trend continues as projected, the power savings could be equivalent
to a 20 year leap in digital technology. In reality, DSP power consumption is reducing
at a significantly lower rate than projected, which only enhances analog’s advantage over

digital.
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Figure 1.1. DSP power consumption trend compared to power efficient analog equivalent
functions [1-5].

Figure 1.2a illustrates how DSPs interact with real world signals. In most of these
systemsthe analog input signal isimmediately digitized using an analog to digital converter
(ADC). Thedigital signal isthen processed and converted back into the analog domain via
adigital to analog converter (DAC). This process has made many current gadgets possible,
but it does not take advantage of the benefits possible with analog processing. Figure 1.2b
shows an improved system in which the real world signals interface directly to an analog

signal processor (ASP). Instead of directly converting to adigital signal, initial processing

ADC [— DSP [—{ DAC

ADC — DSP — DAC ASP
) Real World System ) Real World System
(a) DSP system (b) Mixed processing system

Figure 1.2. Signal processing in the real world.
(a) DSP systems require costly data converters to interact with real world signals.
(b) Mixed signal systems leverage analog and digital processing to increase efficiency.



can begin in analog. In some instances the signal may pass only through the ASP and
avoid the DSP and data converters altogether. In other cases where the processing would
be better suited for digital algorithms, the ASP can preprocess the data before directing
the signal to the DSP viathe ADC. After passing through the DSP and the DAC, the ASP
can then postprocess the signal before it returns to the real world. Although the benefits
of amixed signal system are clear, the difficulty of designing and using analog processing

circuits could continue to prevent their widespread acceptance.

1.2 The FPAA Advantage

Figure 1.3a depicts the traditional analog design flow used for custom analog IC devel-
opment. Typically the design phase will lead to a simulation stage that verifies circuit
performance. If the circuit fails to achieve the required specifications in simulation, this
process may iterate through design and simulation multiple times. Once a design passes
the simulation phase, it progresses through the fabrication and testing steps. Although ev-
ery attempt is made to perfect the design in earlier stages, it is likely that the fabrication
and testing stages will require two or more iterations to obtain a product with the desired

performance. Since asinglefabrication cycle can requirestwo or more monthsto complete,

\ 4
A\ 4

design simulation 4-?—> fabrication testing 4~J>—> product

(a) Custom analog IC design flow

design »J)v simulation »?—v synthesis [ testing (<> fabrication |-{ product

[ :

(b) FPAA design flow

Figure 1.3. Comparison of custom analog IC and FPAA design flows.
(a) The traditional analog design flow includes time consuming iterative fabrication loops.
(b) An FPAA flow iterates significantly faster using a synthesis step instead of fabrication.



the final product may require many months or years to develop [6].

The use of a reconfigurable and programmable analog device, such as an FPAA, can
significantly reduce the time required for this design cycle. As Figure 1.3b depicts, an
FPAA introduces a synthesis phase that allows physical hardware to be generated and tested
before fabrication. By taking fabrication out of theiterativeloop, anew design or algorithm
can be verified in amatter of hoursor days. Additionally, a configured FPAA could be used
asthefinal product, thereby skipping the fabrication step, much like FPGAs are sometimes
used today.

An FPAA with significant functionality would not only reduce analog system design
time, it could also make analog systems easier to use. Proper design tools would abstract
most of the actual analog hardware design, much as FPGAs have done for digital systems.
Thiswould make it possible for DSP engineers with little or no analog design expertise to

quickly synthesize and test analog replacements for traditional digital computation.

1.3 General FPAA Architecture

An FPAA can be generally depicted as in Figure 1.4. Reconfigurability is commonly
achieved through some interconnect network, which can be implemented by any num-
ber of switch topologies. This network connects the various analog components together
to form the desired circuit. Programmability is usually implemented using DACs or ra

tios of standard components [7], such as transistors, capacitors, and resistors. Figure 1.5a

Analog
| Components

Interconnect [
Network !

_| Programmable
Elements

Figure 1.4. Generic FPAA architecture.
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Figure 1.5. Example FPAA switch and programmable element.

(a) Programmability is commonly implemented using arrays of selectable components.

(b) Memory controlled transmission gates are typically used as switches.
demonstrates how an array of binary weighted transistors could be used to implement a
current mode multiplier. Programmability implemented in this manner requires a signifi-
cant amount of area, since the device area approximately doublesfor each bit of resolution.
This area requirement limits the number of programmable elements that can be integrated
on asingle chip and therefore reduces the size of the system that can be synthesized, which
isthe case for many previous FPAAs [8-13].

The switches in these devices are commonly transmission gates, each of which is con-
trolled by a memory element in the form of an SRAM or EEPROM cell, as seen in Fig-
ure 1.5b. Although these switches allow for great design flexibility, they also contribute
a significant amount of parasitic resistance and capacitance. To eliminate these parasitics,
various modifications to the general FPAA architecture have been attempted. Fuse based
FPAASs attempt to reduce these parasitics by creating or destroying metal wire connec-
tions between components. Since these fuses are made of meta instead of a transistor,
both the parasitic capacitance and resistance are reduced, but they are generally one-time
progranmable. Some FPAAS are even built without any switches. These architectures
generally have a limited variety of analog components that interconnect directly to each
other, such as the hexagonally connected transconductance (Gy) elements of Becker and

Manoli’s FPAA [9]. In these devices, reconfigurability is achieved through programming.



Since the outputs of Gy, stages with no bias current effectively float, connections are made

in these Gy, elements by digitally controlling the biases.

1.4 Large-Scale FPAAs

Current FPAA offeringsare rather small and cannot handle large analog systemson asingle
IC. These devices are similar in size and complexity to the early digital programmable
logic devices (PLDs) rather than modern FPGAs. However, larger or denser FPAAs will be
necessary to push reconfigurable and programmable analog technologies into widespread
use. Thelarge-scale FPAAsdiscussed in thiswork are possible because of theincorporation
of floating-gate pFET s as the programmabl e element.

Instead of area consuming arrays of ratioed devices, a single transistor can be pro-
grammed to accurate analog values. This alows the large-scale FPAAS discussed in this
work to be significantly denser than previous FPAAS, which makes them capable of syn-
thesizing much larger systems. Figure 1.6a shows a floating gate transistor version of the
current mode multiplier example of Figure 1.5a. In addition to programmable parameters,
floating-gate transistors can be used as non-volatile switching elements in these FPAAS.
By using floating-gate transistors as the switch, the switch and memory elements have

been effectively combined in the form of a single transistor, as depicted in Figure 1.6b.

tun tun
tun

A s AL
RS e
bl loue :

(a) Programmable element (b) Switch element

Figure 1.6. Example FPAA switch and programmable element using floating gate transistors.
(a) Programmability is implemented through charge storage on the floating gate.
(b) A floating gate transistor combines the switch and memory element.



The density of FPAA devices can aso be enhanced by correcting offsets and mis-
matches using floating gate transistors [14-17]. Analog design techniques traditionally
deal with offsets and mismatch by increasing device area and redundant layout schemes.
These techniques work fairly well, but they consume a large amount of die area. Laser
trimming is also commonly used for high accuracy circuits, but this requires costly post
fabrication processing. However, floating gate transistors can be used within various cir-
cuit topologies and electronically programmed to trim offsets. Since this can be done post
fabrication in a cheap manner, a significant area savings can be achieved in the FPAA ana-

log circuit designsin addition to the programmabl e elements and switches.



CHAPTER 2
FLOATING-GATE TRANSISTORS

For years floating gate transistors have been used in commercial non-volatile digital
memories, but only recently have similar devices been considered viable as analog memo-
ries [18] and numerous other analog circuit elements. As memories, floating gate transis-
tors have been used to build data converters[17, 19, 20], programmabl e references [21, 22],
and non-volatile switching arrays [23]. Floating gate transistors have been used in ana
log circuits for such tasks as trimming offsets [14-16] and analog signal processing [24].
Industry has even begun to offer commercial floating gate technol ogies such asthe electron-
icaly trimmed zero threshold transistor [25] designed for extremely low power supplies.
However, al of these devices share common characteristics and programming techniques

despite their dissimilar usage.

2.1 Characteristics

A floating gate transistor is simply a normal transistor except that the gate terminal has
no DC path to a fixed potential. Instead, voltages are coupled to the floating gate via
coupling capacitors. Figure 2.1 shows the layout for a floating gate pFET with a single
drawn coupling capacitor and a special purpose coupling capacitor. The pFET can be seen
on the right side of the right N-well. To the left of the pFET is the coupling capacitor
made from a poly-poly capacitor. This capacitor is constructed above the N-well of the
pFET to reduce the parasitic coupling capacitor to the substrate. Poly-poly capacitors are
preferred for coupling because they maintain the same relative capacitance regardless of
the voltage across them, unlike MOS capacitors. Although only one of these capacitorsis
drawn, there can be any number of coupling capacitors attached to the floating node. The
specia purpose coupling capacitor is made of a MOS capacitor in its own N-well because

of the oxide quality needed for tunneling, which will be discussed |ater.
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Figure 2.1. Top view and cross-section layout of a floating gate transistor.

Figure 2.2a showsthe schematic representation of the floating gate pFET with atunnel-
ing junction, Cy,,, and one drawn coupling capacitor, Cc. These coupling capacitors allow
aratio of the coupling voltage, V¢, and the tunneling voltage, V n, to be seen as part of the
floating gate voltage, Ve, on the floating node. In addition to the drawn capacitors, there
are generally several parasitic capacitors that also couple voltages into the floating node.

Figure 2.2b shows the floating gate pFET schematic with both drawn and parasitic cou-
pling capacitors. The drawn capacitors are the same as the ssimple case. The well capacitor,
Cuwel, is aresult of the polysilicon area residing above the N-well of the pFET. Since this
polysilicon is mostly above thick field oxide, the capacitance is usually fairly small. How-
ever, large poly-poly coupling capacitors can significantly increase the amount of polysil-
icon area, which increases the significance of the well capacitor. The substrate capacitor,
Cau, 1S formed by the region of polysilicon that crosses above the substrate between the
two N-wells, as seen in Figure 2.1. Thisregion of polysilicon is also over field oxide and
isthus relatively small. However, its effects can be observed during programming, as will
be discussed later. The final two capacitors, Cs and Cp, are the overlap capacitances of the

pFET, which means that the source and drain signals can couple into the floating node.
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Figure 2.2. Floating gate transistor schematic.

(a) Simplified schematic showing only drawn coupling capacitors.

(b) Elaborated schematic showing all coupling capacitors including parasitic capacitors.

The voltage to current equations used to model ordinary FETs can also be applied

to floating gate devices by substituting the floating gate voltage for the gate voltage, as
seen in (2.1), the sub-threshold saturation equation. The terminal voltages in (2.1) are
all referenced to the bulk material of the FET, which is the well voltage in the case of the
floating gate pFET. The floating gate voltage can be expressed by (2.2) where the individual
capacitors and voltages correspond to components in Figure 2.2b. The total capacitance,
Cq, is the sum of the capacitances seen at the floating node, and the Q term represents
the charge stored on the floating gate. If the coupling capacitor and tunneling capacitor
comprise a significant portion of the total capacitance, this equation can be simplified to
(2.3).

KVEc-Vs Vp

Ipb=1lpe U1 e% (2.1)

CCVC + Ctuthun + CweIIVWeII + Csubvsub + CSVS + CDVD + Q

Ve = 2.2
= o (22)
CCVC + Ctuthun + Q
~ 2.
o (23)
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2.2 Programming

Floating gate transistors can be programmed by modifying the charge term, Q, of (2.2).
Since the polysilicon gate of the transistor is completely surrounded by oxide, the charge
can be stored on the floating node for long periods of time [15, 16, 26]. Fowler-Nordheim
tunneling and hot electron injection are commonly used to move charge across the oxide
barrier. The result of these processes can be seen in the gate sweeps of Figure 2.3, which
depicts asingle floating gate pFET programmed to three different levels of charge.
Tunneling removes electrons from the floating node, so the |-V relationship shiftsto the
left, which looks like the effective threshold voltage of the pFET has been increased. Hot
electron injection adds electrons to the floating node and thereby decreases the effective
threshold voltage, which shiftsthe -V curveto theright. If asingle coupling voltage value
is examined for the floating gate pFET example, tunneling can be viewed as reducing the
amount of current flowing through the channel, and hot electron injection increases the
current. In this manner, a programmable current source can be constructed. Similarly, the

same processes can be used to change the conductance of the floating gate pFET, so it can

injection

Ve

Figure 2.3. Gate sweep measurements showing the programmability of floating gate transistors.
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Figure 2.4. Conduction band diagram depicting the tunneling process across an oxide.

be used as a programmabl e switch.

Under normal circumstances, the oxide barrier significantly reduces the probability of
electrons moving to and from the floating node. Figure 2.4aillustrates the conduction band
as seen across the tunneling junction capacitor. In theinitial state, the floating gate voltage
and the tunneling voltage are equal. The phenomenon of Fowler-Nordheim tunneling can
then be observed by raising the tunneling voltage, which lowersthe conduction band as seen
in Figure 2.4b. As the tunneling voltage increases, the probability of an electron crossing
the oxide barrier increases. The decreasing conduction band on the tunneling voltage side
has the effect of decreasing the barrier width observed by electrons on the floating node.
As the effective width of this barrier continues to shrink, more electrons will be able to
“tunnel” through the oxide, Figure 2.4c.

The process of hot electron injectionisillustrated in Figure 2.5. To inject electrons onto

/ \ SO, / SO,
VS o.oo / :.\ VS o.oo / = .<
\ VD
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() (b)
Figure 2.5. Conduction band diagram depicting hot electron injection across an nFET channel.

(a) Moderate field between source and drain.
(b) High field between source and drain.
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thefloating node, two conditionsarerequired. Thefirst ischannel current, and the second is
ahigh field between the source and drain terminals. Under normal conditions, Figure 2.5a,
electrons flow through the channel from the source to the drain terminal. Upon reaching the
channel-to-drain junction, the electron can be seen to roll down the conduction band where
the electric field is highest. If the drain terminal voltage is increased, thereby lowering
the conduction band further, the field in this region is significantly increased, Figure 2.5b.
In this situation, the electron may now have enough energy to surmount the oxide barrier
due to the field. Once in the oxide, the electron will most likely drop back into the drain.
However, some of these electrons will cross the oxide and become trapped on the floating
node.

Hot electron injection is a positive feedback process in pFETS, since the number of
electrons injected onto the floating node is proportional to the amount of current flowing
through the channel. Asthe number of electronsincrease on the floating node, the effective
floating gate voltage decreases, which increases the amount of current flowing through
the channel. In order to accurately program a floating gate transistor, an algorithm of

controlled injection pulses, Figure 2.6, has been developed [27-29]. The injection pulse

ramp up pulse drain ramp down

................... injection V

Vivei / X
v, o N operating V,

Vs
injection V
V. operating V|
injection V
A operating V_

Figure 2.6. Timing diagram showing the steps involved in a hot electron injection pulse.
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has two distinct phases, ramp and pulse. During the ramp phases, the coupling voltages of
the FET are held constant relative to the bulk potential to prevent accidental injection. To
achieve a high field across the transistor during the pulse, the bulk potential is often raised
well above operating conditions, as seen in Figure 2.6. Once the terminals have reached the
desired supply voltage, the coupling voltages, in this case just V ¢, are adjusted to bias the
transistor such that current flows through the channel. The drain is then pulsed for a fixed
width and returned to the supply voltage. Another ramp phase returns the supply voltage
to normal operation levels.

The algorithm in [28] characterizes the injection pulses for a fixed pulse width, a fixed
coupling voltage with respect to V pp, and arange of source to drain voltages. A predictive
model isthen generated such that given theinitial current flowing through the transistor and
the desired target current, the model can estimate the source-to-drain voltage needed during
the pulse to reach the target. Since each floating gate transistor injects at slightly different
rates, the algorithm uses a conservative estimate and iterates between current measurement
and pulse phases in order to asymptotically approach the target current. This algorithm

is capable of .2% accuracy [28] over 3.5 decades of current, but it uses a fixed coupling

Percent change in current
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. . . . . . . . . .
20 40 60 80 100 120 140 160 180 200 10° 10 107 10
Pulses Initial current (A)

(@) (b)
Figure 2.7. Floating gate injection efficiency.

(a) Drain current measured after each injection pulse.
(b) Percent change in current for each initial current.
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voltage, which resultsin a significantly varying injection efficiency per pulse.

Figure 2.7a shows how the drain current of a floating gate pFET changes with each
drain pulse given a fixed source to drain voltage and coupling voltage. Figure 2.7b shows
the percent change in current for a given initia current. From these measurements it can
be seen that the injection efficiency varies significantly over the programmable range of
currents. Using this knowledge, the coupling voltage can be adjusted during the pulse
phase to maximize the injection efficiency. As aresult, this modification should reduce the

number of pulses required to program larger target currents.

2.3 Floating Gate Transistor Arrays

In general, floating gate transistors are arranged into a two dimensional array during pro-
gramming, as seen in Figure 2.8. In this configuration, all of the transistor source terminals
are connected to Vpp. The coupling voltages and drain voltages are switched between a

fixed potential, usually Vpp, and a DAC voltage. A decoder, shift register, or combination
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Figure 2.8. Floating gate transistors arranged into an array for programming.

Vp<1>
VD<2>

15



of the two control which row and which column are selected at atime. In Figure 2.8, the
center column and center row are selected. The coupling voltages of the unselected rows
are connected to Vpp, and the unselected drain lines are also connected to Vpp. Since
channel current and high source-to-drain field are both required for hot electron injection,
this configuration allowsindividual transistor selection within the matrix without additional
isolation hardware. The high field is applied to the selected column, but only the selected
row allows a significant channel current to flow through the desired transistor.

The selectivity of individual devices within the array is only valid when the coupling
and drain voltages used for the unselected devicesin the array can maintain isolation. Fig-
ure 2.9 graphically shows the conditions required to maintain isolation during program-
ming. TransistorsM; and M, were programmed to have drain currents of 100 nA and 1 uA
respectively at a coupling voltage of 0 V, as seen by the dotted lines in Figure 2.9b. The

gate sweep for each of these transistors shows that the transistor current can still be shut
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(a) FG Column (b) Isolation measurements

Figure 2.9. Floating gate transistor isolation in arrays.
(a) A column of floating gate transistors.
(b) Gate sweep measurements depicting the concept of device isolation within floating gate
transistor arrays. The dotted lines show what M1 and M, would look like if device isolation
was maintained.
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off with the coupling voltage a V pp, whichis 2.4V in Figure 2.9b. A third transistor, M3,
was then programmed to 20 pA at a coupling voltage of 0 V. Thistransistor can no longer
be turned off with the coupling voltage at V pp, so it will conduct whenever the column is
selected. The current contribution from this transistor now interferes with the current mea-
surements of M, and M, but it would completely mask currents less than 100 nA, which
makes accurately programming such currents impossible once isolation has been violated.
Even if another transistor along the column could be programmed given the state of M3,

the current flowing through M3 during the injection pulse would cause it to further inject.

2.4 Switch Characteristics

In addition to programmable biases, floating gate transistors can aso be used as pro-
grammable conductance switches. Anideal switch is characterized by infinite impedance,
or no conductivity, in the “off” state and zero impedance, or infinite conductivity, in the
“on” state. Of course, no such device exists in reality. Figure 2.10 depicts the “on” and
“off” states of floating gate pFETS using gate sweeps. An “off” switch is tunneled such

that no measurable current flows through it. Although some minimum level of current is

“on” switch

1y ()
3
T
1

“off” switch
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Figure 2.10. Gate sweeps depicting the “on” and “off” states of floating gate switches.
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observed in the figure, thisis a result of the combined leakage currents of al the transis-
tors attached to a single column in the array plus the leakage current of the reverse biased
diodes formed by the ESD structure and the drain to well junctions. In the “on” state, the
floating gate transistor is injected as strongly as possible to provide the best conductivity.
However, floating gate transistor switches are not limited to simply “on” and “off” states
like their pass FET and transmission gate alternatives generally are. Instead, the floating
gate transistor can be programmed to any intermediate state, as seen in Figure 2.10.
Generally, pass FETs or transmission gates are used as switches, depending upon the
regquirements of the system. Floating gate pFET switches are simply a form of pass pFET
in which the gate biasing is controlled through charge programming and coupling capac-
itors. However, a significant difference can be observed in Figure 2.11. The circuit in
Figure 2.11a was used to evaluate and compare the resistance of a pFET, a transmission

gate, and a floating gate pFET when used as a switch. Each switch element was biased
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Figure 2.11. Comparison of switch resistance for various devices.
(a) The resistance was measured with the depicted circuit.
(b) Measurements were taken for a pFET, a transmission gate, and a floating gate pFET
of similar sizes in a .5 um process.
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such that a constant 25 mV drop was observed across the switch terminals. One end of
the switch was swept across the supply voltage range, and the current was measured at
each step. The resistance was then estimated using Ohm'’s law, Figure 2.11b. As the fig-
ure shows, the pFET resistance increases dramatically as the signal passing through it is
reduced. This means that the pFET will have trouble passing low voltage signals when
connected to a low impedance. To solve this problem, transmission gates are generally
employed to cover the entire signal range at a cost of extra capacitance, which reduces the
switch bandwidth. The pFET in the transmission gate reduces the switches resistance for
the upper end of the signal range, and the nFET handles the lower end.

The floating gate pFET’s resistance in Figure 2.11b is on the same order as that of the
transmission gate, but it has significantly less parasitic capacitance because there is only
one transistor, which improves signa bandwidth. The floating gate pFET’s resistance is
monotonic with decreasing signal voltage and varies less than the transmission gate over
the entire signal range. For any DC signal bias, the relative change in resistance for an
AC signal is approximately the same. Although the floating gate pFET resistance curve
looks significantly different, it is actually very similar, except shift to the left. The charge
on the floating gate has been programmed such that the effective floating gate voltage is
below the negative supply. If a negative gate voltage were applied to the pFET, the resis-
tance curve would look very similar to the floating gate pFET. However, the floating gate
pFET s floating gate voltage is also affected by the signal passing through it. The parasitic
overlap capacitors from the source and drain couple into the floating node. For higher sig-
nal voltages, this coupling increases the resistance sightly. For lower signal voltages, this
coupling decreases the resistance a bit. The effect isbasically a horizonta stretching of the
negatively biased pFET resistance curve, which explains why the resistance of the floating
gate pFET is dlightly higher than the pFET or the transmission gate for signals near the
supply rail.
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2.5 Switch Programming

Programming afloating gate transistor as a switch occurs in much the same manner as dis-
cussed before. For the intermediate switch conductance values, the precision programming
schemes [27-29] work in exactly the same fashion. However, the “on” state of Figure 2.10
requires programming the individual transistors beyond the point of isolation. This means
that multiple switches cannot be reliably turned “on” in a column by programming them
sequentially.

The current masking effect observed in Figure 2.9b would prevent additional transistors
along a column from being measured during the iterative programming scheme. However,
thisisnot crucia given that the transistor is not being accurately programmed to a specific
point. Rather, it is being injected as hard as possible to make the best possible switch. The
real problem is the amount of current flowing through the selection circuitry attached to
the drain terminal [30]. The selection circuitry has a finite conductance and therefore has
an associated voltage drop across its terminals when a significant amount of current flows
through it. This voltage drop reduces the field across the floating gate pFET during the
injection pulse, which also reduces the injection efficiency and maximum conduction level
of the switch. Assuch, it isvery difficult to program multiple “on” transistorsin a column
using this method.

The algorithm proposed in [30] attempts to solve this problem by incrementally inject-
ing each “on” transistor. The algorithm pulses each transistor to be turned “on” sequentially
before returning to pulse the first transistor a second time. After each iteration, the cou-
pling voltage isincreased dlightly, which decreases the current flowing through the devices
during the injection pulse thereby reducing the field dropped across the selection circuitry.
By repeating this method, each deviceis slowly injected up to and beyond the point of iso-
lation. However, thefirst transistor to breach the isolation point will then continue to inject
for every drain pulse on the column. If alarge number of transistors are to be turned “on”

in a given column, this could result in the same diminishing field problem as before.
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An alternate method for programming “on” switches utilizes the substrate coupling ca-
pacitor, Cqy,, from Figure 2.2b. Figure 2.12 shows the effect of increasing the supply volt-
age during the injection pulse. Although all of the other terminals are adjusted with respect
to the supply voltage during an injection pulse, the substrate voltage cannot be. Therefore,
the substrate couples in an effectively lower voltage, which increases the current flowing
through the transistor when in the high supply voltage state. Therefore, the isolation point
is actually lower than observed during normal supply voltage operation. The shift of the
I-V curve is linearly dependent upon the difference between the operating and injection
supply voltages. To account for this shift, most programming algorithms will ramp the
supply voltage to a consistent injection supply voltage independent of the source to drain
voltage of the injection pulse. By characterizing the injection pulses under this constraint,

the substrate coupling has little affect upon the algorithm.
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Figure 2.12. Exploiting the substrate coupling capacitor for switch programming.

21



For switches, this substrate coupling can be used to inject al “on” devices simulta-
neously beyond the point of isolation. The first step programs each “on” transistor along
the column up to the point of breaching isolation. The coupling voltage is then held at
the supply voltage, and the injection supply voltage is increased beyond the characterized
value. By doing this, all of the transistors programmed to the isolation point will be pushed
dlightly beyond isolation and conduct current with their coupling voltages at the supply
voltage. A drain pulse under these conditions will thus cause all of these devices to inject
at the same time, which means they all see the same source to drain field. In this manner,
any number of transistors should be programmable to the “on” state. Although all of the
“on” devices should be programmed to the same relative level, they may not conduct as
well asasingle “on” switch, since the field will be reduced significantly the the selection
circuitry.

Floating-gate nFET transistors would seem like a more appropriate choice for aswitch,
since the conductance of an nFET is significantly higher than that of an equally sized pFET.
However, most processes now use spacers around the gates of transistors to reduce the
amount of hot electron injection in order to lower the power consumption caused by gate
leakage in high-speed digital systems. This means adrastically reduced injection efficiency
in nFETSs, since the injection mechanism occurs near thedrain junction. In pFETS, injection
occurs further away from the drain than in the nFET case, which means the spacers have
less of an effect. Therefore, floating gate pFETSs have been the floating gate transistor of

choice for thiswork.

2.6 Indirect Programming

In some instances, the selection circuitry necessary to pull a floating gate transistor out of
an analog circuitisundesirable. Figure 2.13ashowsan examplecircuit using afloating gate
transistor to set abiasvoltage. Although the switchesin this example are not detrimental to

the operation of the diode-connected nFET, the simplicity better illustrates the mechanisms
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Figure 2.13. Direct versus indirect floating gate transistor programming.

(a) Direct programming requiring selection switches.

(b) Indirect programming requiring no additional switches.
required for programming floating gate transistors within a circuit. During program mode,
the “prog” signal, as seen in Figure 2.13a, is driven high. This switches the drain of the
floating gate pFET from the circuit to the programming drain line. In run mode, the “prog”
signal is held low, which switches the floating gate pFET back into the circuit.

A way to avoid extra selection switches can be seen in Figure 2.13b. Instead of asingle
pFET, there are now two pFETSs that share a common floating node [31]. One of these
pFETsisattached directly to the circuit of interest. The other iswired into the programming
circuitry. In this configuration, the charge on the floating node can be modified using the
programmer pFET, the pFET connected to the programming circuitry, without disturbing
the terminals of the agent pFET, the pFET connected to the circuit of interest.

Indirect programming also provides an effective way to use floating gate nNFETs in cir-
cuits. By replacing the agent pFET with an agent nFET, the programmer pFET can now be
used to modify the charge controlling the floating gate of the nFET, which avoids the low
injection efficiency problem of the nFET. However, this makes programming the nFET a

little trickier than in the pFET case. Tunneling removes electrons from the floating node,
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which increases the effective floating gate voltage. This turns off the pFET, but it turns on
the nFET. Thisis not a significant problem, but it does require injection to turn “off” the
NFET. In alarge system, such asan FPAA, this can be disadvantageous because of the time
required to program “oft” these devices. Tunneling is generally a global procedure in that
it affects all of the devices simultaneously. For pFETS, this can be viewed as a global erase,
but for nNFETS, all of the devicesare turned on very hard. In areconfigurable system, global
erasure makes sense, since a majority of the devices will not be used in any given system.
The process of injecting these nNFET devices “ off” makes thisimpractical on alarge scale,
such as would be the case for switches. However, using these devicesin afew special case

circuits or biases within large-scale devices may be practical.

2.7 Modified Tunneling Junctions

In most reconfigurable systems, the switching fabric consumes a significant portion of the
die area, which is also the case for the FPAAs described in thiswork. Most of the spacein
floating gate pFET switches is consumed by the tunneling junction. Since thisjunction is
formed by aMOS capacitor residing in itsown well, it requires an isolating substrate space
between its well and the well of the pFET, as seen in Figure 2.1. Because the tunneling
voltageis significantly higher than the operating voltage of the process, this substrate space
between the wells cannot be used for active components, so it is mostly wasted space.

One way to conserve space in floating gate transistor switch networks is to eliminate
the special tunneling junction, as seen in Figure 2.14. In this switch topology, the well
potential can be raised to a high enough voltage to cause the tunneling phenomenon across
the capacitor formed between the pFET’s gate and the well. Using this and the hot electron
injection mechanism discussed earlier, the charge on these well tunneled devices can be
modified, as seen in Figure 2.15.

Although this structure functionally works, it may not be practical for large-scale sys-

tems. When increasing the well potential during tunneling, it is also necessary to increase
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Figure 2.14. Layout for a floating gate transistor using well tunneling.

Figure 2.15. Gate sweep data showing well tunneling results.
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the source and drain voltages at the same time. The junctions between the source/drain ac-
tive regions and the well form parasitic diodes. During normal operation, thewell is biased
at or abovethe highest potential of the pFET’s source terminal. In thismanner, these diodes
are reverse biased and conduct only leakage current. However, raising the well voltage sig-
nificantly higher than the process voltage causes these diodes to break down and conduct
high levels of current, which can cause damage to the device or IC. To compensate for this
issue, the source and drain terminals were raised along with the well to prevent breakdown.
In an array of floating gate transistors, this would require special level shifting capabilities
and other high-voltage interface circuits to handle the higher source and drain potentials.
The raising of the source and drain potentials also couples into the floating node thereby
increasing the effective floating gate voltage. This reduces the effectiveness of the tunnel-
ing voltage, but increasing the coupling capacitor size and driving the coupling voltage to
ground can help compensate for this effect.

The possibility of replacing the MOS tunneling capacitor with a poly-poly capacitor
was also investigated. Figure 2.16 depicts the layout of such a floating gate transistor. In
thistopol ogy, the tunneling capacitors work much in the same manner asthe M OS capacitor

used in the standard floating gate pFET design. The charge stored on the floating node was
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Figure 2.16. Layout for a floating gate transistor using poly-poly cap tunneling.
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modified using the same techniques as with the standard floating gate transistor. However,
the voltage required to tunnel the device was significantly higher than the standard pFET
case, since the oxide thickness of the poly-poly capacitor is greater than that of the gate
oxide used in MOS capacitors. Interestingly, this structure also allows electrons to be
tunneled onto the floating node by decreasing the tunneling voltage. A negative voltage is
usually required to do this, and a M OS capacitor would not be able to handle such voltages,
sinceit would forward bias the junction diodes. However, thisis not the case with the poly-

poly cap, and a negative tunneling voltage can be used.

2.8 Improving Isolation

Indirect programming may be helpful in dealing with the isolation issues involved with
programming switches. Figure 2.17 shows a new switch topology based upon indirect
injection. In thiscircuit, the injection mechanism occurs within the programmer pFET, so
an extra selection pFET can be added just below the programmer pFET, which allows the
current to be shut off for unselected rows. This configuration allows “on” switches to be
injected individually and ensures that all of the“on” transistors along a column are injected

to the maximum possible level.

row

] F row select
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Figure 2.17. Switch element using indirect programming.
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Figure 2.18 shows some measured gate sweep results for this switch topology. With
the selection pFET shut off, no current from the programmer pFET can be observed. After
turning on the selection pFET, current can be seen to flow through the programmer pFET.
The initial current flowing through the pFET is in between an “oft” and “on” transistor
switch, as seen in Figure 2.18. After injecting the programmer pFET, the current seen
flowing through the programmer pFET looks more like an “on” switch. However, the
observability of this current is being limited by the selection pFET, because it is within
the signal path. Performing a gate sweep on the switch pFET, or agent pFET as described
earlier, results in the much higher current levels expected of “on” switches, as seen in

Figure 2.18.
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Figure 2.18. Gate sweep results from the indirectly programmed switch topology.
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CHAPTER 3
PROGRAMMABLE VOLTAGE / CURRENT REFERENCE

Analog systems generally require many different bias voltages and currents to set var-
ious circuit parameters. For large scale analog systems, such as those synthesizable with
large-scale FPAAS, the number of biases could easily number in the 100s to 1000s. It is
impractical to dedicate IC pinsfor thislevel of biasing, so an on-chip solution is required.
Since many process parameters are temperature dependent, the analog circuit characteris-
ticswill also be temperature dependent unless the biasing structures compensate for these
temperature effects. For programmable and reconfigurable systems, such as FPAAS, the
synthesized analog circuits must maintain their performance characteristics over a reason-
able range of temperatures to gain commercial acceptance.

Although temperature independent circuit topologies, such as the very popular bandgap
reference [32—34], are in common use, they tend to consume a large die area and have a
fixed reference value. The fixed reference is obviously a problem for programmable sys-
tems, but this can be overcome through the use of selectable references, which are effec-
tively DACs. Thereal issueisthe area requirement for the large number of on-chip biases.
Accuracy requirements and large DAC array structures force the significant area consump-
tion in standard reference designs. High accuracy often also comes at the expense of post
fabrication trimming using lasers or other techniques. However, floating gate transistors
can be introduced to increase the initial accuracy and decrease the die area through pro-

gramming.

3.1 Architecture and Theory

A floating gate based programmable voltage reference has been developed! [19] based

upon the common beta-multiplier reference circuit [35]. As seenin Figure 3.1a, the pFET

1This work was done in collaboration with Venkatesh Srinivasan and Guillermo Serrano. It was partially
funded by the JPL Self-Reconfigurable Electronics for Extreme Environments (SREE) project.
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Figure 3.1. Programmable floating gate based reference.
(a) Schematic of the floating gate reference.
(b) Die photo of the floating gate reference with relevant dimensions.
transistors M; and M, have been replaced with floating gate pFETs. An on-chip resistor,
in conjunction with the programmed reference voltage, is used to set the current flowing
through each leg of the circuit. Assuming M ; and M, are sized the same and M3 and M, are
matched, the current flowing through M ; and M, should be the same. Figure 3.1b showsa
die photo of the programmable reference designed in a.35 um processusing a2.5V supply.
The dimensionsfor the circuit in Figure 3.1aare given in the die photo. The long rectangle
along the right edge of the photo is the on-chip resistance, which can be significantly larger
or smaller, depending upon the region of operation, above or sub-threshold. The extra
circuitry shown in the photo was simply used for testing purposes and is not required by
the reference.
Assuming perfect device matching and ignoring the Early effect, the current flowing
through M; and M, are equal. In the saturated sub-threshold region, a bulk referenced
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expression comparing the currents flowing through M; and M, can be seen in (3.1) and

smplifiedin (3.2).

l, = I3

(KVFez) (KVFGrVref )
el &) = el o T 3.1)
KVrc2 = KVre1 — Viet (3.2

Inasimilar fashion, the same result can be seen in (3.3) assuming above-threshold saturated

operation and using a bulk referenced model.
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With the results of (3.2) and (3.3), the floating gate voltages can be expanded using (2.3) to
form (3.4) and simplified to (3.5).
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From (3.5) itiseasily seen that thereference voltageis proportional to the charge difference,

AQ, between floating gate transistors M ; and M.

3.2 Programmability

Using the programming techniques described in Chapter 2, the reference voltage can be
set according to (3.5). Figure 3.2 shows the programmable reference circuit with switches
needed to take the floating gate transistors out of the circuit and connect them to the pro-

gramming lines. The source terminals are tied to V pp, the drain terminals to independent
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Figure 3.2. Programmable reference schematic showing programming switches.

drain lines, and the coupling voltage is switched from its normal diode connection to a
control voltage.

In addition to providing connectivity to the programming lines, the switches in Fig-
ure 3.2 eliminate the need for a start-up circuit. This particular reference topology has two
stable operating points. One stable point is the desired operating condition in which a cur-
rent flows through both legs of the circuit as set by the resistor. The second stability point
occurs when no current flows through either leg. In this case, the current through each
legisstill equal, just zero. To ensure proper reference operation, a start-up circuit is often
used to inject a current into one of the circuit legs until the reference reaches the desired
operating point. The programmable reference utilizes the selection switches to ensure a
correct start-up condition by connecting the drains and the coupling voltage of the floating
gate transistorsto alow potential, which causes current to flow. A power-on-reset circuit is
used to keep the circuit in program mode for a short period of time before switching to run

mode.
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Figure 3.3. Reference programmability and accuracy.
(a) The voltage reference is a linear function of the threshold difference.
(b) Initial accuracy of programmed reference voltages.

Figure 3.3a shows the reference circuit programmed to output values between 50 mV
and 500 mV. The charge difference is estimated as the difference of the effective threshold
voltages of M; and M,. As predicted, the reference voltage is linearly proportional to the
charge difference. Taking a closer examination of the programming, Figure 3.3b showsthe
reference programmed between 250 mV and 260 mV and the initial accuracy observed.
The worst case initial offset was measured to be approximately 40 uV. However, a better

characterized programming algorithm should be capable of even better.

3.3 Temperature Dependence

From (3.5) the dominant temperature dependence of this circuit is primarily due to the «

term, which is expanded in (3.6).

K = 1— 14 (3.6)
2
2 \/VFG ~Vin + (5%5)
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The various parameters of (3.6) are given by (3.7) through (3.10).

Vin = Vig+a (T =To) (3.7)
Ur = 862-10°T (3.8)
$o = —2UTIn(N%) (3.9
n = 3.1.10%° T 3/2g 7000/ (3.10)

The capacitance will also have some dependence upon temperature due to the physical
expansion and contraction of the oxide, but this should be relatively low compared to that
of .

Figure 3.4a shows measured temperature data between -60° C and 140° C for six differ-
ent reference voltages between 100 mV and 600 mV. Figure 3.4b shows a detailed view of
the temperature datafor areference voltage of 400 mV. From this data, a maximum temper-
ature dependence of 110 uV/°C was observed with the reference programmed to 600 mV,
and aminimum of 10 xV/°C was measured for the 100 mV case.

The first-order temperature dependence observed in the reference circuit could have

been significantly reduced by connecting the source and bulk of M 1, assuming it residesin
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Figure 3.4. Reference voltage change as a function of temperature.
(a) Reference circuit programmed to several output voltages.
(b) A closer view of a single programmed voltage.



its own well, as seen in the following sub-threshold derivation.

o = I

Ioe(k\GFTez) _ Ioe(k\arTel)
Vre2 = Vrai (3.11)

As expected, the effective floating gate voltages referenced to the bulk of the transistor are
equal (3.11). Substituting (2.2a) into (3.11) resultsin (3.12).

CCVC + Ctunvtun + QZ Cc (VC - Vref) + Ciun (Vtun - Vref) + Ql
- - s (3.12)
-

Since the bulk potential for transistors M, and M, are different in this case, the coupling
voltage V¢ and Vy, have been referred to the bulk of M in (3.12). The coupling terms of
M, have been adjusted to accommodate the difference between the bulk terminals, which

isthe reference voltage. Simplifying (3.12) resultsin (3.13).

(CC + Ctun) Viet = Q1—Q (313)

Thisequation can be further simplified by recognizing that the total capacitance at the float-
ing node is a summation of the coupling capacitor and tunneling capacitor in the simplified

case, which resultsin (3.14).

Q—-Q
Cr
_ AQ
- = (3.14)

Vref =

Thus the reference voltage is only dependent upon the charge difference and the total ca-
pacitance seen at the floating node. The chargeis not directly dependent upon temperature,
although it can affect the long-term drift as discussed in the following section. Therefore,
the temperature dependence of this modified circuit is primarily due to the temperature

coefficient of the capacitors.
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3.4 Long-Term Retention

From (3.5) it is easy to see that the long term drift of the reference voltage is proportional
to the change in the charge difference. The change in charge over time is believe to be
primarily due to thermionic emission [36]. The fractional change in the charge difference,
and therefore the fractional change in the reference voltage, can be expressed as a function

of time and temperature as seen in (3.15).

Vref(t) _ AQ(t) — e—tue:l?TB
Viet(0)  AQ(0)

(3.15)
Ve (0) isthe initial programmed reference voltage, and V¢ (t) is the reference voltage at
timet. Likewise, AQ(0) istheinitial charge difference, and AQ(t) is the charge difference
at timet. v istherelaxation frequency of electronsin polysilicon, ¢gisthe S/ SO, barrier
potential, k is Boltzmann's constant, and T is the absolute temperature in Kelvin.
Accelerated lifetime retention data was measured according to the method previously
used in [16] and is summarized in Table 3.1. Figure 3.5a shows negligible drift in the
reference voltage for over 100 hours at a temperature of 25° C. At 125° C, the reference
voltage changed by 400 uV over a period of 450 hours, as seen in Figure 3.5b. Using
this data, the high temperature data from Table 3.1, and (3.15), v and ¢ were found to be
55 m/s and .618 eV, respectively. Thisresultsin a 10 year drift of 400 uV using (3.15) at
25° C.
Table 3.1. Reference Voltage Drift Data
Temperature (°C) || 325 | 325 | 125

Time (hours) 24 | 48 | 400

Vret (T)
—0 967 | .953 | .998
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Figure 3.5. Long term reference voltage drift at low and high temperatures.

37



CHAPTER 4
FIRST GENERATION FLOATING GATE FPAA

The RASP 1.x ICs were the first attempt at an FPAA based upon floating gate transis-
torst. The RASP 1.0 and RASP 1.5, as seen in Figure 4.1, were fabricated on 1.5 mm x
1.5 mmdiesin a.5 um process available through MOSIS. Before developing large-scale
FPAAS, it was necessary to demonstrate the feasibility of using floating gate transistors as
both the programmable and switching elements within an array structure. The RASP 1.x
FPAAS therefore served as characterization chips for potentially larger devices. Although
they are fairly small in size, the RASP 1.x FPAAS have nearly the same functionality as
commercially available FPAA ICs[6, 23].

b

Figure 4.1. RASP 1.5 die photograph.

1This work was done in collaboration with Tyson S. Hall and Jordan D. Gray
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4.1 Architecture

Asseenin Figure 4.2, the RASP 1.x FPAA [23] is composed of two vertically aligned gen-
eral purpose configurable analog blocks (CABsS) connected via a single crossbar switching
network. This switch matrix (SM) allows any CAB component in either CAB to be con-
nected to any other CAB component with just two switches. Input / Output (I/O) pins
connect directly to several of the rows in the switch network of the RASP 1.0. Some 1/0O
lines al'so contain dedicated output buffersfor driving signals off chip. The later revision of
the chip, RASP 1.5, aso included I/O pin connections to some of the column routing lines.
This provided another level of I/O that had half the routing impedance of the original IC’s

I/O lines, since it requires only one switch to make a connection instead of two.

PN 29
I/O N 4 ) / R CAB
/O
SM
/0 [«
29
—+—| CAB
/0 [«

Figure 4.2. RASP 1.x FPAA architecture and CAB components.

4.1.1 CAB Component Selection

In the case of most FPGAS, the core elements used to synthesize digital circuits are look-
up tables (LUTs) and D-type flip-flops (DFFs). Using a cascade of asynchronous LUTS,
any combinational logic chain can be implemented. The addition of DFFs enable a wide
variety of synchronous circuits, such as ssmple state machines and soft core processors.
Since these two components are rather simple, they can be arrayed in aregular manner to

create alarge-scale reconfigurable and programmable digital device.
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Determining a core set of components for reconfigurable analog ICs, such as FPAAS,
is somewhat more difficult. Some FPAAS, such as the field programmable transistor ar-
ray [37], utilize fine-grain components such as transistors and capacitors as the core ele-
ments. Thisis very advantageous from the perspective of flexibility, since any circuit can
be built from alarge enough array of transistors. However, thisflexibility comes at the cost
of performance. By building the circuit from these primitive elements, switch parasitics
are introduced at every junction in the circuit. Figure 4.3 shows an example five transistor
OTA topology and the corresponding circuit as synthesized within an FPAA using only
transistor primitives. Floating gate transistor switches used to connect the individual CAB
transistors are depicted in Figure 4.3b as light grey pFETs. Each of these switches adds
alittle impedance in the signal path and a little capacitance at each junction. To help im-

prove performance, commonly used circuits, such as OTAs or OPAMPSs, are also included
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Figure 4.3. Example OTA implemented using transistors within an FPAA.



as medium-grain components. Medium-grain components provide improved circuit param-
eterswithout a significant loss of generality or flexibility. Finally, course-grain components
are generally added as specialized circuits, which have been highly optimized to perform a
specific task.

The CAB components, as seen in Figure 4.4, were chosen to provide a balanced mix-
ture of granularity [6] in order to achieve an effective trade-off between performance and
flexibility. The transistors and capacitors provide fine-grain flexibility, which allows almost
any circuit to be synthesized with a sufficiently large CAB array. OTAs and C* band-pass
elements were included as medium-grain components, since these elements can be used in
a significant number of circuit topologies. Special purpose course-grain components, such

as the min/max detectors and the vector-matrix multiplier (VMM) are also included.

Figure 4.4. RASP 1.x FPAA CAB components.
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4.1.2 Floating Gate Transistor Array Structure

Figure 4.5 shows the inner details of the FPAA architecture, which has two modes of op-
eration, run and program. In program mode, indicated by the “prog” signal going high,
the floating gate transistors used for switches and biases are configured into one large ma-
trix for global addressing. As seen in Figure 4.5, pull-up transistors drive the sources of
floating gate switch transistors, and drain lines are connected to the column programming

logic. Biastransistors are disconnected from the circuits they control and are connected to
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Figure 4.5. Floating gate transistor array architecture for programming.



the same programming lines used for the switches. The row selection circuitry, left side of
Figure 4.5, isused to switch the external coupling voltage, V¢, to the selected row. All uns-
elected rows have their coupling capacitors pulled upto V pp. A decoder isused to generate
the row select signals, rsel<x>. In asimilar fashion, the column selection circuitry, bottom
of Figure 4.5, connects the selected column’s drain line to the external drain signal, Vp.
All unselected drain lines are tied to Vpp. Another decoder generates the column select
signals, csel<x>.

Run mode is defined when the “prog” signal in Figure 4.5 islow. In this configuration,
the source and drain terminals of the floating gate switches are | eft floating as the rows and
columns of the routing fabric, and the bias floating gate transistors are switched into their
corresponding CAB components. In this example, the floating gate bias controls the tail
current of an OTA. The current flowing through the transistor is set during program mode.
A diode-connected nFET converts this current into a voltage that drives the bias transistor
of the OTA. Theterminals of the OTA connect to the routing rows. Likewise, all other CAB
component terminals connect to rows of the routing matrix. By programming the switch
transistors, connections can be made between these component terminals via the routing

columns.

4.2 Synthesized Circuits and Results

Testing this first generation FPAA began by characterizing the floating gate transistors.
Since this was the first time that floating gate transistors had been used as switches, not
much was known about how to program them. Initial attempts used pulse width modulated
schemes for programming both biases and switches. Although this worked fairly well for
biases, switch conductivity waslimited by standard array isolation techniques. Theseinitial
testsillustrated the need for a new programming scheme designed specifically for switches.
The methods described in Chapter 2 were developed in response to this limitation and

allowed for significantly better switches.
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4.2.1 Follower, Low-Pass Filter

With the bias and switch programming characterized, the first circuit synthesized was a
simplefollower acting as a Gy -C low-passfilter, as seen in Figure 4.6a. The OTA isanine-
transistor topology with nFET inputs and a tail current set by a bias voltage. Figure 4.6a
shows the floating gate pFET and diode-connected nFET that sets the OTA bias. The
3 dB corner frequency, (4.1), is directly determined by the OTA transconductance, which

is determined by the bias current, and the load capacitor.

G
f = 4.1
o = o 41)

By programming the tail current of the OTA, the corner frequency of the circuit can be set.
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Figure 4.6. Gy-C low-pass filter implemented on the RASP 1.5.

(a) Low-pass filter circuit schematic.
(b) FPAA implementation showing “on” switches.
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The follower circuit was routed in the RASP 1.5 as depicted in Figure 4.6b. As dis-
cussed earlier, the terminals of CAB components are connected to the rows of the switch
matrix. Connections between CAB components are made by turning “on” the transistors,
represented in this diagram by filled circles at the intersections of rows and columns. For
thiscircuit, two column 1/O lineswere used for the input and output waveforms. The output
of thiscircuit was isolated from external parasitic capacitances by using one of the column
1/O lines with a dedicated output buffer.

The bias transistor, which is not shown in Figure 4.6b, was programmed and swept
from 10 nA to 20 uA. For each bias current, a frequency response was measured, as seen
in Figure 4.7. For the programmed current range, the 3 dB corder frequency range was
between 700 Hz and 20 kHz, which nearly covers the spectrum typically used for audio
applications.
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Figure 4.7. Frequency response of Gy-C low-pass filter.
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4.2.2 Second-Order Section
A second-order section was next synthesized on the RASP 1.5, as seen in Figure 4.8a. The

transfer function of this circuit topology is given by (4.2).

Vout(s) _ (1)%
Vin(s) P+ Bs+w? (42
The natural frequency of the circuit is determined by (4.3).
G
wn = % (4.3)
The quality factor, Q, isgiven by (4.4).
1
Q= STom (44
Gm
m
I
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Figure 4.8. Second-order section implemented on the RASP 1.5.

(a) Circuit schematic.
(b) FPAA implementation showing “on” switches.
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Figure 4.9. Frequency response of the second-order section circuit.

These equations assume that Gy, = Gy1 and the load capacitances are equal. Therefore,
the bias currents of OTA 1 and 2 set the corner frequency, and the bias current of OTA 3
sets the Q of the circuit. Figure 4.8b shows the circuit routed within a single CAB of the
RASP 1.5 using three OTAs and two drawn capacitors. Frequency response data was aso
taken for this circuit and is shown in Figure 4.9. The bias currents of OTAs 1 and 2 were
programmed to approximately 100 pA, and the bias current was programmed to various

values around 100 pA to change the Q.

4.2.3 Capacitively Coupled Current Conveyor

The C* CAB component is commonly used as a compact band-pass filter. As seenin Fig-
ure 4.10a, the C* is a 4-transistor circuit with capacitively coupled inputs. A 5™ transistor,
which is biased with the circuit depicted in Figure 4.10b, was added to increase the in-
put linear range using source degeneration [38]. A drain induced barrier lowering (DIBL)

transistor was chosen for this 5™ transistor to provide a strong exponential relationship the
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Figure 4.10. Capacitively coupled current conveyor (C%) band-pass element.

(a) Schematic of C*

(b) Schematic of automatic DIBL bias generator.

circuit.

-
'y

—

\Y

DD

-~

|

drain potential and the current flowing through it. Thisis achieved by reducing the length

of thistransistor just below the minimum feature size of the process.

The transfer function of this C* circuit [38] is given by (4.8).

Vou ()
Vi n ( S)

The time constants are defined by (4.6) through (4.5).

ST (1—STf)

&

COV
T = —

g

COV
Th = ——

Omh
Ts

CT (Cov + CL) - Ccz)v

SZT|Th+S[T| +Tf(

Cov Omh

C0V+C|_
kCoy

|

~1)]+1

(4.5)

(4.6)
(4.7)

(4.8)

where Cy isthe total capacitance seen at the gate of M4, C,_ isthe load capacitance seen at

the output of the circuit, and C,, is the overlap capacitance between the gate and drain of
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M;. The center frequency of the band-pass transfer function is then defined by (4.9).

T = Vo (4.9)

The high and low corners are independently tunable by adjusting the V, and V, biases,
respectively. This aso allows the circuit to be used as an effective low-pass or high-pass
filter by programming the opposite corner frequency outside the relevant frequency band.

The C* block used in the RASP 1.5 is actually a cascade of two C* elements, which
yields a second-order section. Frequency response results for one of the C* elements was
obtained, as seen in Figure 4.11. One C* element was programmed with a very wide band-
width, which effectively nullifiesits affect on the output in the observable band. Thisallows
the center frequencies of the second C* element to be adjusted and observed independently,
as seen in Figure 4.11. For each center frequency, the high and low bias corners were
programmed such that they overlap at the desired center frequency.
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Figure 4.11. Frequency response of the C* band-pass element.
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4.2.4 Third-Order Ladder Filter

A third-order ladder filter, as seen in Figure 4.12a, was also synthesized to demonstrate a
multi-CAB circuit. The circuit was routed in the RASP 1.5 across two CABS, as seen in
Figure 4.12b. Thistopology produces alow-pass third-order Butterworth filter, which was

chosen for its sharp roll-off and flat passband region. The transfer function of thiscircuit is

given by (4.10).
Vou(s) Gm1 Guz Gua
Vin(S) B b3 3 + b2 2+ bl S+ bo (410)
| I .
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Figure 4.12. Third-order ladder circuit implemented on the RASP 1.5.
(a) Circuit schematic.
(b) FPAA implementation showing “on” switches.
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The coefficients are defined by

b; = C3

b, = (Gmi+Gwms)C?

by = (GmiGwma+ GmzGusz + Guz Gua) C
bo = GmzGma (Gwi+ Gwma)

where the transconductance, Gy, corresponds to OTA x and C isasingle drawn capacitor.
To meet the Butterworth filter conditions, the OTAs are biased such that Gy, = Gy = Gua

= 2 Gy3. With these constraints, (4.10) simplifiesto (4.11), where Gy = Gy;s.

Vou(s) _ Gy
Vin(9) 2C3$+4Gy £+5G4Cs+2G;,

(4.11)

Frequency response data was also obtained for several corner frequencies, as seen in Fig-

ure 4.13.
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Figure 4.13. Frequency response of the third-order ladder circuit.
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4.3 Observations and Conclusions

The results of testing the RASP 1.0 and RASP 1.5 demonstrated the feasibility of using
floating gate transistors as both the programmable and reconfigurable elements within an
FPAA. A single floating gate pFET switch performed as well as a standard transmission
gate of comparable size, and required no additional memory elements, such as SRAM, to
maintain connection information. As programmabl e elements, floating gate biases provided
a method for setting analog circuit parameters over severa orders of magnitude without
requiring a significant amount of die area. With both programmable and reconfigurable
elementstested, it seemed likely that alarge-scale FPAA based upon thistechnol ogy would

be possible.
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CHAPTER 5
SECOND GENERATION FLOATING GATE FPAA

The RASP 2.x ICs" are the first large-scale FPAAS based upon floating gate transistors,
and the only reconfigurable analog device comparable in scale is the analog coprocessor
discussed in [39]. These ICs were all fabricated in .35 um processes available through
MOSIS. The RASP 2.5 contains 56 CABs and fills a 3 mm x 3 mm die. The RASP 2.7
occupies a 3 mm x 4.5 mm die and consists of 72 CABs, as seen in Figure 5.1. Although
the results of the RASP 1.x line demonstrated the feasibility of creating dense analog com-
ponents, the RASP 2.x FPAAs would illustrate the issues involved in programming and

using components located across the chip in a synthesized analog system.

Figure 5.1. RASP 2.7 die photograph.

1This work was done in collaboration with Tyson S. Hall and Jordan D. Gray
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5.1 Architecture

The RASP 2.x line of floating gate FPAAS is composed of a two-dimensional array of
CABS, as seen in Figure 5.2. Instead of a single crossbar network connecting the CABs,
there are now multiple routing options. The first layer of routing consists of the local
crossbar switch matrix, which allows CAB component terminals to be connected within
a single CAB. This switch matrix also connects to vertical global routing lines, which
connect all of the local switch matrices along a column. Global horizontal routing lines
are located just below each CAB row and are connected to the vertical global routing lines
viaasmaller switch matrix located at the intersection of the global horizontal and vertical
routing lines. These global routing lines make up the second routing layer, which also
connectsto thel/O pins. Level 11/0 pins, those that require only a single switch to connect
to a CAB component terminal, are connected to select vertical global routing lines. Level
21/0 pins, which require two switches to reach CAB component terminals, are connected

to select horizontal global routing lines.

I/0

I/0

1/0 1/0

Figure 5.2. The two-dimensional CAB array, RASP 2.x FPAA architecture.



A B C D E F G H

1 0 0 0 0 0 0 0 0
252 216 180 144 108 72 36 0
5 | 56 56 56 56 56 56 56 56
252 216 180 144 108 72 36 0
3 98 98 98 98 98 98 98 98
252 216 180 144 108 72 36 0
4 140 140 140 140 140 140 140 140
252 216 180 144 108 72 36 0
5 | 182 182 182 182 182 182 182 182
252 216 180 144 108 72 36 0
6 224 224 224 224 224 224 224 224
252 216 180 144 108 72 36 0
7 266 266 266 266 266 266 266 266
252 216 180 144 108 72 36 0

Figure 5.3. The RASP 2.5 CAB array with row and column addressing offsets.

A B C D E F G H
1 0 0 0 0 0 0 0 0
252 216 180 144 108 72 36 0

5 | 26 56 56 56 56 56 56 56
252 216 180 144 108 72 36 0

98 98 98 98 98 98 98 98

3 252 216 180 144 108 72 36 0
4 | 140 140 140 140 140 140 140 140
252 216 180 144 108 72 36 0
5 | 182 182 182 182 182 182 182 182
252 216 180 144 108 72 36 0
6 | 224 224 224 224 224 224 224 224
252 216 180 144 108 72 36 0
7 | 266 266 266 266 266 266 266 266
252 216 180 144 108 72 36 0
g | 308 308 308 308 308 308 308 308

252 216 180 144 108 72 36 0

g | 330 350 350 350 350 350 350 350
252 216 180 144 108 72 36 0

Figure 5.4. The RASP 2.7 CAB array with row and column addressing offsets.
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The RASP 2.x FPAASs feature multiple CAB types, since some components are used
less often than others for typical circuits. The VMM CAB isthe same asin Figure 4.4, and
the general purpose CAB contains all of the componentsin the VMM CAB except for the
vector-matrix multiplier. For both the RASP 2.5 and 2.7, the top and bottom rows of CABs
consist of VMM CABSs, while the remaining CABs are general purpose. As depicted in
Figure 5.3, the RASP 2.5 hasa 7 x 8 array of CABs with the VMM CABs highlighted by
agrey background. The RASP 2.7 contains a9 x 8 array of CABSs, as seen in Figure 5.4.

Each floating gate transistor within the FPAA is addressed using a global addressing
scheme, which gives each transistor a unique row and column address. For routing pur-
poses, it is often useful to refer the floating gate transistors within a local switch matrix to
the CAB to which it is attached. For this purpose, each CAB within the array is given the
address of thefirst floating gate transistor contained within the CAB, as seenin Figures 5.3
and 5.4. Using this CAB address, the floating gate transistors are given offset addresses
based upon the routing lines, as seen in Figure 5.5.

With proper CAD tools, routing would be performed by software based upon some
description of the hardware, whether schematics or HDL. However, the tools for reconfig-
urable and programmable hardware are still in early development, so much of the routing
has been performed manually. Figure 5.5 depicts a condensed version of the RASP 2.x
switch plot diagram, similar to fuse plots used in the early days of programmable digital
devices. Connections between routing lines are graphically illustrated by drawing bubbles
over the intersections, similar to that seen earlier in Figure 4.6b. The switch locations are
then determined by adding the CAB address to the routing line offsets. For example, a
simple bufter circuit has been routed using CAB A2 in Figure 5.5. To connect an I/O pin to
the positive OTA terminal, switch (56 + 12, 252 + 23) is selected to be turned “on” during
programming. The CAB offset (56, 252) was added to the switch’srelative position within
the CAB, (12, 23). Similarly, the second 1/O pin is connected to the OTA’s negative and
output terminals via switches (56 + 13, 252 + 22) and (56 + 14, 252 + 22).
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Figure 5.5. Switch plot diagram used to map circuits to FPAA CABs. For clarity, only selected CAB

components are shown.
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5.2 Characterization

As was the case with the first generation floating gate FPAA, testing began by character-
izing the floating gate transistors in this process. Switch programming was achieved by
utilizing the methods described in Chapter 2. A modified version of the algorithm de-
scribed in [28] was used to characterize and program biases. During the characterization
and programming steps, the coupling voltage was also modulated in an attempt to increase
injection efficiency by biasing the floating gate pFET to a specific point during the drain
pulse phase. Although thiswas marginally successful, it isnot clear that this method is bet-
ter than that described in [28]. Injection efficiency was increased, but accuracy decreased,
most likely because of the additional approximation made while biasing the coupling volt-
age. A better solution would be to use gate modulation during initial pulses to quickly
program the pFET close to the desired value. Then the programming scheme of [28] could
be used to accurately tweak the pFET to the exact value. However, this significantly com-
plicates the circuitry required to implement on-chip programming and may prove more
difficult than beneficial.

Besides the floating gate transistors, the drawn CAB capacitors and parasitic routing
capacitances were also characterized. Figure 5.6a depicts the circuit used to accomplish
this task. OTA 2 in combination with the drawn and parasitic capacitances form a Gy-C
element, which has a time constant proportional to the load capacitance. OTA 1 is used
simply as a buffer to isolate the global routing capacitance from OTA 2. The black bubbles
indicate the initial connections made, and the grey bubbles represent incremental connec-
tions made to observe the various capacitive load conditions. OTA 2 was biased with a
small sub-threshold current, and OTA 1 was biased with a significantly larger current such
that it would not affect the time constant of OTA 2.

Select step responses for this circuit are shown in Figure 5.6b to illustrate the effect
of adding additional routing and drawn capacitance to the output of OTA 2. From these

step responses and others, the individual capacitances were extracted, as summarized in
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Figure 5.6. Characterization of drawn capacitors and parasitic routing capacitance.
(a) Circuit used to characterize capacitance.
(b) Step response data for various configurations. DC levels were shifted for clarity.

Table 5.1. From the measured routing capacitance values, the parasitic capacitance contri-

bution of a single switch transistor was also estimated.

Table 5.1. Extracted Parasitic and Drawn Capacitances.

Global line 640 fF
Drawn Capacitor | 130 fF
Local Line 75 fF

Closed Switch 10fF
Open Switch 25fF

5.3 Synthesized Circuits and Results

After the various characterization procedures were completed, many of the same circuits
synthesized during the RASP 1.x testing were also analyzed on the RASP 2.x FPAAS, such
as the follower circuit. However, additional capabilities were also explored when desired

circuit elements were not available within the CABs. Capacitively coupled circuits are
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often desirable for linear voltage operations. Unfortunately, none of these devices werein-
cluded within the CAB, but they can be synthesi zed with some success. Another interesting
area involves computational uses for switch fabric transistors. In most reconfigurable de-
vices, the routing switches are mostly wasted space as far as signal processing. However,
the floating gate switch provides a unique opportunity to utilize these transistors within

circuit topologies, as will be discussed in the following sections.

5.3.1 Follower, Low-Pass Filter
The low-pass follower circuit design was migrated from the RASP 1.5 to the RASP 2.7
and synthesized in the same manner as depicted in Figure 4.6b. Instead of using the drawn
capacitor, theload capacitance was dominated by the parasitic routing capacitance. Inthese
large-scale device, the routing capacitance was significantly larger than in the RASP 1.x
case, as would be expected. However, the drawn capacitor in the RASP 2.x devices is
significantly smaller than the parasitic capacitance of the global routing lines. Figure 5.7
shows the results of using this parasitic capacitance of a single global routing line as the
load capacitor of the Gy-C low-pass filter.

The corner frequency was programmed by adjusting the OTA transconductance accord-

ing to (4.1). For sub-threshold bias currents, the transconductance is defined by (5.1).

Klpias
Gy = 51
w = 51)

Substituting (5.1) into (4.1) yields a proportional relationship between the programmed
OTA bias current and the 3 dB corner frequency, (5.2).

Klpias
f = 2
3B 52C U- (5.2

The corner frequency was extracted for each bias current in Figure 5.7 and plotted against
the programmed bias current, as seen in Figure 5.8. A linear fit isalso plotted in Figure 5.8

to show the conformanceto (5.2).
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Figure 5.7. Low-pass follower data from the RASP 2.7.
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Figure 5.8. Corner frequency relationship to sub-threshold OTA bias currents.
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5.3.2 Capacitively Coupled Summation

Some of the new systemsintended for the RASP 2.x FPAASs required circuits and compo-
nents that were not explicitly present in the CABS, so equivalent circuits were synthesized
from the available components. One example is the summation block illustrated in Fig-
ure 5.9. Voltage summationis afairly trivial task with resistors and operational amplifiers,
but resistors are not commonly fabricated in 1Cs due to the large area requirements and
variation between identically drawn resistors. However, capacitively coupled circuits, such
asthat depicted in Figure 5.9, can aso perform this task.

Each input of this circuit is capacitively coupled to the negative terminal of the OTA.
Another capacitor provides feedback while the pFET across this capacitor establishes the
DC operating point of the output. If this was not a reconfigurable implementation of the
circuit, the negativeterminal of the OTA would be floating. The charge on thisfloating node
would then need to be programmed in order to set the DC point of the circuit. An aternate
topology uses a high resistance between a reference voltage and the pseudo floating node
to set the DC point. However, a pFET, like the one in Figure 5.9, weakly biased in the
sub-threshold region allows a leakage path from the output back to the negative terminal.
This also creates a pseudo floating node and allows the OTA to set its own DC point to the

reference voltage applied to the positive terminal of the OTA.

1

in1

out

in2

Vref y

Figure 5.9. A capacitively coupled summation circuit using a pFET leakage resistance.

Y
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Figure 5.10. Summation circuit ideal and measured results.

(a) Ideal inverting summation with normalized amplitudes.
(b) Measured data from audio card inputs and circuit output.

To test the circuit, two sinusoids of frequencies 1 kHz and 2 kHz were generated using
MATLAB and played over the PC’s |eft and right audio channels. These signals were used
as the input to the summation circuit and the output was captured using an oscilloscope.
Figure 5.10 depicts the theoretical and measured responses of the summation circuit. The
output is clearly the inverted summation of the two input signals. If desired, the original
signal polarity could be recovered by simply using a single input version of this same
circuit cascaded to the output. A frequency response of the circuit confirms the expected
high-pass behavior, with the corner frequency determined by the size of the capacitors and
the conductivity of the leakage pFET. For this circuit, high-pass corner frequencies below
100 Hz were observed, which is adequate for audio spectrum signals.

An interesting modification can be made to the circuit to reduce the component count
and eliminate the /O pin required for the leakage pFET’s bias voltage. Instead of using
one of the CAB’s pFETs as the leakage path, switch transistors can be used, as seen in
Figure5.11. Since these are floating gate transistors, the conductivity of these switches can

be adjusted to control the amount of leakage and therefore the high-pass corner frequency.
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Figure 5.11. Summation circuit using the switch fabric as a resistance.

5.3.3 Capacitively Coupled Difference

The subtraction of two signals could also have been done with the inverting summation
circuit of Figure 5.11. All of the positive terms would be summed and inverted using the
structure and then fed into a second circuit cascaded to the output of thefirst. By attaching
the negative signals to the second summeation amplifier, the output would be the difference
of the signals in the correct polarity. However, the circuit of Figure 5.12 can perform
the same task in a more compact form. The form of this amplifier is very similar to the
summation amplifier except that signals are now coupled into the positive terminal of the
OTA aswell. The positive terminal is also a pseudo floating node, which is set by another
switch fabric leakage resistor to a reference voltage.

An interesting issue arose when examining the frequency response of this circuit, as
seen in Figure 5.13. Animbalance in the capacitances at the pseudo floating nodes can be
seen asagain error for the individual inputs. In this case, the positive input, Figure 5.13b,
has a dlightly higher gain than that of the negative input, Figure 5.13a. By tweaking the
routing a bit, the parasitic capacitance contribution from the routing can be used to help

bal ance these nodes using the capacitive characterization data discussed earlier.
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Figure 5.13. Frequency response of the capacitive difference amplifier.

(a) Negative input.
(b) Positive input.
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5.3.4 Programmable Switch Fabric Current Source

Although no current sources were explicitly included as CAB components, the occasional
need for them did arise. The transistors included in each CAB could easily serve as a
current source, but this requires several 1/0O pins for each current value desired. However,
another solution can be found within the routing fabric. Figure 5.14a depicts the routing
configuration used to generate a current source. The only external signal required isV pp,
which can be shared across any number of current sources.

The drain of this device was swept to determine how good a current source the switch
fabric can provide. For the first sweep, M; was programmed to the desired current, and
M, was programmed as an “on” switch. M, was then programmed to a bias level dlightly
higher than that of M in order to act as a cascode for M;. This increases the output
resistance of the current source, thereby making it more ideal. Figure 5.14b shows the

results of these sweeps. When M, was programmed as an “on” switch, the current flowing

DD 10 F B

(A)

0
o
O
VD

ref

() (b)
Figure 5.14. Current source/reference built within switch fabric.

(a) Circuit schematic showing a pair of switch transistors.
(b) Sweep showing current source value as a function of drain voltage.
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through M, changed significantly with V. Cascoding the current source with another
switch dramatically reduce the current dependence upon V. Additional switches could be

added as extra cascode stages to further improve the current source at the cost of headroom.

5.3.5 Programmable Voltage Reference

In addition to current sources, voltage references can also be generated on-chip. Figure 5.15
shows one example of a voltage reference that uses a switch fabric current source to set
the output voltage via a diode connect nFET. This voltage is then buffered by an OTA
configured as a follower to isolate the reference circuit from any current loading.

For characterization purposes, the switch fabric current source was replaced by a pFET
in order to quickly sweep the device over the operating range. Figure 5.16 shows the
transfer function between the bias voltage applied to the pFET and the measured output
voltage. The current flowing through the device was also measured during this sweep in
order to derive arelationship between the programmed switch fabric current source and the
output voltage, as shown in Figure 5.17. For verification, severa points along the curve

were programmed via the switch fabric current source and were also plotted.

Y
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Figure 5.15. Reference voltage constructed using switch fabric current source.
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Figure 5.16. Voltage reference characterization using a voltage biased pFET.
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Figure 5.17. Voltage reference output set by a switch fabric current source.
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5.3.6 Envelope Detector

Another interesting circuit is the synthesized minimum envelope detector of Figure 5.18.
The minimum detector included within the CABs was functional, but somewhat difficult
to use as a result of a design issue. The synthesized circuit was a bit more flexible and
significantly easier to bias. The design isfairly ssmple, as seen in Figure 5.18a, but it does
require components from two CABs as drawn. However, the second pFET transistor can
be replaced with a switch fabric current source, as seen in Figure 5.18b, which reduces the
circuit requirements to asingle CAB.

The time constant programmability is demonstrated in Figure 5.19. The input signal is
presented as a dotted line, while the output responses are given as thicker solid lines. By
adjusting the bias voltage or programming a different switch fabric current, the slope of
the rising edge can be significantly altered. Figure 5.20 shows the output response of the
envelope detector to frequencies of 100, 200, 400, and 800 Hz. Again, the circuit input
signals are given as dotted lines, while the output responses are thicker solid lines. As seen
in Figure 5.20, the detector tracks the falling signals and slowly rises at the programmed
rate on rising signals. By adjusting the current source, the circuit can be tuned for the

desired frequency band.

Vbias
— L :

@ (b)
Figure 5.18. Synthesized envelope detector circuit.

(a) Minimum detector using an OTA, two pFETSs, and a capacitor.
(b) Minimum detector circuit using switch fabric as a current source.
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Figure 5.19. Programming the synthesized envelope detector’s time constant.
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Figure 5.20. Measured minimum detector’s response to various frequencies.
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5.3.7 Band-Pass Resonator

A multiple CAB band-pass circuit was a so synthesized using a resonator topology, as seen
in Figure 5.21. The C* circuit topology discussed in Chapter 4 is generally preferable due
to its compact size. However, the biasing for this particular implementation can sometimes
be difficult when trying to obtain lower center frequencies, such as those needed for the
audio spectrum. Fortunately, thisis not a problem, since another band-pass topology can
be easily synthesized as shown in Figure 5.21. The transfer function of this circuit is given

by (5.3).

Vout(S) _ GwiCs (5.3)
Vin(S) C2&+ GMZ Cs+ G|\/|3 GM4 .
The gain of the circuit is then controlled by the ratio of Gy; and Gy, as seenin (5.4).
. C':‘Ml
Gan = — 54
G (5.4)
in \I
+
) - I
- 3
\' / VvV
ref ref = -
4 v —
+\| —] =
2 O o 4
\Y / e \'l'— ref
out —
&

Figure 5.21. Synthesized band-pass filter using an OTA resonator topology.

5.4 Observations and Conclusions

The many successfully synthesized circuits have demonstrated the viability of large-scale
FPAASs based upon floating gate transistors. These devices provide a new option for pro-

totyping and designing large anal og systems based upon reconfigurable and programmable
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Figure 5.22. Switch isolation variation across die.

technologies that have been previously unavailable. Not only were floating gate transistors
useful as programmable biases for the CAB components, but they proved useful as biases
and programmable conductances within the switch fabric. This feature eliminates the no-
tion of switches as “wasted” space and moves them closer to computational elements.

Although al of the results were encouraging, there were a few areas that could be
improved. One issue revolves around the programming of the switches. As discussed in
Chapter 2, the switch programming can be a bit tricky with the given architecture. The
point of isolation for the floating gate transistors can vary significantly across the die, as
seen in Figure 5.22. Transistors with a higher value have a higher isolation point, which
requires that they be programmed to a higher level in order to program them as an “on”
switch in parallel with other switches.

Part of thisisolation variation across the die could be caused by processing variation,
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which affects the properties of transistors as a gradient across the wafer. As seen in Fig-
ure 5.22, there is definitely a gradient from top to bottom present. However, there may
also be an architectural and layout component involved as well. The external drain line
connectsto apin in the upper left corner of the die. Thisalso correspondsto the area where
the switches have the lowest isolation points. Unfortunately, the on-chip routing lines for
the drain signal were made fairly thin, which results in an increased line resistance over
long distances. Thislineresistance appears directly in the programming path and increases
in value as the locations get further away from the upper left corner. The affect of adding
a series resistance to the drain has been studied [30] and is known to degrade the qual-
ity of floating gate switches. However, this does not account for the significant difference
between the first column and the rest.

Fabrication defects may also be responsible for some of the variance in Figure 5.22. A
couple of the CABs in the bottom center had extreme difficulties that make the switches
nearly unusable. This could be the result of wafer defects, which drastically affect the
transistor parameters. A fabrication defect could also be responsible for the significant
difference between the first column and the rest. The external drain line runs across the top
of the IC from left to right. Since this was routed as a fairly thin wire, it is conceivable
that the wire was overly etched in the section between the first and second columns, which
would significantly increase the resistance seen by the later columns, thereby decreasing
the effectiveness of the drain pulses.

Figure 5.23 shows a histogram of the isolation points observed across the die. The
values are fairly evenly distributed across a wide range of currents. Because of this, asin-
gle programming isolation point cannot be chosen, which makes programming multiple
switches along a column difficult. To account for this, the isolation point used for pro-
gramming “on” switches may need to reflect the gradients shown in Figure 5.22. Another
potential and perhaps more practical solution to this problem may be the indirectly pro-

grammed switches discussed in Chapter 2. Since these switches can be isolated using row
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Figure 5.23. Switch isolation breakpoint histogram.

selection circuitry, they do not require complicated or coordinated programming schemes,
such as those currently being used.

CAB component selection could also be improved. Quite often circuits synthesized in
the RASP 2.x I1Cs could have benefited from additional transistors or two terminal capaci-
torswithin the CABs. Several componentsincluded within the general purpose CABswere
not used very often, such as the min and max detectors and the C* band-pass elements. In-
stead of including these elements, more transistors and capacitors should be included on
future revisions. Another useful item would be a dynamic switch, such as a transmission
gate. Discrete time circuits would significantly benefit from such switches, since synthe-
sizing these elements utilizes a significant amount of CAB resources for afairly primitive
and useful device. Capacitor sizing could also be improved. Although it was convenient
to use the parasitic routing capacitance, it would be easier to design circuits based upon a

drawn dominant capacitor within the CABs.
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Signal routing quickly became a problem within the RASP 2.x FPAAS. The inclusion
of only local and global routing severely limited the utilization possible with these devices.
Most circuits tended to route from one CAB to an adjacent CAB, which meant that the
global routing lines being used to connect these two CABs were being mostly wasted. A
more efficient routing scheme would also include nearest neighbor routing, which should
significantly improve the routing density as well as the component utilization across the

IC.
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CHAPTER 6
HIGH PERFORMANCE FPAA

Since the maximum bandwidth of a system degrades with the number of switchesin
the signal path, it is desirable to reduce or somehow eliminate these switches in high-
performance applications. Many approaches have been suggested, such as the digitally
controlled Gy, cell architecture described in [9] or the metal-to-metal antifuses [7]. Most
of these devices use redundant components with controllable biases, such as Becker's Gy,
cells, to make connections to other components. This redundancy can lead to significant
space requirements and diminished utilization efficiency. However, floating gate transistors
may provide an advantage in such architectures by saving a significant amount of area for
programmability. The high-performance FPAA?, as seen in Figure 6.1, was developed to
investigate this possibility.

.
i
-
.
.
I
<
L
L 4

Figure 6.1. High-performance FPAA die photograph.

This work was partially funded by the JPL Self-Reconfigurable Electronics for Extreme Environments
(SREE) project.
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6.1 Architecture

The high-performance FPAA architecture, as seen in Figure 6.2, contains a number of
CABs with direct input and output connections to pins. This allows high bandwidth cir-
cuitsto have adegree of programmability and reconfigurability without any switchesin the
signal path. However, more complex computations may require multiple CABs. For this
reason, rows 1 through 4 in the high-performance FPAA have switched inputs. The output
of each CAB is routed back to a switch matrix connected to the inputs of the CABs. By
disconnecting the switch between a pin and one of the switched input CAB rows, the out-
put of any other CAB can then be routed to the input of this CAB through a single switch.
Although there is now a switch in the path, the bandwidth of this signal is still fairly high
since it is only a single switch, as opposed to the switch pairs required in the previous

FPAA architectures.

switch matrix

T oy G
],
@ﬁjﬁh# — ..
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Figure 6.2. High-performance FPAA architecture.
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The switches on this IC, represented by squares inside the switch matrix block of Fig-
ure 6.2, were composed of transmission gates controlled by a shift register. This was done
to provide a very fast way to switch between several pre-programmed transfer functions.
Floating gate transistor switches would also work in this situation, except that the program-
ming time would have been slower than desired. As the programming circuitry moves on-
chip, the programming time should dramatically decrease and make floating gate switches
amore viable option for high-speed dynamic reconfigurability.

The CAB of this FPAA was chosen to contain a single biquad circuit, as depicted in
Figure 6.3. This particular biquad configuration allows any two-pole, two-zero system to
be synthesized simply by controlling the size of the capacitors and the transconductance of

each OTA in the biquad. The transfer functionis given by (6.1).

Vou(9) _ Cx Ct &* + Gyz Cx S+ Gw1 Gwa
Vin(S) Cx (CL + Cf) £+ GM5 Cx S+ GM3 GM4

(6.1)

The transconductances, Gy, correspond to OTA X. As was the case with the OTAs in

the general purpose CABSs, floating gate transistors are used to set the bias current in the
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Figure 6.3. Biquad circuit topology used for the high-performance FPAA CAB.
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OTAs, thereby determining the transconductance. Although the OTA transconductancesare
the primary programmable parameters in this design, the capacitors were also made to be
selectable, as seen in Figure 6.4a, to extend the possible range of operation. The fabricated
|C contains the three capacitorsillustrated in Figure 6.4aand is digitally selectable using a
shift register. In this manner, any combination of these capacitors can be selected. If none
are selected, the dominant capacitance will be parasitic.

Each OTA in the biquad is actually aparallel combination of various OTA architectures
each with its own programmable floating gate bias, as seen in Figure 6.4b. Since each
OTA design is independently biased, individual OTAs within the block can be shut down
by simply depriving them of bias current. This provides another degree of reconfigurability
by allowing the user to select the OTA with specifications appropriate for the application.
The user can even mix the output responses from the different OTA designs within a block

by programming their respective biases.

out

(@) (b)

Figure 6.4. Reconfigurability in the high-performance FPAA biquad.
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6.2 Low-Pass Filter Implementation and Results

A low-pass filter was synthesized using a single biquad, as shown in Figure 6.5. This
configuration is achieved by programming the biases of OTAs 1, 3, and 4 aslow as possible

and unselecting capacitors C, and Cs. Thisreduces (6.1) to (6.2).

Vou(s) Gz

= 2
Vin(9) sCL + Gus (62
The gain of thiscircuit it set by the ratio of the transconductances, as seenin (6.3).
. Gm2
Gain = — 6.3
G (6.3)
The time constant is then given by (6.4).
CL
T = — 6.4
G (6.4)

Freguency response data was taken for various values of C_ as seen in Figure 6.6.
The biases of OTA 2 and OTA 5 were programmed to the same level, which should have
resulted inagain of 1 given (6.3). However, a slight mismatch between the diode connected
NFETSs used to convert the programmed floating gate pFET currents into bias voltages and
the nFETs within the OTASs that set the tail current. This mismatch would multiply the

programmed bias current by the ratio of the fabricated device geometries, W/L. Asseenin
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Figure 6.5. Low-pass filter synthesized using the biquad CAB.
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the data of Figure 6.6, G\, seems to be about twice the magnitude of Gys, which resultsin
again of approximately 3 dB. Most likely the current mirrors were mismatched such that
Gwms was lower than programmed, and Gy, was higher than programmed giving the net
factor of 2 difference. Programming error could also have contributed a small amount of
thisgain error.

Theresultsin Figure 6.6 also deviate from theideal transfer function, (6.2), inthat they
exhibit aresonance peak at the corner frequency. Thefirst-order circuit in Figure 6.5 should
have arelatively flat passband with no peak, but the biquad synthesizes a pseudo first-order
circuit by canceling some of the parameters in (6.1). This peak is most likely a result
of the various other biquad parameters not being equal to precisely zero. For instance, the
capacitor C, isassumed to be O, but the parasitic capacitance seen at that node in the biquad

circuit will contribute to the output response.
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Figure 6.6. Biquad synthesized low-pass filter frequency responses for several load capacitances.

(a) Drawn load capacitance = 0 pF
(b) Drawn load capacitance = 1 pF
(c) Drawn load capacitance = 2 pF
(d) Drawn load capacitance = 4 pF
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CHAPTER 7
LARGE-SCALE FPAAS, THE NEXT GENERATION

Thethird-generation RASP FPAAS, RASP 3.x, combine aspects of the general purpose
RASP 2.x line with the higher bandwidths possible in the high-performance FPAA. These
devices retain much of the generality and flexibility of the RASP 2.x FPAASs by including
similar general purpose CABs. Specialized computational blocks have been added at key
points in the array to provide higher functionality and bandwidth. The RASP 3.0, as seen
in Figure 7.1, is the first IC of this class and was fabricated on a 4.5 mm x 8 mm die in
a .35 um process available through MOSIS. The specialized blocks within the RASP 3.0

were designed for audio and other similar signal processing algorithms.
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Figure 7.1. RASP 3.0 die photograph.
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7.1 Architecture

The RASP 3.0 design began by examining common audio signal processing systems such
as equalizers, feature extraction front-ends, and hearing aids. Most of these and other algo-
rithms shared acommon set of operations, asillustrated in Figure 7.2. Thefirst operationis
typically a frequency decomposition, which is commonly performed by an FFT in a DSP.
The frequency decomposition step can be viewed as a filter bank operation, which is de-
picted as a parallel set of band-pass filters in Figure 7.2. The output of each filter bank
element isthen passed through a series of transforms such as envel ope detectors, expansive
or contractive power laws, and signal-by-signal multipliers. Some algorithms also include
a measure of interaction between these signal bands, which is not depicted in Figure 7.2.
Typcally, the end result of each column is then recombined by some weighted summeation

to generate one or more outputs.

Filter Bank
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Figure 7.2. Common algorithm steps in audio signal processing.



Considering Figure 7.2, the RASP 3.0 was designed specifically for frequency decom-

position and channel based processing. Each band, or channel, in Figure 7.2 appeared to

be mostly independent of the surrounding channels. The structure is somewhat analogous

to the bit slice concept in digital processing. Since the architecture for a single channel, or

bit in the digital equivalent, is identical to the architecture of any other channel, a single

processing slice can be designed, laid out, and tiled to produce a processor of arbitrary

channel length, or register length in the digital case. Utilizing this concept, the core of the

RASP 3.0iscomprised of sixteen fully differential channel slices, asdepicted in Figure 7.3.

Figure 7.3. The RASP 3.0 FPAA architecture.
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Figure 7.4. Indirectly programmed differential switch used in the RASP 3.0.

Each channel dlice contains several general purpose CABs and special purpose func-
tional blocks. The signal flow starts at the top of the I C and flows down along the columns.
An improved switch fabric interconnects the various CABs and specialized blocks. Since
the components and therefore the routing within this FPAA were differential, an interest-
ing architectural issue arose. The switches used within the previous generations were all
directly programmed, but an indirectly programmed switch would alow both positive and
negative routing to be controlled by a single floating node, as depicted in Figure 7.4. This
would save considerable programming time by simplifying the programming to a single
PFET instead of two. To improve switch isolation and observability, arow selection switch
was added to the programmer pFET.

The routing network of the RASP 3.0 has also been updated to reflect |essons learned
while working with the RASP 2.x line of FPAASs. Instead of relying upon global routing
for CAB-to-CAB connections, the RASP 3.0 contains local nearest neighbor routing, as
seen in Figure 7.3. Most signals routed on the RASP 2.x FPAAS were not broadcast to
multiple destinations across the chip. Instead, many signals simply required point-to-point

connections with an adjacent CAB. On the RASP 2.x, signals such as these would have to
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Figure 7.5. Differential biquad circuit topology.

be routed along global vertical and horizontal lines, which were very limited in number.
Very quickly the global routing lines would become completely utilized and limit imple-
mentable system size. However, local routing lines that connect adjacent blocks allow for
more routing lines in the same amount of space as before. Local horizontal routing lines
also enable intermixing between adjacent channels.

This biquad is a two-pole, two-zero topology similar to the high-performance FPAA's
biquad, except that it is fully differential [40], as seen in Figure 7.5. The transfer function
of thiscircuit isgiven by (7.1).

Vou(s)  as’+bs+c
Vin(9 &+ @S+ w3 (D
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The various parameters of (7.1) are given by (7.2) through (7.6).

C,

a = =G (7.2)
b = CYGFC (7.3)
c = GMC;“’ (7.4)
o - e

Gm1G
Wn = A /ﬁ (7.6)
The biquad terminals, Vi, and V, are routed to rows of the local switch matrix. Vy is
also routed to arow to provide access to individual OTAs. As was the case with the high-
performance FPAA, the bias currents of all other OTAswould be shut down.

In addition to the biquad circuit, the RASP 3.0 CAB is aso composed of transistors
and capacitors, which come in pairs to accommodate the differential signals. In addition
to standard nFETs and pFETS, these CABs aso include floating gate pFETS. There are
also more capacitors in the RASP 3.0 CAB than there were in the RASP 2.x line. With the
successful implementation of numerous capacitively coupled circuitsin the RASP 2.x ICs,

it was clearly evident that more capacitors would be needed to implement large systems

based upon these circuits on future generations of FPAAS.

7.2 The Channel Slice

Asseenin Figure 7.3, the channel signal processing begins with a common input routed on
adedicated lineto each channel, which contains asingle element of the programmablefilter
bank (PFB) [41]. This element band-pass filters the input signal, using a C* second-order
section similar to those described in Chapter 4, into the specific frequency range for the
particular channel slice. The signal is then routed out to alocal or global vertical routing
line or passed through a min/max detector. Flowing down the channel stack, the signal

passes through or by the first general purpose CAB.
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Just below the PFB/CAB block sitsthe SSM/CAB block in the channel stack. A signal-
by-signal multiplier (SSM) is located here and provides a way to mix two signals. Below
thisblock residesthe nonlinear transform (NLT) circuit inthe NLT/CAB block. Thiscircuit
is composed of a specialized multiple-input transinear element (MITE) network [42—44]
which performs compressive or expansive power law transforms on the signal. The next
block in the stack, LCB/CAB, contains part of the linear combiner block. This capacitively
coupled structure allows the individual signals from each channel to be recombined into a
singleoutput signal. Thisisuseful for audio applicationsthat perform frequency dependent
transformations on the individual bands and recombines them as an output audio signal,
such as an equalizer.

Thefinal block in the stack is the vector-matrix multiplier slice. The full vector-matrix
multiplier is composed of the individual slices from each channel. The outputs of these
dlices are tied to dedicated global lines that are shared by each dlice. Since the output
of each individual multiplier is a current, summation is achieved through simple KCL. A
current-to-voltage converter restores the individual signalsto a voltage that is transmittable

throughout the FPAA.
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CHAPTER 8
THE FPAA IN EDUCATION

FPAAS could significantly impact analog design and embedded systems education. A
common part of analog design educational |aboratory exercises is the selection and wiring
of discrete components, which is rather similar to the way digital design used to be taught
using discrete TTL or CMOS ICs. However, PLDs and FPGAs were eventually introduced
to the class |aboratory as another design option. They provided greater design freedom and
quicker circuit implementation, which is something FPAAs could also do for analog. At the
IC design level, FPAAS could be used as functional prototyping or development platforms,
just as FPGASs have done. Instead of fabricating and testing individual analog circuits on
individual analog ICs, one mass produced FPAA could be used to synthesize circuitsfor an
unlimited number of laboratory exercises.

Although the effect on analog design seems impressive, the impact on embedded sys-
tems could be even greater. Embedded systems generally involve the integration of various
sensors, displays, and mechanical systemsusing an FPGA, DSP, or microcontroller because
of the design flexibility they afford. As such, many analog sensors require data converters
to produce a signal that can be processed by the digital device. These data converters can
consume a significant amount of power, whichisaconcern for portable embedded systems
running on batteries. However, the incorporation of an FPAA would provide another op-
tion, analog signal processing. An FPAA would not eliminate the need for a programmable
digital device in al of these systems, but it could be used to enhance the capabilities of
such devices. Systems with both analog inputs and outputs could potentially be synthe-
sized completely within the FPAA. However, systems with digital outputs, such isthe case
with digital displays and wireless transmitters, could use the FPAA to perform analog pre-
processing on the input signal before digitizing it. By incorporating these devices into

embedded systems laboratory exercises, students would be able to explore these analog
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possibilitiesin addition to the digital integration aready being used.

8.1 First-Generation Educational FPAA Board

The first attempt at introducing a large-scale FPAA into the class environment was using
the conceptual setup depicted in Figure 8.1. The class was a senior level analog IC design
course, and this laboratory bench configuration is fairly typical for analog IC testing, ex-
cept for the FPGA and FPAA boards. MATLAB or a similar data manipulation software
package is commonly used to control bench test equipment or PC instrumentation cards,
which are used to generate input signals for the device-under-test (DUT) and to observe
the outputs. The simplest way to incorporate an FPAA into this existing laboratory envi-
ronment was as the DUT. A board was thus designed to handle some of the programming
and basic 1/O interfacing for the RASP 2.5 FPAA. A commercial FPGA board was also
used to precisely control the analog programming circuitry timing on the FPAA board and
to provide local digital signalsto the FPAA IC.

PC
T ethernet, GPIB, R5232
: : . . Lock-in
! : Oscilloscope Picoammeter Amplifier
' MATLAB !
: | ethemet [ FPGA FPAA | Power
S Board Board Supply
' ADC/ DAC |
v Card |

Figure 8.1. Educational laboratory setup using the RASP 2.5 FPAA.
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Figure 8.2. Laboratory setup used to prototype and design analog circuits on an FPAA.

Figure 8.2 depicts the FPAA laboratory setup used for various workshops and a class
at Georgia Tech. The FPGA board can be seen at the top left of Figure 8.2. A synthesized
Nios processor core was used to interface with the FPAA boards and the picoammeter,
located on top of the power supply, as seen on the right side of Figure 8.2. Communication
between MATLAB running on the PC and the Nios processor was achieved using TCP/IP
over adirect ethernet cable between the PC and FPGA board. The FPAA board is located
in the lower left of Figure 8.2 and is connected to the FPGA board viaaribbon cable.

In addition to bench test equipment, a PC DAC/ADC card was used for test signal
generation and measurement. The interface board is seen at the top of thefigure towardsthe
center and connectsto the PC viaalarge ribbon cable. During initial experimentsinvolving
students, several RASP 2.5 | Cs were damaged because they lacked disconnection circuitry
for programming. Test signals applied to the I/O pins connected directly to the array drain

lines, which interfered with programming. In response to this, the small wire-wrap board
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prog(1l) ;
erase;

select (56 + 11, 252 + 3);
recover;
program(le-9);

sprogram col (56 + [13 14], 252 + 23);
sprogram col (56 + [12], 252 + 5);

prog(0)

Figure 8.3. RASP 2.5 FPAA board interface commands.

seen at the bottom of Figure 8.2 was added as a buffer between the FPAA board and the
DAC/ADC interface board. This slowed down the rate at which FPAA |Cs were damaged,
but did not completely resolve theissue, since the students still had to make the connections
correctly between the FPAA and interface boards.

To control the FPAA board and program the RASP 2.5 IC, MATLAB commands, such
asthat seen in Figure 8.3, are used. This code example programs the follower circuit from
Figure 4.6. The user is given ahigher level of commands which erase, select, and program
the individual floating gate biases and switches. These high level commands call low level
routines in MATLAB and on the Nios processor. This abstracts the details of the floating
gate transistor programming such that the user can concentrate on the circuit and system
levels.

An early version of the setup depicted in Figure 8.2 was tested at the 2005 Telluride
Workshop on Neuromorphic Engineering located in Telluride, Colorado. Participants came
from diverse backgroundsincluding engineering, biology, and computational neuroscience.
Most of these individuals had not designed or tested an analog IC before, so they were
ideal candidates for learning this new approach to analog design. Within three weeks this
group of individuals had completed many of the lab exercises characterizing the various

CAB components. Using the fuse-plot sheets depicted in Figure 5.5, these individuals
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routed circuits given to them in schematic form and tested them using the laboratory bench
equipment. By the third week, several of the participants had begun to compile their own
circuits from the characterized CAB components in an attempt to integrate these FPAAS
within their own research.

With the success at the Telluride workshop, the FPAA was then integrated into a senior
level analog IC design class. Instead of analyzing discrete components and circuits, the
class was given FPAA synthesized circuits to characterize for laboratory exercises, like
the transistor characterization circuit in Figure 8.4. Example data sweeps of the pFET are
depicted in Figure 8.5. Using the synthesized pFET, students are able to extract the same
parameters as they could with a custom IC or discrete component. Figure 8.5a shows a
drain sweep with the pFET biased in the sub-threshold region. The thermal voltage, U+,

can be extracted from the sub-threshold slope of the source sweep, as seen in Figure 8.5b.
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Figure 8.4. Transistor characterization using a pFET within an FPAA CAB.
(a) Circuit used to measure and characterize the pFET.
(b) Routing used to connect the pFET within the RASP FPAA.
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From gate sweepsin Figures 8.5¢ and 8.5d, the sub-threshold « and the above-threshold V
can be calculated. In asimilar manner, many basic circuit components were characterized.

One interesting effect observed in Figure 8.5d is the switch resistance current limiting
the gate sweep. At low gate voltages, those below .5 V in Figure 8.5d, the switches clamp
the current that would normally flow through the pFET being tested. Since most circuitsin
these FPAAs were designed to operate in the sub-threshold region or just above threshold,

this current limitation should not be a problem in the general case.
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Figure 8.5. Characterizing a pFET using the educational setup.
(a) Drain sweep
(b) Source sweep
(c) Gate sweep showing logarithmic sub-threshold region
(d) Gate sweep showing square root above-threshold region
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8.2 Second-Generation Educational FPAA Board

A second-generation FPAA board was designed around the RASP 2.7 IC to reduce the
dependence upon expensive laboratory bench equipment and PC instrumentation boards,
as seen in Figure 8.6. In the previous setup, current measurements for programming were
handled by a picoammeter residing on the test bench. On the new board, these current
measurements are made using a logarithmic amplifier IC and an ADC chip. Additional
DACs and an ADC were added to eliminate the need for the PC DAC/ADC cards. Audio
coupling circuitry was also added to aid in audio signal processing applications. As an
additional precaution, isolation circuitry was added to the 1/O pins of the FPAA to prevent
external signals from interfering with the programming signals and thereby damaging the
RASPIC.

For portability, the FPAA and FPGA boards were integrated within a box, as seen in
Figure 8.7. The FPGA board is located in the top left corner, and the FPAA board, located
in the center of the figure, connects directly to one of the FPGA board’s I/O headers. A
power supply board, located in the top right of Figure 8.7, was designed and fabricated

to minimize the number of connections required to operate this portable laboratory setup.

PC
T TTTTTY ethernet, GPIB,RS232
: ! Bench
: : Equipment
' MATLAB | - box
! : . ethernet :' FPGA : Power :
! : | Board L | Ssupply |
: | : FPAA : Audio,
X 1 1 — - - === 1= =
L ' Board | Sensors, etc

Figure 8.6. Educational laboratory setup using the RASP 2.7 FPAA.
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Figure 8.7. Portable FPAA laboratory in a box.

With this setup, most laboratory exercises can be performed with only an ethernet cable,
a power cable, and a PC running MATLAB. No external bench equipment is required for
programming or general testing, but some items, like lock-in amplifiers and spectrum ana-
lyzers, may still be used for measurements requiring higher accuracy or specia functions
than are available with the on-board instrumentation ICs.

The high level MATLAB commands were also updated for this new setup, as seen in
Figure 8.8. Instead of issuing individual programming commands, the user now only needs
to point the programming algorithm to a configuration file. As seen in Figure 8.8b, the
program file contains no MATLAB commands, only floating gate transistor |ocations and
bias currents, unless the transistor is being programmed as an “on” switch. Thisformat is
particularly useful when translating the fuse-plot drawings into global addresses for pro-
gramming. Further improvements to the programming interface have also been made by
collaborativeresearchers at Georgia Tech, who have devel oped routing toolsto map netlists
to the RASP architecture [45-47]. An open source schematic capture tool has even been
modified to support the RASP 2.7 functional blocks, as seen in Figure 8.9.

In the laboratory and workshop environments, many circuits have been synthesized
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>> program(’ follower’) ; % follower.prg
67 255 10e-9 % A2 OTA 1 bias

68 274 %$ A2 OTA 1 vp

69 275 $ A2 OTA 1 vn

70 275 $ A2 OTA 1 wvout
(@ (b)

Figure 8.8. RASP 2.7 FPAA board interface commands.
(a) MATLAB command window executing the *follower’ program.
(b) Contents of the *follower’ program file.

File Edit Text Options Window Dletliet 113, 21830k

Vdd
(1) 1maA
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Figure 8.9. Xcircuit schematic capture tool.
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Figure 8.10. Comparator circuit synthesized on the RASP 2.7.

(a) Circuit schematic.

(b) FPAA implementation showing “on” switches.
and measured using only the resources available on the portable FPAA laboratory setup.
Figure 8.10 shows the schematic and FPAA mappings used to compile a simple inverting
comparator structure. The reference terminal setsthe comparator trip point, which can also
be set by the switch fabric voltage reference of Figure 5.15 to save an I/O pin. For char-
acterization purposes, the reference voltage was set using one of the on-board DACs. The
input voltage was swept using another on-board DAC while the output was measured using
the on-board ADC, as seen in Figure 8.11. The follower circuit of Figure 4.6 was also
synthesized and measured. Figure 8.12a shows the result of sweeping the input and mea-
suring the output using the on-board DAC and ADC. From this transfer function, the gain
of this OTA topology was calculated, as seen in Figure 8.12b. These results demonstrate

that typical analog laboratory exercises can be performed using only the portable FPAA
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05 q -

Figure 8.11. Results from a simple comparator synthesized using the RASP 2.7 FPAA board.

8.3 Next-Generation Educational FPAA Board

The next-generation educational FPAA board is planned to integrate even more function-
ality onto a single board, as seen in Figure 8.13. The planned RASP 2.8 FPAA will have
integrated much of the programming circuitry currently on the RASP 2.7 board onto the
IC. Thiswill free up a significant portion of the board area and enable more instrumenta-
tion circuits to be integrated on-board. This board will also feature a much more power
efficient microcontroller with USB or ethernet support built directly into the chip. This
will dramatically reduce the power budget of the entire laboratory setup and should enable
the possibility of using battery power. Battery operation would significantly improve the
portability of the system, which could lead to in-class laboratory exercises using physical

hardware.
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Figure 8.12. Results from a follower synthesized on the RASP 2.7 IC.
(a) DC transfer function.
(b) Gain measured from the output of the DC sweep.
A logarithmic amplifier and ADC combination have been included for on-board current
measurement, as was the case for the RASP 2.7 board. However, this circuit would be

dedicated to testing circuits synthesized on the FPAA rather than floating gate transistor

programming, since the programming circuitry will beintegrated withinthe FPAA. A direct

PC : : E battery E
5 : 2, rean | iLogAmp,
' .| ethernet,USB : g S B it
: i < K =D e . DACs
: : ' S ! Prototyping '-------
1 . (@] ! ! 1
.+ Open ! LS Area ', ADCs
. Source ! S e el
. Software ! ! ' l/Ointerfaces | ! DDS
| : f
: E L Audio,
! Sensors, etc

Figure 8.13. Future educational laboratory setup using the planned RASP 2.8 FPAA.
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digital synthesis (DDS) chip will also be included along with another couple of ADCs on
this board in order to replace the bench lock-in amplifier for generating frequency/phase
data. Additional I/O interface circuits will aso be included, such as the audio circuitry
used on the RASP 2.7 board design. Unlike previous generations, this new board will
also feature a small prototyping area. This will allow the functionality of the board to be
expanded using |Cs and wires soldered directly to the board, which isacommon feature of

embedded systems devel opment boards.
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CHAPTER 9
FPAA DIRECTIONS

The FPAASs developed and discussed within this dissertation have demonstrated the
feasibility of large-scale reconfigurable and programmable analog devices. However, the
long-term goal for maximum flexibility and programmability is the mixed signal devel-
opment system depicted in Figure 1.2b. In a cooperative analog/digital signal processing
(CADSP) system such as this, analog and digital devices, such as sensors and displays, can
be integrated using asingle programmabl e device. Figure 9.1 showsthe road map that links
the FPAAs devel oped to date to the mixed signal 1C of the future.

The first-generation devices proved the viability of FPAAs based upon floating gate
transistors. These devices were fairly low in complexity and functionality, much like the

commercia devices currently available. However, these commercia 1Cs are significantly

Mixed Signal
Processing

.. RASP 3.0
Specialized
Architectures

HP FPAA

Large—.ScaIe RABP 28
Devices
RASP 2.0

Proof of Projected
D,

Concept Directions

Figure 9.1. Road map for the RASP FPAA and beyond.
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larger in die area than the RASP 1.x FPAAs. Scaling up the CAB array architecture led to
the second-generation RASP FPAA. As aresult of the analog component density provided
by floating gate transistors, this generation of large-scale FPAAs s capable of synthesizing
larger analog systems. Although this generation of FPAAS is a significant step toward
large-scale mixed signal reconfigurable systems, there are till afew issuesto resolve.

The RASP 2.8 FPAA isthe next revision of the second-generation RASP FPAA. This
IC will contain a number of improvements over the RASP 2.5 and 2.7. The number of
different CAB typeswill beincreased to better reflect component utilization observed while
working with systems on the RASP 2.7 IC. A general purpose CAB containing OTAS,
transistors, and capacitors will still comprise the majority of the FPAA. More specialized
CABs containing optimized circuits, such as signal-by-signal multipliers and vector-matrix
multipliers, will be distributed throughout the CAB array. The programming structures
currently found on the RASP 2.7 educational board will be integrated on the IC to improve
accuracy and speed. On-chip data converters allow direct interactions between the FPAA
and an FPGA or microcontroller. This will provide a mixed signal development system
integrated at the board level, which is another step closer to a mixed signal reconfigurable
IC.

The third-generation RASP FPAAS are just entering the testing phase and are distin-
guished from previous generations by the specialized hardware blocks included within the
CAB array. The inspiration for these ICs again came from digital parallels. In modern
FPGAs, itisfairly common for highly specialized hardware blocks, such as memory cells,
DSP functions, and microprocessors to be included on the same die connected to the inter-
connect network. Some FPGA s even include basic anal og blocks on the periphery of theC
for very simple analog preprocessing [48]. Using thisidea, specialized components, such
as the programmable filter bank and capacitively coupled linear combiner, have been in-
cluded in the RASP 3.0 for audio signal processing applications. Several future RASP 3.x

FPAAS for adaptive signal processing and neuron interconnection modeling are currently
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being planned.

The fourth-generation device will no longer be part of the RASP family of FPAAS.
Instead, this IC is planned to be the first mixed signal large-scale reconfigurable and pro-
grammable device based upon floating gate transistors. The reconfigurable analog/digital
signal processor (RADSP) line will contain all the features of alarge-scale FPAA coupled
via data converters to an integrated FPGA structure. The initial design will most likely be
two separate architectures, FPAA and FPGA, which will have their own 1/O lines. Future
revisions of the IC will investigate integrating the two devices within the same array ar-
chitecture, which should provide greater coupling between analog and digital as well as
more 1/O pin flexibility. The successful demonstration of this device will mark a significant
achievement in mixed signal processing hardware and could fundamentally alter the way

in which hardware design is approached.
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