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SUMMARY

This dissertation presents analog circuit analysis and design from a nonlinear

dynamics perspective.

An introduction to fundamental concepts of nonlinear dynamical systems the-

ory is given. The procedure of nondimensionalization is used in order to derive the

state-space representation of circuits. Geometric tools are used to analyze nonlinear

phenomena in circuits, and also to develop intuition about how to evoke certain de-

sired behavior in the circuits. To predict and quantify non-ideal behavior, bifurcation

analysis, stability analysis and perturbation methods are applied to the circuits. Ex-

perimental results from a reconfigurable analog integrated circuit chip are presented

to illustrate the nonlinear dynamical systems theory concepts.

Tools from nonlinear dynamical systems theory are used to develop a systematic

method for designing a particular class of integrated circuit sinusoidal oscillators.

This class of sinusoidal oscillators is power- and area-efficient, as it uses the inherent

nonlinearity of circuit components to limit the oscillators’ output signal amplitude.

The novel design method that is presented is based on nonlinear systems analysis,

which results in high-spectral purity oscillators. This design methodology is useful

for applications that require integrated sinusoidal oscillators that have oscillation

frequencies in the mid- to high- MHz range.

A second circuit design example is presented, namely a bandpass filter for front-

end auditory processing. The bandpass filter mimics the nonlinear gain compression

that the healthy cochlea performs on input sounds. The cochlea’s gain compression

is analyzed from a nonlinear dynamics perspective and the theoretical characteristics

of the dynamical system that would yield such behavior are identified. The appropri-

ate circuit for achieving the desired nonlinear characteristics are designed, and it is

incorporated into a bandpass filter. The resulting nonlinear bandpass filter performs

xi



the gain compression as desired, while minimizing the amount of harmonic distortion.

It is a practical component of an advanced auditory processor.

xii



CHAPTER 1

INTRODUCTION

The vision of making ubiquitous small, battery- or self-powered electronic sensors is

becoming more practical, thanks to advances in MEMS and integrated circuit technol-

ogy, as well as to improvements in wireless communication [1]. MEMS and integrated

circuit technology are yielding smaller and more sensitive sensors. Advanced wire-

less communication protocols are resulting in robust and self-healing communication

links among sensors and between sensors and remote processing units. Two areas

where the availability of small, reliable sensors are likely to make a strong impact are

environmental monitoring and health care.

Environmental sensor networks track and analyze images, temperature and other

environmental indicators. Other than augmenting geoscientific study, the purpose of

these sensor networks is to monitor and predict natural hazards as well as to monitor

climate change in otherwise inaccessible locations [2].

In the field of health care, implantable and wearable electronics perform health

monitoring, treatment and neural prosthetic functions. As a result, health care can

become decentralized yet affordable, thus giving patients a less-hindered lifestyle and

greater personal freedom [3].

One technical challenge of sensor applications, be they implanted in the human

body or deployed in a remote location, is that they must be energy efficient. Effective

strategies for energy efficiency involve reducing the amount of irrelevant data that is

converted, transmitted or processed.

Take for instance the sensor application depicted in Fig. 1. It is a block diagram

of the sensing and processing chain of a typical cochlear implant. At the front end,

a microphone senses over 90dB dynamic range of audio input. This analog signal

is digitized by a 16-bit analog-to-digital converter (ADC). The digital data are then



ADC DSP DAC

16-bit 5-bit

Figure 1. Processing chain of a typical cochlear implant. This audio signal is digitized
by a 16-bit analog-to-digital converter (ADC). The digital data are then transmitted to
a digital signal processor, which extracts and encodes pertinent information from the
data. The encoded information is transmitted as 5-bit electrical pulses to the patient’s
auditory nerve.

transmitted to a digital signal processor, which extracts and encodes pertinent infor-

mation from the data. The encoded information is transmitted as electrical pulses to

the patient’s auditory nerve, eliciting a “hearing” sensation.

With current designs, a cochlear implant would completely discharge a 100mAh

battery in about 20 hours. To improve the energy efficiency of the signal processing,

we must take a critical look at information flow in the cochlear implant. Notice that,

even though 16 bits of sound data are captured, only 5 bits of information eventually

make it to the patient’s auditory nerve. In general, every extra bit of resolution of

an ADC corresponds to a four-fold increase in the ADC’s power consumption [4].

As such, significant power savings will occur if, instead of converting raw and largely

redundant data from analog to digital, the ADC performed some feature extraction to

preclude the need for 16-bit precision. Other benefits of conducting such information-

refinement at the head of the processing chain are that irrelevant information is not

transmitted, and that the bit precision and processing requirements of the digital

signal processor can be relaxed. These benefits, too, lead to energy efficiency. The

idea of performing some form of intelligent “analog-to-information” conversion at the

front end is not applicable only to cochlear implants, but is beneficial in a wide variety

of other sensor applications [5].

Almost all forms of feature extraction or information refinement require some sort
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of nonlinear processing. Since we are interested in performing the feature extrac-

tion on real world — as opposed to digital — signals, the question arises of how to

implement nonlinear signal processing in analog integrated circuitry.

There are two possible implementation strategies. In one approach, the nonlinear

processing algorithm has a well-defined analytical representation. In this situation,

the task is to find an appropriate circuit implementation of a set of mathematical

equations. For instance, if the algorithm called for a log/anti-log operation, this could

be achieved by considering the base-emitter voltage of a bipolar junction transistor

(BJT) and its collector current. Such knowledge is widespread [6–8], and will not be

the focus of this dissertation.

The other approach to analog nonlinear signal processing involves a processing

function that needs to be implemented, but does not necessarily have a known an-

alytical representation. This sort of problem is often encountered when we try to

model or mimic signal processing functions that are found in nature. Instead of cre-

ating an empirically-based analytical representation that is then approximated by a

circuit, consider the following alternative approach. We can characterize the pro-

cessing function in nonlinear dynamical system terms. For example, does it have

a limit cycle? Does it display hysteresis, or multiple steady state behavior? Once

the essential dynamics have been identified, we can then create a circuit that also

displays these properties. How do we know which circuits would be appropriate for

exhibiting a particular kind of dynamics? The idea is to perceive and understand

circuits as dynamical systems themselves. To this end, this dissertation aims to in-

troduce fundamental concepts and tools of dynamical systems theory from an analog

IC perspective. For example, what sort of circuit would undergo a Hopf bifurcation?

What would be the implication of a Hopf bifurcation to the circuit’s performance and

behavior?
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1.1 Reconfigurable analog integrated circuits

To develop a thorough and intuitive appreciation of the nonlinear dynamics of analog

circuits, one has to study and experiment with a great number of them.

Computer tools for circuit simulation are one way to readily access a large variety

of circuits. Unfortunately, these computer tools are prone to the problems of numer-

ical integration, such as accumulation of round-off error and stiffness. Also, current

circuit simulation tools are mostly optimized for engineering linear systems; they are

unwieldy when the design involves deliberate use of system nonlinearities. Finally,

the models of integrated circuit devices that are used for simulation do not always

capture the full range of nonlinear behavior. For instance, the output impedance of

a MOS transistor is often poorly modelled, for the sake of fast convergence of the

simulation.

The shortcomings of computer simulation can be avoided by experimenting on

actual, physical integrated circuit chips. The expense and time involved in fabricating

an integrated circuit chip suggests that this approach would greatly limit the variety

of circuits that one might have access to. Fortunately, we have available to us a

reconfigurable analog chip that contains over 50, 000 circuit elements that can be

connected and rewired with each other to form a vast number of different circuits. This

reconfigurable chip allows the designer to flexibly explore nonlinear circuit phenomena

and to easily prototype systems with them. Much of the experimental data in this

dissertation was measured from such a reconfigurable chip.

1.1.1 Architecture of reconfigurable analog integrated circuit

The reconfigurable chip that was used for experimental data is a field programmable

analog array (FPAA) that is based on floating-gate technology [9]. It contains 32 con-

figurable analog blocks (CABs), which are connected via a three-level routing network.

The routing network is made from floating-gate transistors, which act as compact,

analog computational memory elements. Together with the CABs, the floating gates

4



CAB2 CAB2

CAB1 CAB1

CAB1 CAB1

Output Lines

G
lo

ba
l R

ou
tin

g

L
oc

al
 R

ou
tin

g

O
utput L

ines

G
lo

ba
l R

ou
tin

g
G

lo
ba

l R
ou

tin
g

G
lo

ba
l R

ou
tin

g
G

lo
ba

l R
ou

tin
g

G
lo

ba
l R

ou
tin

g

L
oc

al
 R

ou
tin

g

L
oc

al
 R

ou
tin

g

L
oc

al
 R

ou
tin

g

L
oc

al
 R

ou
tin

g

L
oc

al
 R

ou
tin

g

Figure 2. Field programmable analog array (FPAA). The FPAA consists of several con-
figurable analog blocks (CABS), each of which contains a number of analog circuits, and
a three-level routing network that allows the components of the CABs to be connected
to each other.

in the routing network provide over 50,000 programmable analog elements.

The FPAA contains two types of CABs. The components in the first type of

CAB include three operational transconductance amplifiers (OTAs), a voltage buffer,

three floating 500 fF capacitors, and n- and p-tpye MOS transistor arrays with two

common terminals for easily constructing source-follower or current-mirror topologies.

Each OTA is electronically tunable, via a floating-gate bias current generator. There

are two wide-linear-range, low-input-offset OTAs per CAB. The components in the

second type of the CAB include two wide-linear-range folded Gilbert multipliers, a

wide-linear-range OTA, and a programmable current mirror.

5



1.2 Teaching dynamics of integrated circuits

Based on the prevalent theory and design practice, most circuit design avoids nonlin-

earities as much as possible. The research presented in this dissertation challenges this

view and seeks to understand circuit nonlinearities rigorously and intuitively enough

to design with them. Thus, the results described in this dissertation were compiled

into a syllabus and taught as a senior-level Special Topics Course titled “Nonlinear

Circuit Dynamics” at the Georgia Institute of Technology in the Fall Semester of

2007.

1.3 Overview of dissertation

The organization of this dissertation is as follows. The work is separated into a first

half of theory and analysis and a second half of design procedure.

In the first half of the dissertation, general theory and analysis of homogeneous

and nonhomogeneous circuits will be discussed. For both types of systems, the discus-

sion will begin with simple first-order circuits and progress to second-order circuits.

These chapters will introduce canonical first-order circuits, as well as dynamical sys-

tems tools such as step response analysis, phase plane analysis, bifurcation and per-

turbation theory.

In the second half of the dissertation, two design projects will be described at

length, using tools that were introduced in the first half of the dissertation.

The first design project discusses the use of inherent circuit nonlinearity to build

integrated circuit low-distortion sinusoidal oscillators. The current literature that

concerns this problem will be discussed and the shortcomings of the approaches de-

scribed therein will be highlighted. I will then describe a systematic method for

designing a class of sinusoidal oscillators that addresses these shortcomings. The

dynamical systems tools that are featured in this design method are the Poincaré-

Bendixon theorem, phase plane analysis, and singular perturbation theory. The main

6



nonlinearity that is exploited is the sigmoidal transfer function of an OTA.

The second design project discusses a low-power nonlinear bandpass filter for use

in auditory prostheses. A brief description of the primary signal processing function

of hearing aids will be presented. The technical challenges faced by current hearing

aids will be mentioned as motivation for designing a novel bandpass filter. The design

of this bandpass filter relies on step response analysis, phase plane analysis, stability

analysis and perturbation theory. The main nonlinearity that is exploited is the

sinh-like transfer function of an output buffer.

A concluding chapter will summarize the contributions of the work that has been

presented in this dissertation.
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CHAPTER 2

HOMOGENEOUS SYSTEMS I: FIRST-ORDER
CIRCUITS

This chapter will introduce some simple tools for analyzing circuits as dynamical

systems. We will consider one-dimensional systems of the form

ẋ = f(x), (1)

where x represents some physical quantity like voltage or current, and f(x) is a

nonlinear function [10].

The circuits that will be described in this chapter constitute, in a sense, a set of

canonical first-order circuits. In this set is represented circuits that exhibit odd-order

nonlinearities and circuits that exhibit even-order nonlinearities. Odd-order nonlin-

earity refers to a function whose Taylor series expansion is such that its first non-

linear term is odd-ordered. For example, an operational transconductance amplifier-

capacitor circuit contains a tanh nonlinearity, while an output buffer contains a sinh

nonlinearity. The first non-zero, higher-order term in the Taylor series expansions

of either the tanh or the sinh functions is the cubic term. As such, an operational

transconductance amplifier-capacitor circuit and an output buffer exhibit odd-order

nonlinearity. A function whose first nonlinear term in its Taylor series expansion is

even-ordered is referred to as an even-order nonlinearity. The exponential — encoun-

tered in a source follower — and the quadratic — encountered in a current mirror —

functions are examples of even-order nonlinearities.

Another dichotomy that is represented in the set of circuits that will be described

is that of expansive versus compressive nonlinearities. We define an expansive non-

linearity as a function whose derivative increases in magnitude with an increase in

magnitude of its argument. Examples of such a function are the exponential and

the sinh functions. The tanh is an example of a compressive nonlinearity, which is

8
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Figure 3. Simple current mirror. (a) Circuit that was compiled onto the FPAA. (b)
Measured trajectories for different initial conditions. (c) Vector field derived from
trajectory measurements. The origin is an unstable equilibrium point, while 5 is stable.

one whose derivative decreases in magnitude with an increase in magnitude of its

argument. As we shall see, the physical constraints of the current mirror make its

quadratic function fall into the category of compressive nonlinearity as well.

The discussions in this chapter, as well as that of Chapter 4, will include circuit

analysis that explains how the various types of nonlinearities manifest in each of the

circuits.

2.1 Geometric analysis
2.1.1 Simple current mirror

Consider the simple current mirror depicted in Fig. 3 (a). From Kirchhoff’s Current

Law (KCL), it obeys the following differential equation.

C
dVg

dt
= Ib − f(Vg), (2)

where f(Vg) is the drain current of transistor M1. Assuming M1 and M2 are identical

and are both saturated, we have f(Vg) = Iout, which gives

C
dVg

dt
= Ib − Iout. (3)

For subthreshold operation in saturation, the current through transistors M1 and

M2 is [11]

f(Vg) = Iout = Ioe
(κVg−VS)

UT , (4)
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where Io is a pre-exponential constant dependent on the transistor’s size and on

doping concentrations. Also, κ is the body-effect coefficient and UT is the thermal

voltage. VS is the source voltage, which, for this case, is zero. Setting VS = 0 and

taking the derivative of (4) with respect to time, we get

dIout

dt
=

∂

∂Vg

(
Ioe

κVg
UT

)
dVg

dt
, (5)

=
κ

UT

Iout
dVg

dt
, (6)

which allows us to rewrite (3) as

CUT

κIb

dIout

dt
= Iout

(
1 − Iout

Ib

)
τ
dIout

dt
= Iout

(
1 − Iout

Ib

)
. (7)

The time constant is identified as τ = (CUT)/(κIb).

Equation (7) happens to be the logistic equation, a simple model of population

dynamics. It can be solved exactly either by separation of variables followed by partial

fractions, or by solving it as Bernoulli’s equation. The solution is

Iout(t) =
Ibe

t/τ

et/τ − 1 + Ib/Iout0

, (8)

where Iout0 is the initial value of Iout. We are lucky to have an exact solution to (7),

given that it is a nonlinear differential equation. Even so, it is difficult to discern

much useful information about Iout’s qualitative behavior from (8). For instance, it is

not clear how the behavior of Iout might change with different initial conditions. To

answer questions of this sort, it is helpful to do geometric analysis on the system’s

corresponding vector field.

Since the simple current mirror is a one-dimensional system, its vector field is

represented as a flow on a line. The direction and speed of the flow are dictated

by the right hand side (RHS) of (7). It is a quadratic, as shown in Fig. 4. The

Iout-intercepts are 0 and Ib. There is a maximum at Iout = Ib/2. The vector field

10
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Figure 4. The vector field of the logistic equation is represented as a flow on the Iout

axis. For positive values of dIout/dt, Iout is increasing and the flow is to the right. For
negative values of dIout/dt, Iout is decreasing and the flow is to the left.

is depicted as the arrows on the Iout axis. For positive values of dIout/dt, Iout is

increasing, meaning the arrows point to the right. For negative values of dIout/dt,

Iout is decreasing, meaning the arrows point to the left. When dIout/dt = 0, there is

no change in Iout and the circuit is said to be at equilibrium.

The vector field provides clear, qualitative information about the behavior of Iout.

There are two equilibrium points, namely Iout = 0 and Iout = Ib. Note that the vector

field flows away from Iout = 0. This equilibrium point is unstable, since the system

will not recover from slight disturbances away from it. The vector field flows towards

Iout = Ib, implying that this is a stable equilibrium point. If the system is initially at

Iout = Ib and then experiences a small disturbance, it will tend back to the Iout = Ib

point.

The vector field in Fig. 4 also gives information about the acceleration of Iout as it
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Figure 5. Source follower amplifier acting as a simple peak detector. (a) Circuit that was
compiled onto the FPAA. (b) Measured trajectories for different initial conditions. (c)
Vector field derived from trajectory measurements. The point 0.7 is a stable equilibrium
point.

approaches the Iout = Ib equilibrium point. For 0 < Iout < Ib/2, the rate of change of

Iout increases until it reaches a peak at Iout = Ib/2. Between Ib/2 and Ib, the system

decelerates until the rate of change of Iout eventually becomes zero. For Iout > Ib, the

rate of change of Iout steadily decreases until Iout = Ib. It is interesting to note that,

for Iout < Ib, the rate of change of Iout is limited to a maximum of Ib/(4τ).

The geometric analysis predictions can be checked against experimental measure-

ments of a current mirror that was compiled onto an FPAA. Figure 3 (b) depicts

various trajectories, or solutions, of the system of (7) for different initial conditions.

Notice that trajectories that start at values lower than Iout = Ib/2 have a sigmoidal

shape, with the point of inflection corresponding to the maximum rate of change of

current dIout/dt = Ib/(4τ). The parabolic shape of dIout/dt can be extracted from

these trajectories, and it is shown in Fig. 3 (c).

2.1.2 Simple peak detector

Assuming subthreshold operation, the KCL equation for the source follower amplifier

of Fig. 5 (a) is the following.

C
dVout

dt
= Ioe

(κVin−Vout)/UT − Ib. (9)
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Note that

d

dt
eVout/UT =

eVout/UT

UT

dVout

dt
, (10)

in which case, the solution to (9) is

Vout = κVin + UT log

(
Io
Ib

−
(
Io
Ib

− e(Vout0−κVin)/UT

)
e−t/τ

)
, (11)

where τ = CUT/Ib and Vout0 is the initial value of Vout.

The time that it takes for Vout to be within 10% of its final value is

t10 = τ log

∣∣∣∣Io/Ib − e(Vout0−κVin)/UT

Io/Ib − e0.1κVin/UT

∣∣∣∣ . (12)

For an initial condition of Vout that is much lower than the equilibrium point,

e(Vout0−κVin) ≈ 0, and (12) is approximately

t10 = t10+ ≈ τ log

∣∣∣∣ Io
Io − Ibe0.1κVin/UT

∣∣∣∣ . (13)

For an initial condition of Vout that is much higher than the equilibrium point,

e(Vout0−κVin) � Io/Ib, and (12) becomes

t10 = t10− ≈ τ log

∣∣∣∣ Ibe
(Vout0−κVin)

Io − Ibe0.1κVin/UT

∣∣∣∣
= t10+ + τ

(
Vout0

UT

− κ
Vin

UT

)
log

(
Ib
Io

)
. (14)

Equations (13) and (14) indicate that the response of the peak detector is slower for

a negative input step (which corresponds to an initial condition of Vout that is larger

than the equilibrium point) than it is for a positive input step (which corresponds to

an initial condition of Vout that is smaller than the equilibrium point). We surmise that

if the system were not homogeneous, and if the input, indicated by Vin in Fig. 5 (a)

were continuously varying at a rate faster than 1/(t10−), then the output would be a

reasonable representation of the input’s peak values. Explaining the peak detector’s

behavior with (13) and (14) is rigorous, but depends on having to manipulate the

expression of (11).
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An alternative approach to analyzing the peak detector is to employ intuitive

descriptions of the charging action of the active device (i.e. the transistor) versus the

discharging action of the current source [12]. A more rigorous approach is to apply

nonlinear geometric analysis to the problem. Consider the plot of dVout/dt versus Vout

shown in Fig. 5 (c). It was constructed from a number of trajectory measurements

for different initial conditions that were taken after compiling the source-follower

amplifier onto the FPAA. For an initial condition of Vout that is much higher than

the equilibrium point, the rate of growth of Vout is bounded by Ib/C. For an initial

condition of Vout that is much lower than the equilibrium point, the maximum rate

at which Vout approaches Vin can be much greater than Ib/C. The maximum rate

of approach in this case is limited only by the initial value, Vout0 . As such, there is

an asymmetry in the speed of the circuit’s response to up-going versus down-going

movements on the input. The effect of this asymmetry is that if Vin were time-varying,

then Vout would track increasing Vin, and not decreasing Vin, which is the behavior of

a peak detector.

2.2 Bifurcation

Bifurcation refers to the sudden change in a system’s qualitative behavior as a pa-

rameter is smoothly varied. We have seen that, in first-order systems, the behavior

is largely driven by the nature of the equilibrium points. As such, bifurcation in

first-order systems involves either the creation, destruction or change in stability of

equilibrium points.

2.2.1 Transcritical bifurcation

The transcritical bifurcation affects first-order systems of the form

ẋ = rx− x2, (15)

where r is some parameter.
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There are two possible equilibrium points for the system of (15), namely x = 0

and x = r. The stability of the x = 0 equilibrium point depends on the sign of r. The

transcritical bifurcation occurs at r = 0, when the x = 0 equilibrium point undergoes

an exchange of stabilities with the x = r equilibrium point.

While it is possible to construct an analog circuit that undergoes a transcritical

bifurcation, it is unlikely to be encountered in normal circuit practice. If we assume

that most circuits are nominally linear, then it would not typically be the case that

the linear gain of the circuit (which corresponds to the r parameter) can assume both

positive and negative values.

For instance, note that the current mirror described by (7) is of the same form as

(15). For the current mirror to undergo a transcritical bifurcation, we would require

that the current Ib changed directions, which is impossible, given that current must

flow from a higher to a lower potential. (As Fig. 3 shows, Ib is flowing from the

highest potential in the circuit, the power supply, towards ground.)

2.2.2 Saddle-node bifurcation

Systems that conform to the following description

ẋ = r − x2, (16)

where r is some parameter, are prone to saddle-node bifurcations.

Such systems can have two equilibrium points if r > 0, at x = ±√
r, or none

at all, if r < 0. There is a single equilibrium for r = 0. This transition from two

to zero equilibrium points is what constitutes the bifurcation. Like the transcritical

bifurcation, it is possible to construct an analog circuit that undergoes a saddle-node

bifurcation, but it is unlikely to be encountered in most circuit practice1. This is

because, again, of the nominally-linear assumption of circuits; Equation (16) has no

linear component at all.

1One notable exception to this assertion is the example of an root-mean-square to direct current
converter [13].

15



C R

V2

V1

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x

αx
tanh(x)

(a) (b)

f(
x)

Figure 6. Circuit that is prone to supercritical pitchfork bifurcation. (a) Comparator
circuit, created by placing an amplifier in positive feedback, (b) Load lines of (nondi-
mensionalized) comparator circuit. The intersections of the load lines denote equilib-
rium operating points. As depicted, the origin is an unstable equilibrium and the other
two equilibria are stable.

The next two bifurcations to be discussed are more naturally-occurring in circuit

design.

2.2.3 Supercritical pitchfork bifurcation

The governing equation of the circuit depicted in Fig. 6 (a) is

C
dV2

dt
= f(V1, V2) +

V1 − V2

R
, (17)

where f(·) is the output current of the OTA.

If the OTA is operated in the subthreshold region, then its output current is given

by the expression [14]

Iout = Ib tanh

(
κ

2UT

(V2 − V1)

)
, (18)

where κ is the body-effect coefficient and UT is the thermal voltage [11]. Also, Ib is
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to bottom, the values of α are (a) α = 0.35, (b) α = 0.5, (c) α = 1, (d) α = 1.2.

a tunable bias current. For ease of argument, assume V1 = 0 and define

x =
κ

2UT

(V2), (19)

τ =
CUT

Ibκ
, (20)

α =
2UT

κIbR
. (21)

The governing equation can then be written as

τ
dx

dt
= tanh(x) − αx. (22)

The equilibrium points of the circuit are at the intersection of the curves tanh(x) and

αx.

As shown in Fig. 6 (b), there are three equilibrium points. The stability of these

equilibrium points can be determined via linearization. We will defer the linearization
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method to the section on second-order systems. For first-order systems, we can infer

the stability of the equilibrium points by a simpler method.

Consider the region that surrounds the x = 0 point of the plot in Fig. 6 (b).

For slightly positive values of x, we have αx < tanh(x), which implies ẋ > 0. Also,

for slightly negative values of x, we have αx > tanh(x), which implies ẋ < 0. So,

if x is perturbed slightly from the point x = 0, the system tends to amplify this

perturbation. This means that x = 0 is an unstable equilibrium point. Using a

similar argument, we conclude from inspection that the other two equilibrium points

are stable.

The equilibrium points depicted in Fig. 6 (b) are incidental only to the particular

value of α we chose. Figure 7 shows the different plots for four representative values

of α. As the parameter α is increased towards a value of α = 1, the two stable
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of the load lines denote equilibrium operating points. As depicted, the origin is a stable
equilibrium and the other two equilibria are unstable.

equilibrium points move closer towards the unstable origin. Eventually, all three

equilibrium points coalesce at α = 1. For α > 1, the origin is the only remaining

equilibrium point and it is now stable.

Figure 8 shows a plot of the positions of the equilibrium points as a function of α.

A dashed curve denotes instability, while a solid curve denotes stability. The shape of

the curves in Fig. 8 lends itself to the name of this phenomenon; it is a supercritical

pitchfork bifurcation. The identifying characteristics of a pitchfork bifurcation are

that

(a) two stable equilibrium points coalesce with one unstable equilibrium point to

create a single stable equilibrium point, and that

(b) the canonical form is ẋ = rx− x3.

Note that, close to the origin, the system ẋ = tanh(x)−αx resembles ẋ = rx−x3.
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2.2.4 Subcritical pitchfork bifurcation

The governing equation of the circuit depicted in Fig. 9 (a) is

C
dV2

dt
= Ipe

− κ
UT

A(V1−V2) − Ine
κ

UT
A(V1−V2) − V2

R
, (23)

where Ip and In are pre-exponential currents for the p-type and n-type transistors,

respectively, assumed to be in subthreshold operation. Also, A is the gain of the

amplifiers. If the transistors are sized correctly, then we have Ip = In = Io. Take

V1 = 0 and define

x =
κAV2

UT

, (24)

τ =
CUT

IoκA
, (25)

α =
UT

κIoAR
. (26)
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Figure 11. Subcritical pitchfork bifurcation. Solid curves represent stable equilibrium
points and dashed curves represent unstable equilibrium point.

The governing equation can then be written as

τ
dx

dt
= sinh(x) − αx. (27)

The equilibrium points of the circuit are at the intersection of the curves sinh(x) and

αx.

The plot in Fig. 9 (b), shows the equilibrium points for α = 2. For this value of

α, the origin is a stable equilibrium point, while the other two equilibrium points are

unstable.

Figure 10 shows the different plots for four representative values of α. As the

parameter α is decreased towards a value of α = 1, the two unstable equilibrium

points move closer towards the stable origin. Eventually, all three equilibrium points

coalesce at α = 1. For α < 1, the origin is the only remaining equilibrium point and

it is now unstable.
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Figure 11 shows a plot of the positions of the equilibrium points as a function of

α, depicting a subcritical pitchfork bifurcation. The identifying characteristics of a

pitchfork bifurcation are that

(a) two unstable equilibrium points coalesce with one stable equilibrium point to

create a single unstable equilibrium point, and that

(b) the canonical form is ẋ = rx+ x3.

Note that, around to the origin, the system ẋ = sinh(x)−αx resembles ẋ = rx+x3.

2.2.5 Occurrence of bifurcations in normal circuit design

The bifurcations that have been presented, as well as many of the others not discussed,

tend to occur mostly in circuits that have some level of positive feedback. While

positive feedback is generally avoided as a matter of good circuit practice, there are

many situations where positive feedback is needed. In these situations, it is helpful

to use bifurcation theory in order to assess the potential harm of various positive

feedback options to the overall design. Take, for instance, a circuit that incorporates

positive feedback, but that is designed to ideally have a unique stable point. A

good example of this situation is a self-biased or bootstrapped current reference [15].

Imperfections in the IC fabrication process may cause a deviation from the ideal case

of a unique stable point. In this situation, it would be more desirable that the circuit

be chosen such that it undergoes a supercritical pitchfork bifurcation rather than a

subcritical pitchfork bifurcation. This is because there is a more graceful degradation

in performance after the supercritical bifurcation, whereas a subcritical bifurcation

results in complete and sudden loss of stability.
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CHAPTER 3

HOMOGENEOUS SYSTEMS II: SECOND-ORDER
CIRCUITS

In this chapter, we will consider how the concepts of geometric analysis, equilibrium

points and bifurcation extend to circuits with second-order dynamics of the form

ẋ = f(x), (28)

where x = [x1, x2]
T represents two physical quantities.

The circuit in Fig. 12 is the quintessential example of a second-order circuit. It

was first presented by Lyon et al. as a silicon model of the cochlea [14]. Assuming

that the OTAs are based on subthreshold MOS transistor differential pairs, KCL

provides the following governing equations for the circuit of Fig. 12

C1
dV1

dt
= I1 tanh

(
κ(Vin − V1)

2UT

)
− I3 tanh

(
κ(V2 − V1)

2UT

)
(29)

C1
dV2

dt
=

I2
k

tanh

(
κ(V1 − V2)

2UT

)
, (30)

where I1,2,3 are the bias currents of the OTAs. Also, k is the ratio of the C2 to C1.

If we define

x1 =
κ(V1 − Vin)

2UT

, x2 =
κ(V2 − V1)

2UT

, (31)

then Equations (29) and (30) become

2UTC1

κ

dx1

dt
= −I1 tanh(x1) − I3 tanh(x2)

2UTC1

κ

dx2

dt
= I1 tanh(x1) +

(
I3 − I2

k

)
tanh(x2). (32)

Assume for now that Vin is a fixed voltage.

Further defining

I1 = Ibias, I2 = gkIbias

I3 = 2rIbias, t = τ · 2UTC1

κIbias

,
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where g ≥ 0, we get the following dimensionless equation

dx1

dτ
= − tanh(x1) − 2r tanh(x2)

dx2

dτ
= tanh(x1) + (2r − g) tanh(x2). (33)

C1

Vin
C2

G1 G2 G3

V1 V2

Figure 12. Second order section. Varying the bias currents of the various amplifiers
leads to interesting dynamics.

3.1 Equilibrium points

We find the equilibrium points of the system by setting the RHS of (33) to zero and

solving for x1 and x2. For (33), the only equilibrium point is the origin. Let us denote

the equilibrium point with asterisks. That is, (x∗1, x
∗
2) = (0, 0).

We can predict the behavior of this equilibrium point by analyzing a linearized

approximation of (33). First, replace the RHS of (33) with its Jacobian, which is

the matrix formed by taking the partial derivatives of the nonlinear functions with

respect to each state variable. For (33), the Jacobian is

J =

⎡⎢⎣ tanh2(x1) − 1 2r tanh2(x2) − 2r

1 − tanh2(x1) (2r − g)(1 − tanh2(x2))

⎤⎥⎦ . (34)

The linearized approximation of (33) is⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ ≈

⎡⎢⎣ tanh2(x1) − 1 2r tanh2(x2) − 2r

1 − tanh2(x1) (2r − g)(1 − tanh2(x2))

⎤⎥⎦
⎡⎢⎣ x1

x2

⎤⎥⎦ . (35)

24



The characteristics of the equilibrium point depend on the eigenvalues of the Jacobian

matrix when it is evaluated at that point. At the equilibrium point, we have

J|(0,0) =

⎡⎢⎣ −1 −2r

1 2r − g

⎤⎥⎦ , (36)

the eigenvalues of which are

λ1 =
τ +

√
τ 2 − 4Δ

2

λ2 =
τ −√

τ 2 − 4Δ

2
, (37)

where τ = 2r− g− 1 and Δ = g are the trace and determinant of J|(0,0), respectively.

Recall from the definition of g as a ratio of currents that Δ > 0. Now, if τ 2 < 4Δ,

then the eigenvalues are complex conjugates, implying an oscillatory, or spiraling,

motion in the vicinity of the equilibrium point. This type of equilibrium point is

a spiral and the behavior that it elicits is referred to in, classical circuit terms, as

“ringing”. If τ 2 > 4Δ, then the eigenvalues are real-valued, and the behavior of x1 and

x2 is exponential or nodal. This type of equilibrium point is a node and the behavior

that it elicits is referred to in, classical circuit terms, as a “damped response”. For

τ < 0, the real part of the eigenvalues is negative and the equilibrium point is stable.

For τ > 0, the real part of the eigenvalues is positive and the equilibrium point is

unstable. For completeness, note that if Δ < 0, then the eigenvalues would have

opposite signs, and the equilibrium point would be a saddle point.

In terms of the circuit parameters r and g, the origin is stable for

r <
1 + g

2
, (38)

and unstable otherwise. It is a spiral for

1 + g

2
−√

g < r <
1 + g

2
+
√
g, (39)

and a node otherwise.
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Figure 13. Phase plane portraits for the system of (33). The dashed curve is the ẋ1 = 0
nullcline and the solid curve is the ẋ2 = 0 nullcline. The plot on the left is for r = 0.5
and that on the right is for r = 0.08. For both cases, g = 2.

3.2 Phase plane portrait

For a two-dimensional system such as (33), the vector field is defined on the x1, x2

plane. Each point in the plane has a corresponding velocity vector, given by the RHS

of (33). Figure 13 shows phase plane portraits of (33). Some pertinent features are

the nullclines, which are the lines where ẋ1 = 0 or ẋ2 = 0, and the equilibrium point,

which is the intersection of the nullclines.

The phase plane portraits shown in Fig. 13 are for r < 1+g
2

, when the equilibrium

point is stable. Figure 13 (a) shows the portrait for (1+g)/2−√
g < r < (1+g)/2+

√
g

and the equilibrium point is a spiral. In Fig. 13 (b), r > (1 + g)/2 +
√
g and the

equilibrium point is a node.

3.3 Impulse and step response

The step and impulse responses are useful ways to evaluate certain characteristics of

a system. For a linear system, the step response reveals what type of an equilibrium
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point the origin is. For instance, the step response of a linear system with a stable

spiral equilibrium point is a damped oscillation. This subsection introduces a method

for analyzing input responses that is valid for both linear and nonlinear systems.

3.3.1 Impulse response

Defining y = κV1/(2UT), and u = κVin/(2UT), (33) becomes

dy

dτ
= − tanh(y − u) − 2r tanh(x2)

dx2

dτ
= tanh(y − u) + (2r − g) tanh(x2). (40)

The impulse response of the circuit is the solution to (40) with u = Ainδ(τ), where

Ain is the weight of the impulse. The solution can be found by considering the two

time regions 0− ≤ τ < 0+ and τ ≥ 0+.

Region I: 0− ≤ τ < 0+.

Multiplying both sides of (40) by dτ and integrating yields∫ 0+

0−
dy = −

∫ 0+

0−
tanh(y − u) + 2r tanh(x2)dτ∫ 0+

0−
dx2 =

∫ 0+

0−
tanh(y − u) + (2r − g) tanh(x2)dτ. (41)

With u = Ainδ(τ), this simplifies to

y(0+) = y(0−) + tanh(Ain)

= y(0) + tanh(Ain)

x2(0
+) = x2(0

−) − tanh(Ain)

= x2(0) − tanh(Ain). (42)

Region II: τ ≥ 0+.

In this region, u = 0 and (40) becomes

dy

dτ
= − tanh(y) − 2r tanh(x2)

dx2

dτ
= tanh(y) + (2r − g) tanh(x2). (43)
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The overall effect of an input impulse of weight Ain, then, is to shift the initial

condition of the system from (y(0), x2(0)) to (y(0) + tanh(Ain), x2(0) − tanh(Ain)).

3.3.2 Step response

The step response too is derived by dividing the problem into two time regions, but

with the input u = Ainθ(τ), where θ(τ) is the unit step function.

Region I: 0− ≤ τ < 0+.

The input is u = 0 and nothing changes. That is, the initial conditions remain the

same.

Region II: τ ≥ 0+.

The input is u = Ain. Equation (40) becomes

dy

dτ
= − tanh(y − Ain) − 2r tanh(x2)

dx2

dτ
= tanh(y − Ain) + (2r − g) tanh(x2). (44)

The overall effect of a step input of size Ain is to change the system from ẋ =

f(x, 0), to ẋ = f(x, Ain), where the second argument of f(·) is equivalent to a control

parameter.

3.4 Bifurcation

The circuit of Fig. 12 contains an OTA that is connected in a positive feedback

configuration. As discussed earlier, bifurcating behavior is often observed in circuits

that contain a positive feedback path. In fact, we have already noted, via linearization

and analysis of the Jacobian matrix, that the type and stability of the equilibrium

point at the origin is dependent on the value of r.

In particular, as r passes through the critical point rc = (1 + g)/2 from left to

right, the equilibrium point changes from a stable spiral to an unstable spiral. The

change in stability of a spiral is normally indicative of a Hopf bifurcation. In most

physical systems, two kinds of Hopf bifurcation are possible. There is the supercritical
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Figure 14. Sketch of the SOS phase plane for large signals. The solution curve traces
out a rough quadrilateral. If the edges of the quadrilateral are not contained, then
instability occurs. The point (x1ret , 0) shown in the plot is given by the expression in
(46)

Hopf, which results in a small limit cycle surrounding the spiral equilibrium point

immediately after it loses stability. There is also the subcritical Hopf bifurcation,

where a stable spiral point becomes unstable after it is enclosed by a steadily-shrinking

unstable limit cycle.

For the system of Fig. 12, we need to determine which type of Hopf bifurcation

occurs at r = (1 + g)/2. An analytical approach is described in [16], but we will

use a geometrical approach to determine whether the Hopf bifurcation is subcritical

or supercritical. The idea is to detect the presence of any limit cycles surrounding

the spiral equilibrium point, close to the point of bifurcation. We can determine

the existence of a stable limit cycle via the Poincaré-Bendixon Theorem1 [17], which

states that if

1It is worth noting here that the Poincaré-Bendixson theorem is only valid for two-dimensional
systems. However, the stability and type of Hopf bifurcation can be determined for higher dimen-
sional systems as long as the appropriate pair of eigenvalues is chosen. Also, numerical software
tools do exist that can perform the required analysis on higher-order models
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Figure 15. Experimental SOS’s phase plane plots for various values of r, with g fixed.
Just as predicted, there is a unique equilibrium point, which is initially stable, and
gradually changes from a node to a spiral (top and bottom left panels). While linear
analysis would predict these three responses as damped, slightly underdamped, and
very underdamped, it fails to recognize the possibility of the fourth response, which is
large-signal instability. In the fourth panel, r meets the criterion derived from nonlinear
analysis, (45), and we observe oscillation.
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Figure 16. Experimental SOS’s step responses for various values of r, with g fixed. The
system is initially stable and over damped. The amount of ringing gradually increases
until the system becomes large-signal unstable and displays a sustained oscillation.
Linear analysis fails to recognize the possibility of this behavior, when r meets the
criterion derived from nonlinear analysis, (45).
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(1) R is a closed, bounded subset of the plane;

(2) ẋ = f(x) is a continuously differentiable vector field on an open set containing

R;

(3) R does not contain any equilibrium points; and

(4) There exists a trajectory C that is confined in R,

then either C is a closed orbit, or it spirals toward a closed orbit as t→ ∞.

As a corollary to the Poincaré-Bendixon Theorem, if criteria listed (1)-(3) are

satisfied, and criterion (4) is replaced by

(4′) No trajectories are admitted into R, in the sense that all trajectories that start

outside R stay outside R for all future time,

then there is an unstable closed orbit in R.

Let us examine the system (33) for r close to the bifurcation point and see if

a “detrapping region” R can be defined that satisfies (4′). Assume r < (1 + g)/2;

that is, the origin is a stable equilibrium point. Consider an annulus surrounding

the origin. If the inner boundary of the annulus is a small enough circle around the

origin, then all trajectories on this boundary will be pointing out of the annular region.

This means that no trajectories can enter the annular region via the inner boundary.

Assume the outer boundary is large enough that the annulus contains points far from

the origin. At these points, the saturating behavior of the tanh function can be used

to approximate (33) as

dx1

dτ
= −sgn(x1) − 2rsgn(x2)

dx2

dτ
= sgn(x1) + (2r − g)sgn(x2). (45)

A trajectory that starts at (x1, x2) = (x1ini
, 0), where x1ini

� 1 will trace out the

path depicted by Fig. 14. It will return to the x1 axis at point

(x1, x2) =

(
x1ini

·
(

2r − 1 + g

1 + 2r

)2(
1 − 2r

2r − 1 − g

)2

, 0

)
. (46)
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If the point of return at the x1 axis is larger than x1ini
, then it can be proven by

induction that the trajectory will eventually leave the annular region. The condition

that the point of return at the x1 axis is larger than x1ini will be met if

2r − 1 + g

1 + 2r
>

2r − 1 − g

1 − 2r
, (47)

or, more succinctly, if

r >
g +

√
g2 + 4

4
. (48)

With the identification of a detrapping region for (g +
√
g2 + 4)/4 < r < (1 + g)/2,

we know that the system has an unstable limit cycle. This limit cycle shrinks as r

approaches rc = (1+g)/2, until it completely envelopes the origin, converting it to an

unstable spiral equilibrium point. We therefore conclude that the circuit of Fig. 12

undergoes a subcritical Hopf bifurcation, as shown in Figs. 15 and 16. Interestingly,

a slight adjustment of the circuit can elicit a supercritical Hopf bifurcation [18]. The

resulting stable limit cycle will be discussed in detail in Chapter 6.
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CHAPTER 4

NONHOMOGENEOUS SYSTEMS I: FIRST-ORDER
CIRCUITS

Whenever designers want to get an analytical handle on the sources and causes of

nonlinear distortion, the most commonly-used tool is Volterra series analysis. If a

problem is tractable using Volterra series, then it can also be solved with perturbation

theory, which will yield asymptotically-identical results [19].

There are certain problems for which Volterra series are ill-suited — multiple-time-

scale behavior and multiple steady states, for instance [20]— that can be solved with

perturbation theory. Despite the power of perturbation theory, it is still a relatively

obscure concept in discussions about nonlinearity and distortion in analog circuits.

It is therefore worthwhile to present a basic treatment of regular perturbation — the

simplest perturbation method — as applied to distortion analysis of first-order analog

circuits [21]. The treatment in this chapter will illustrate how well-known tenets of

low-distortion design, such as feedback, are readily derived from the perturbation

method.

4.1 Regular perturbation

Consider the initial value problem

ẋ = f(t, x, ε);x(t0) = x0(ε), (49)

where ε is a small perturbation parameter such that ε = 0 yields an analytically-

soluble equation. If f is sufficiently smooth1, then the problem has a unique solution

x(t, ε). As the solution for ε 
= 0 may not be analytical, it can be approximated as a

1The specific smoothness requirements of f are discussed in [17]

34



g(u-x) + x

h(x)

+u

-

Figure 17. General block diagram form of a first-order circuit. The primary processing
block is g(·), which is a nonlinear function of the input u and of x via feedback. The
nonlinearity h(x) models such nonidealities as finite output impedance.

power series in ε to an accuracy of O(εn+1). That is, we can write the solution as

x(t, ε) =
n∑

i=0

(
xi(t)ε

i
)

︸ ︷︷ ︸
x̂(t, ε)

+O(εn+1) (50)

where x̂(t, ε) is the approximate solution. To conduct regular perturbation, we apply

the substitution x(t, ε) ≈ x̂(t, ε) to (49). The resulting system is then solved by

equating like powers of ε. The following sections will illustrate this idea.

4.2 The basic first-order circuit

Most common first-order analog circuits (simple amplifiers, buffers, switches, etc.)

are of the form depicted in Fig. 17. The governing equation is

ẋ = g(u− x) + h(x), (51)

where u is the a.c. input signal, x is the a.c. output signal and g(·) and h(·) are

nonlinear functions. The dependence of the system on the output, other than through

feedback to the input, is modeled by h(x). In practice, h(x) is typically some non-

ideality such as finite output resistance.
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In order to apply perturbation analysis to (51), we begin by assuming that the

input signal has a small amplitude. This is expressed as u = εv, where ε is a small

perturbation parameter and v is a suitably-scaled version of the input signal. Note

that with the definition of u, (51) is solvable via separation of variables for the special

case ε = 0.

With the introduction of the perturbation parameter ε, we can approximate the

solution to (51) with the power series

x(t) ≈
n∑

i=1

εixi(t). (52)

Note the ε0 term of (52) is set to 0. This corresponds to analyzing a circuit about its

d.c. bias point, where the d.c. bias point is shifted to the origin. For ease of notation,

define z = u−x. The approximation of z is defined similarly to (52), with z1 = v−x1

and zi = −xi,∀ i > 1.

If ε is sufficiently small, then the functions g(z) and h(x) can be approximated by

their truncated Taylor series as

g(z) ≈ g1z + gn−1z
n−1 + gnz

n

h(x) ≈ h1x+ hn−1x
n−1 + hnx

n, (53)

Functions g and h are assumed to be dominantly (n− 1)th-order nonlinearities, with

gi = g(i)(0)/i! and hi = h(i)(0)/i!. Equation (53) assumes g(0) = h(0) = 0, which,

again, corresponds to analyzing a circuit about its d.c. bias point.

Substituting (52) and (53) into (51) and collecting powers of ε, we get the following
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set of first-order linear equations

ẋ1 + (g1 − h1)x1 = g1v

...

ẋk + (g1 − h1)xk = 0 ∀ k < n− 1

...

ẋn−1 + (g1 − h1)xn−1 = gn−1z
n−1
1 + hn−1x

n−1
1

ẋn + (g1 − h1)xn = gnz
n
1 − ngn−1z

n−1
1 x2 +

hnx
n
1 − nhn−1x

n−1
1 x2. (54)

The ε1 equation is the linearized portion of (51) with input v. Taking the Laplace

transform of this equation, we write

X1(s) = g1H(s)V (s), (55)

where H(s) = 1/(s+ g1 − h1).

The εk equations (k < (n− 1)) are filters with 0 input. As such, the steady state

solutions of these equations is 0.

4.3 Harmonic distortion terms

The inputs of the εn−1 equation are terms of zn−1
1 and xn−1

1 . To understand the

implications of these terms for harmonic distortion, assume a single-tone input, v =

cos(ωt). This elicits the signals

x1 = g1|H(jω)| cos(ωt+ φ(jω))

z1 = |1 − g1H(jω)| cos(ωt+ φz1(jw))

= | (s− h1)H(jω)︸ ︷︷ ︸
Hz1(jω)

| cos(ωt+ φz1(jw)) (56)

Here we have defined Hz1(s) = (1 − g1H(s)). The phases φ(s) and φz1(s) are the

arguments of H(s) and Hz1(s), respectively. The signals x1 and z1 are single tones of
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frequency ω as well, since they are merely linearly-filtered versions of v.

Raising z1 and x1 each to the (n − 1)th power produces harmonics as follows. If

(n − 1) is odd(even), then odd(even) harmonics up to the (n − 1)th harmonic are

generated. The amplitude of the mω frequency term in xn−1
1 is

(n− 1)!g1

n+m−1
2

!n−m−1
2

!2n−2
|H(jω)|, (57)

while that of the mω frequency term in zn−1
1 is

(n− 1)!
n+m−1

2
!n−m−1

2
!2n−2

|Hz1(jω)|. (58)

After filtering in the εn−1 equation, the amplitudes of these terms will be, respectively,

(n− 1)!hn−1g1

n+m−1
2

!n−m−1
2

!2n−2
|H(jω)||H(jmω)|, (59)

and

(n− 1)!gn−1

n+m−1
2

!n−m−1
2

!2n−2
|Hz1(jω)||H(jmω)|. (60)

Analogous to that of the εn−1 equation, the input to the εn equation has terms in

zn
1 and xn

1 . In general, the x2 terms are identically zero, except for the special case

n = 3.

4.4 Feedback and distortion

We now make some observations about the harmonic distortion results that were

discussed in the previous section.

In the εn−1 equation, the amplitude of the mth harmonic that the zn−1
1 term

contributes is given by (60). A plot of this amplitude expression, along with that

of (59), is shown as a function of frequency in Fig. 18 for the third-order harmonic

generated by a dominantly-third order nonlinearity. That is, n = 4 and m = 3. The

other parameter values are h1 = 1, h3 = 1/3, g1 = G, g3 = G/3, where G was varied

from 10 to 1000.
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Figure 18. Magnitude-frequency plots of the third harmonic. The ‘gain’, G of the g(z)
function is varied from 10 to 1000. This causes the band-pass shape of the z3

1-contributed
harmonic to shift to the right, while that contributed by x3

1 falls in magnitude.

Notice from the figure that if g1 � h1, then, for a given frequency, the amplitude

of the zn−1
1 -contributed harmonic is greatly reduced. In fact, if we ensure gi � hi ∀ i,

then the harmonic contribution of the xn−1
1 terms is negligible. This would mean that

the distortion is effectively due only to z1, whose associated harmonics are band-pass

filtered. This in turn means that the distortion can be kept small if the circuit is

operated well below the corner frequency.

These two notions — that frequency and feedback gain can be sacrificed for higher

linearity — conform with the traditional rules-of-thumb for low-distortion design.

4.5 Illustrative examples
4.5.1 Source follower amplifier

According to KCL, the circuit equation of the source follower amplifier in Fig. 19 (a)

is

C
dVout(t)

dt
= F (Vin, Vout) − Ibias, (61)

39



V
in V

out

I
bias C

s
s+1

(  )2

+
1

s+1v

(a) (b)

x

ε2

ε

  4

Figure 19. Source follower amplifier. (a) Circuit schematic. (b) Block diagram repre-
sentation of source follower output. The fundamental harmonic is a low-pass filtered
version of the input. The second order terms are generated by high-pass filtering the
input, squaring and then low pass filtering. The total output is a power series of ε
terms.

where the function F is defined as

F (Vin, Vout) =
K

2
(κVin(t) − Vout(t) − Vth)

2 , (62)

if M1 is in above-threshold saturation, and

F (Vin, Vout) = Ioe
(κVin(t)−Vout(t))/UT , (63)

if it is in subthreshold saturation. The parameter K depends on transistor dimensions

and doping and Vth is the threshold voltage. Also, Io is a pre-exponential current that

depends on device dimensions and κ, and UT have their usual meanings from the EKV

MOSFET model [11].

Note that Ibias = F (Vg, VS), where Vg and VS are the d.c. bias-points of the gate

and source of M1, respectively. Let us define a characteristic voltage, Vc, as

Vc =

⎧⎪⎨⎪⎩ (κVg − VS − Vth)/2, above threshold

UT, subthreshold.
(64)

Now, (61) can be non-dimensionalized [17] by making the substitutions

τ = Ibias/(CVc) · t; u = κνin/Vc; x = νout/Vc, (65)
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where νin and νout are the a.c. portions of Vin and Vout. This gives the state-space

equation of the source follower as

dx

dτ
= u− x+ (u− x)2/4, (66)

for above threshold, and

dx

dτ
= u− x+ (u− x)2/2, (67)

for the truncated Taylor expansion in subthreshold. The point is that, regardless of

region of operation of M1, the nonlinear equation that describes the source follower

has the same functional form. Relating the source follower equations to (51), we have

g(z) ∼ z + z2 and h(x) = 0. As such, we expect the harmonic distortion terms to

have a band-pass-like dependence on frequency. To show this, we can apply regular

perturbation to (66).

First, define u = εv, where the small parameter ε is a scaled version of the input

amplitude. That is, ε = Ain/Vc. Also, taking x = εx1 + ε2x2 and z = u − x and

equating like powers of ε up to ε2, we have

ε1 : ẋ1 = v − x1 (68)

ε2 : ẋ2 = z2
1/4 − x2 (69)

Assume a pure-tone input, v = cos(ωt). Equation (68) is the linear portion of the

amplifier. Equation (69) is a linear filter with input z2
1/4. The squaring produces

a second-harmonic term as well as a d.c. offset. In addition, since z1 = v − x1, the

second-harmonic generated by the squaring is high-pass filtered. The overall effect is

that x2 is a band-pass filtered version of a second harmonic of v. Figure 20 is a plot

of experimental data that corroborates the analysis.

4.5.2 Unity-gain buffer

Consider the unity-gain buffer depicted in Fig. 21 (a). It is formed by placing an

operational transconductance amplifier (OTA) in negative feedback. If we operate
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Figure 20. Magnitude-frequency response of source follower. Analytical prediction is
in bold, and experimental data is plotted as ‘x’s and ‘o’s. The fundamental harmonic
is a low-pass filtered version of the input. The second harmonic has a bandpass shape,
as predicted by perturbation analysis.

the OTA above threshold, the describing equation is

C
dVout

dt
=
√
κβIbiasVin

√
1 − κβV 2

in

4Ibias

, (70)

while it is

C
dVout

dt
= Ibias tanh

(
κVin

2UT

)
, (71)

for subthreshold operation. Notice that we have ignored the output conductance

term, which is considered very small for OTAs.

We can define a characteristic voltage, Vc, as

Vc =

⎧⎪⎨⎪⎩
2UT

κ
, subthreshold√

Ibias

κβ
, above threshold.

(72)
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Figure 21. Unity gain buffer. (a) Circuit schematic. (b) Block diagram representation
of output. The fundamental harmonic is a low-pass filtered version of the input. The
third-order terms are generated by high-pass filtering the input, cubing and then low
pass filtering. The total output is a power series of ε terms.

Then, with the following definitions

τ = Ibias/(CVc) · t; u = νin/Vc; x = νout/Vc, (73)

the nondimensional form of the unity-gain buffer’s describing equations (taken to the

first few Taylor series terms) is

dx

dτ
=

⎧⎪⎨⎪⎩ (u− x) − (u− x)3/4, above threshold

(u− x) − (u− x)3/3, subthreshold.
(74)

Again, the functional form of the equations is identical, regardless of region of oper-

ation.

To calculate distortion terms, assume u = εv is a pure-tone signal and proceed as

usual. For subthreshold, the separated equations of ε are

ε1 : ẋ1 = v − x1 (75)

ε2 : ẋ2 = 0 − x2 (76)

ε3 : ẋ3 = z3
1/3 − x3. (77)

Equation (75) is the linear portion of the amplifier. Equation (76) is a linear filter with

0 input; it contributes no harmonics at steady state. Equation (77) is a linear filter
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Figure 22. Magnitude-frequency response of unity-gain buffer. Analytical prediction is
in bold, and experimental data is plotted as ‘x’s and ‘o’s. The fundamental harmonic
is a low-pass filtered version of the input. The third harmonic has a bandpass shape,
as predicted by perturbation analysis.

with input z3
1/3. The cubing produces a third-harmonic term as well as a fundamental-

frequency term (this fundamental-frequency term will cause gain compression, which

is not discussed in this chapter). Since z1 = v − x1, the overall effect is that x3 is a

band-pass filtered version of a third harmonic of v, as shown in Fig. 22.

4.5.3 Note on above-threshold versus subthreshold operation

The harmonic behavior of a circuit is similar for above- and subthreshold operation.

In absolute numbers, however, above threshold operation yields less distortion. This

is because the parameter ε = Ain/Vc is much smaller for above threshold than for

subthreshold. Since the harmonics are multiplied by εi, the smaller ε seen in above

threshold operation translates to lower distortion.
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CHAPTER 5

NONHOMOGENEOUS SYSTEMS II: SECOND-ORDER
CIRCUITS

In this chapter, we consider second-order filters, which are nonhomogeneous two-

dimensional systems. The methods of regular perturbation do not always extend to

two dimensions and higher.

Consider for example the homogeneous system described by

ÿ + y + 2εẏ = 0, (78)

with initial conditions y(0) = 0, ẏ(0) = 1, and where ε > 0 is a small perturbation

parameter.

Note that we can solve (78) as a linear ordinary differential equation to get

y(t) =
e−εt

√
1 − ε2

sin
(√

1 − ε2
)

(79)

If we attempted to solve (78) via regular perturbation, we would apply the usual

substitution

y(t) = y0(t) + εy1(t) + O(ε2). (80)

Equating like powers of ε, (78) yields, to O(ε),

ε0 : ÿ0 + y0 = 0 (81)

y0(0) = 0; ẏ0(0) = 1, (82)

and

ε : ÿ1 + y1 = −2ẏ0 (83)

y1(0) = 0; ẏ1(0) = 0. (84)

The solution to (82) is y0(t) = sin(t) and the solution to (84) is y1(t) = −t sin(t),

giving an approximate solution to (78) of

y(t) = (1 − εt) sin(t). (85)
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Comparing (79) to (85), we see that the regular perturbation method predicts

the wrong amount of damping and also the wrong frequency. The problem here is

that there are two timescales at which the system is operating: that related to the

resonant frequency and that of the transient decay.

The phenomenon of two timescales is also observed for filters with high quality-

factor (Q). Regular perturbation fails to account for the two timescales and methods

of singular perturbation instead are needed.

5.1 Two-timescale analysis

C

C

(α)

V1
V2

Vin

Figure 23. Second order section for singular perturbation analysis. The OTA labeled
(α) is understood to be linearized. Assuming the nonlinear OTAs have tanh transcon-
ductance functions, this circuit implements the system of (87). The system is in effect
a high quality factor filter, which necessitates the use of singular perturbation methods
for its analysis.

The circuit in Fig. 23 is a second-order low-pass filter. According to KCL, the

dynamics are as follows

C
dV2

dt
= f1(V1 − V2)

C
dV1

dt
= f2(Vin) − f3(V2), (86)

where f1,2,3 are the transconductance functions of the OTAs. For subthreshold op-

eration, these functions are nominally hyperbolic tangents. As we shall see in later
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chapters on design, it is also possible to linearize the transconductance functions.

Assuming that the OTA labelled (α) in Fig. 23 is linearized, and replacing F1,2 with

tanh functions, we can write

C
dV2

dt
= GV1 −GV2

C
dV1

dt
= I2 tanh

(
κVin

2UT

)
− I3 tanh

(
κV2

2UT

)
, (87)

where G is the linearized transconductance gain of O1 and I2 and I3 are the bias

currents of OTAs O2 and O3, respectively.

Defining

y1 =
κV1

2UT

, y2 =
κV2

2UT

,

v =
κVin

2UT

, T =
tκI2

2CUT

, (88)

(87) becomes

dy2

dT
=

2GUT

κI2
(y1 − y2)

dy1

dT
= tanh(v) − I3

I2
tanh(y2) (89)

As a single second-order equation, the filter is

d2y2

dT 2
+

2GUT

κI2

dy2

dT
+

2GUTI3
κI2

2

tanh(y2) =
2GUT

κI2
tanh(v)

2GUTI3
κI2

2

d2y2

dT 2
+
I2
I3

dy2

dT
+ tanh(y2) =

I2
I3

tanh(v)

τ 2d
2y2

dT 2
+ ε

dy2

dT
+ tanh(y2) = ε tanh(v), (90)

where we have defined τ 2 = 2GUTI3/(κI
2
2 ) and ε = I2/I3. For a high-Q filter, ε is

a small parameter. Let us say that the input, and hence the output, are small in

magnitude. We represent this by the substitutions xε2/3/3 = y2 and vε2/3/3 = u1 and

expanding the tanh functions to the third term, which gives

τ 2 d
2x

dT 2
+ ε

dx

dT
+ x− εx3 = ε(u− εu3). (91)

1Raising ε to the 2/3 power simplifies the subsequent math, but does not detract from the basic
assumption that y2 and u are both small-valued.

47



For ease of analysis, we normalize the center frequency via τ = 1. Also, we will

analyze the response to the pure tone input u = F cos(ωT ). The system simplifies to

d2x

dT 2
+ ε

dx

dT
+ x− εx3 = ε(F cos(ωT ) − εF 3 cos3(ωT )). (92)

We will represent the two timescales that are associated with this filter as

ξ = ωt,

η = εt, (93)

where ξ is the fast timescale related to the center frequency and η is the timescale of

the slow transient. If the solution, x, is regarded as a function of ξ and η, then we

can write

dx

dt
=

∂x

∂ξ

dξ

dt
+
∂x

∂η

dη

dt

= ω
∂x

∂ξ
+ ε

∂x

∂η
. (94)

Substituting this into (92) gives

ω2∂
2x

∂ξ2
+2ωε

∂2x

∂ξdη
+ε2

∂2x

∂η2
+εω

∂x

∂ξ
+ε2

∂x

∂η
+x−εx3 = ε(F cos(ξ)−εF 3 cos3(ξ)). (95)

We expand x and ω as power series in ε

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + ε2x2(ξ, η) + · · · (96)

ω(ξ, η) = 1 + k1ε+ k2ε
2 + · · · , (97)

substitute into (95) and collect terms in ε to get

ε0 :
d2x0

dξ2
+ x0 = 0 (98)

ε1 :
d2x1

dξ2
+ x1 = F cos(ξ) + x3

0 −
dx0

dξ
− 2k1

d2x0

dξ2
− 2

d2x0

dξdη
, (99)

where we have ignored terms in ε2 and higher.
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The solution to (98) is x0(ξ) = A0(n) cos(ξ)+B0(n) sin(ξ), where A0(η) and B0(η)

are slowly-varying functions of time. Substituting the solution of (98) into (99) gives

d2x1

dξ2
+ x1 = F cos(ξ) + 1/4A0(η)

3 cos(3ξ) + 3/4A0(η)
3 cos(ξ)

+3/4A0(η)
2B0(η) sin(3ξ) + 3/4A0(η)

2B0(η) sin(ξ)

+3/4A0(η)B0(η)
2 cos(ξ) − 3/4A0(η)B0(η)

2 cos(3ξ)

−1/4B0(η)
3 sin(3ξ) + 3/4B0(η)

3 sin(ξ) + A0(η) sin(ξ)

−B0(η) cos(ξ) + 2k1A0(η) cos(ξ) + 2k1B0(η) sin(ξ)

+2
dA0(η)

dη
sin(ξ) − 2

dB0(η)

dη
cos(ξ). (100)

The RHS of (100) has terms in cos(ξ) and sin(ξ). In general, the presence of

these secular terms would imply that the solution x1 grows as a function of ξ. Since

such a result is inconsistent with our expectations (the system is after all merely a

perturbation of a stable linear filter), we equate all of the secular terms to zero, to

get

dB0(η)

dη
= F/2 + 3/8A0(η)

3 + 3/8A0(η)B0(η)
2 −B0(η)/2 + k1A0(η), (101)

dA0(η)

dη
= −3/8B0(η)

3 − 3/8A0(η)
2B0(η) − A0(η)/2 − k1B0(η). (102)

The equilibrium point of (101) and (102) represents the fixed amplitude of the sinusoid

that x0 will eventually tend to. Denoting the equilibrium point as (A∗
0, B

∗
0), we can

write

0 = F/2 + 3/8A∗3
0 + 3/8A∗

0B
∗2
0 −B∗

0/2 + k1A
∗
0, (103)

0 = −3/8B∗3
0 − 3/8A∗2

0 B
∗
0 − A∗

0/2 − k1B
∗
0 . (104)

Next, we define the output amplitude as R0 =
√
A∗2

0 +B∗2
0 and solve (103) and (104)

for k1 to get

k1 =
−3R∗3

0 ± 4
√
F 2 −R∗2

0

8R∗
0

. (105)
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To first order, the relation between input frequency, input amplitude and output

amplitude, in the vicinity of the center frequency, is

ω ≈ 1 +
3

8
εR∗2

0 ± 1

2
ε

√
F 2

R∗2
0

− 1. (106)

5.2 Averaging

The method of averaging presents an alternative way to analyze systems of the form

ẍ+ x = εh1(ẋ, x, t) + ε2h2(ẋ, x, t) + O(ε3) (107)

without having to explicitly account for different timescales. We can rearrange (92)

in the form of (107) as

d2x

dT 2
+ x = ε

(
F cos(ωT ) − dx

dT
+ x3

)
− ε2F 3 cos3(ωT ). (108)

Assume that the solution to (108) is

x(T ) = R(T ) cos(T + ψ(T )). (109)

The argument for picking such a form for the solution is that, if ε = 0, then the

solution to (108) is exactly (109), with R(T ) and ψ(T ) constant. If ε is small and

non-zero, then we can expect R(T ) and ψ(T ) to be slowly-varying functions of time.

An effect of defining the solution as (109) is that there are now three variables,

but only two equations. To constrain the problem, we can add a third equation of

our choosing, such as

dx

dT
= −R(T ) sin(T + ψ(T )). (110)

Equating the derivative of (109) to (110), we find that

dR

dT
cos(T + ψ) = R

dψ

dT
sin(T + ψ), (111)

must hold. Notice that (111) is a differential equation that is purely in terms of R(T )

and ψ(T ), and does not contain any terms in x(T ). We can find a second equation
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in R(T ) and ψ(T ) by taking the derivative of (110),

d2x

dT 2
= −dR

dT
sin(T + ψ) +

(
1 +

dψ

dT

)
R cos(T + ψ), (112)

and substituting (109), (110) and (112) into (108). This gives

−dR
dT

sin(T + ψ) − dψ

dt
R cos(T + ψ) = ε

(
F cos(T ) +R3 cos(T + ψ)3+

R sin(T + ψ)) − ε2F 3 cos(T )3. (113)

From (111) and (113), the differential equations that describe R(T ) and ψ(T ) are

dR

dT
= ε

(
sin(T + ψ))(−F cos(T ) +R3 cos(T + ψ) sin(T + ψ)2+

−R3 cos(T + ψ) −R sin(T + ψ))
)

+ O(ε2), (114)

dψ

dT
=

ε

R

(−R3 sin(T + ψ)4 + 2R3 sin(T + ψ)2 −R3+

− cos(T + ψ)F cos(T ) − cos(T + ψ)R sin(T + ψ))) + O(ε2). (115)

The conversion of the problem from (108) to (114) and (115) is exact and it is

referred to as variation of parameters. To proceed with the solution, consider the

following near-identity transformations, where R and ψ are written as power series in

ε [20]

R = R̄ + εw1(R̄, ψ̄, T ) + ε2v1(R̄, ψ̄, T ) + · · · , (116)

ψ = ψ̄ + εw2(R̄, ψ̄, T ) + ε2v2(R̄, ψ̄, T ) + · · · . (117)

The functions wi and vi are called generating functions. They are chosen such

that the transformed equations on R̄ and ψ̄ (that is, the differential equations of R̄

and ψ̄) are as simple as possible. Substituting (116) and (117) into (114) and (115),
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the differential equations of R̄ and ψ̄ are

dR̄

dT
= ε

(
sin(T + ψ̄))(−F cos(T ) + R̄3 cos(T + ψ̄) sin(T + ψ̄)2 − ∂w1

∂T
+

−∂w1

∂R̄

dR̄

dT
− ∂w1

∂ψ̄

dψ̄

dT
− R̄3 cos(T + ψ̄) − R̄ sin(T + ψ̄))

)
, (118)

dψ̄

dT
=

ε

R̄

(
−R̄3 sin(T + ψ̄)4 + 2R̄3 sin(T + ψ̄)2 − R̄3 − ∂w2

∂T
− ∂w2

∂R̄

dR̄

dT
+

−∂w2

∂ψ̄

dψ̄

dT
− cos(T + ψ̄)F cos(T ) − cos(T + ψ̄)R̄ sin(T + ψ̄))

)
, (119)

where O(ε2) and higher terms have been ignored. The functions w1 and w2 can be

chosen such that only the average values of the O(ε) terms of (118) and (119) remain.

That is, (118) and (119) become

dR̄

dT
=

ε

Tp

∫ Tp

0

sin(T + ψ̄))(−F cos(T ) + R̄3 cos(T + ψ̄) sin(T + ψ̄)2 +

−R̄3 cos(T + ψ̄) − R̄ sin(T + ψ̄))dT, (120)

dψ̄

dT
=

ε

TpR̄

∫ Tp

0

−R̄3 sin(T + ψ̄)4 + 2R̄3 sin(T + ψ̄)2 − R̄3 +

− cos(T + ψ̄)F cos(T ) − cos(T + ψ̄)R̄ sin(T + ψ̄))dT, (121)

where Tp is the length of one period of the input signal. The integrals on the RHS

of (120) and (121) are partial integrals, in the sense that R̄ and ψ̄ are held constant

during the integration. Evaluating (120) and (121) for Tp = 2π — that is, at the

filter’s resonant frequency — we get

dR̄

dT
= −F

2
sin(ψ̄) − R̄

2
(122)

dψ̄

dT
= − F

2R̄
cos(ψ̄) − 3

8
R̄2, (123)

which are called the slow flow equations. The solution of the slow flow equations

would reveal how the amplitude and phase of y(T ) evolve over time. The equilibrium

point of the slow flow equations represents the steady state of y(T ). The equilibrium
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point is derived by setting the RHS of the slow flow equations to zero such that

F

2
sin(ψ̄) = −R̄

2
(124)

F

2R̄
cos(ψ̄) = −3

8
R̄2. (125)

Squaring (124) and adding it to the square of (125), we find, with the trigonometric

identity cos(ψ̄)2 + sin(ψ̄)2 = 1, that the value of R̄ at the equilibrium point must

satisfy

F 2 = R̄2 +
9

16
R̄6, (126)

the solution to which is

R̄∗ =
2
√

2

3

√√
1 +

9

4
F 2 − 1. (127)

Notice that this expression for the steady state amplitude is equivalent to what we

would have derived by evaluating the two timescale solution at the filter’s resonant

frequency (that is, by setting k1 = 0 in (105) and solving for R̄∗
0).
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CHAPTER 6

THEORY AND DESIGN OF OTA-C OSCILLATORS
WITH NATIVE AMPLITUDE LIMITING

The sinusoidal oscillator is a basic analog circuit component in communication and

instrumentation systems. High quality oscillators usually involve inductor-capacitor

networks, and are used in RF systems. However, the inductance values required for

low- and moderate frequency oscillators cannot practically be realized in integrated

circuits. Ring-oscillators provide much better economy in terms of size, but they

are limited to such uses as clock generation, due to their high harmonic content.

Operational transconductance amplifier-capacitor (OTA-C) oscillators, on the other

hand, operate at low- to moderate frequencies with fairly high spectral purity, and

are compact enough for integration.

An OTA-C oscillator is typically designed as an unstable second-order system

that is regulated by some nonlinear, amplitude-limiting circuitry. Buonomo et al.

identified a set of conditions on the nonlinearity for the system to exhibit oscillation

[22]. The most common implementations of an amplitude limiter are a piecewise-

linear (pwl) resistor and an automatic gain control circuit [22–25]. A third possibility

is to use the inherent nonlinear behavior of an OTA as an amplitude-limiter [26].

The success of using OTA nonlinearity, as reported in the literature, has been

mixed. This approach is considered in [24], but the results are only poorly-controlled,

distorted oscillations. The approach is also mentioned in [23], but is characterized as

yielding only unpredictable oscillations. On the other hand, the results in [27–29] show

success in designing sinusoidal oscillators based on OTA nonlinearity. However, none

of these papers, nor, to my knowledge, any other sources in the literature, provide a

systematic and analytical presentation of how exactly to exploit OTA nonlinearity in

a general second-order oscillator structure. This is a relevant lack, as an oscillator that
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differential pair
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Figure 24. Generic OTA (a) circuit symbol and (b) circuit schematic. The OTA converts
a differential voltage input into an output current. A differential pair of transistors is
at the heart of the voltage-current conversion. An attenuating stage may exist between
the voltage input and the differential pair. A current-subtraction network combines
the drain currents of the differential pair transistors into a single output.

properly exploits OTA nonlinearity can easily confer power and area savings since no

external amplitude limiting scheme is required. For instance, a slight redesign of the

oscillator in [23] could have used one of the existing OTAs as an amplitude limiter,

precluding the need for the extra pwl circuit that its authors describe.

This chapter provides a rigorous, generalized, method for exploiting OTA nonlin-

earity in oscillator design.

6.1 Operational transconductance amplifier basics
6.1.1 Output current

Figure 24 is a block diagram representation of an OTA. The differential input, Vin =

V+−V−, is applied to an attenuating stage. The output of the attenuating stage is fed

into the gate voltages of a differential pair, which is normally in saturation. A current

subtraction network generates the difference of the differential pair’s drain currents,

Iout = I+ − I−. The OTA thus provides a transconductance function from Vin to Iout.

If the differential pair is biased in the subthreshold region, then the voltage-current
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function is [14]

Iout = Ibias tanh

(
καVin

2UT

)
, (128)

where κ is the body-effect coefficient and UT is the thermal voltage [11]. Also, Ibias is

a tunable bias current, and α is the gain of the attenuating stage. If the differential

pair is biased above threshold, then using the transistor model of [11], the OTA’s

voltage-current function can be found to be

Iout = α
√
κβIbiasVin

√
1 − κβα2V 2

in

4Ibias

, (129)

where β is a physical constant that is related to the differential pair’s geometry and

to doping concentrations. Again, Ibias is a tunable bias current, and α is the gain of

the attenuating stage.

If we define a characteristic voltage, Vc as

Vc =

⎧⎪⎨⎪⎩
2UT

κ
, subthreshold√

Ibias

κβ
, above threshold,

(130)

and the transconductance gain as Gm = αIbias/Vc, then we can write (128) and (129)

as

Iout =
GmVc

α
·H
(
αVin

Vc

)
, (131)

whereH(·) is a sigmoidal function that depends on the region of operation. In general,

it would also depend on the specific OTA topology. Equation (131) is generic enough

to describe any OTA with a saturating transfer curve, regardless of specific topology

or of region of operation. Vc can be chosen to be any appropriate voltage. We choose

Vc such that the coefficient of the Taylor series linear term of H(·) is normalized to

one.
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6.1.2 Linear versus nonlinear OTAs

In this dissertation, we regard some OTAs as linear elements and others as nonlinear

ones. This subsection clarifies what the distinction is. Consider the Maclaurin-series

expansion of the OTA output current Iout.

Iout =
GmVc

α

(
αVin

Vc

+
∞∑
i=2

H(i)(0)

i!

(
αVin

Vc

)i
)

︸ ︷︷ ︸
H(z)

. (132)

The small-signal transconductance gain is the linear term coefficient, denoted Gm in

the above equations. An OTA is considered linear if, for the region of operation of Vin,

its output current can be reasonably modeled — as appropriate to the application in

question — as Iout = GmVin. For the nonlinear terms to be negligible, their coefficients

must be sufficiently small. This can be achieved by making α small enough.

For larger values of α, the nonlinear terms in (132) become comparatively signifi-

cant to the linear term and the OTA is considered nonlinear. Assume that a nonlinear

OTA has a value of α = 1. Figure 25 compares the output current of a nonlinear

OTA (α = 1) to that of a linear one (α = 0.1).

6.2 Motivation for using OTA as an amplitude limiter

Oscillator circuits are typically based on implementing Liénard’s equation,

z̈ + f(z)ż + γ(z) = 0. (133)

If f(z) and γ(z) satisfy the Liénard’s Theorem conditions, then the circuit will

have a unique, stable oscillation [30]. Notice that the theorem does not guarantee

an oscillation that is sinusoidal, or even near-sinusoidal. For (133) to be relevant to

a discussion of sinusoidal oscillators, where phase noise is low, γ(z) must be linear.

The damping term, however, is nonlinear. In practice, it can be obtained by taking

the derivative of a nonlinear negative resistor, whose transfer function is depicted in

Fig. 26 (a).
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Figure 25. The upper panel shows experimental measurements from a nonlinear OTA.
In the lower panel, the nonlinear terms are suppressed enough for a straight line to be
an accurate approximation over a 400mV range.
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Figure 26. (a) Nonlinear function and region of oscillation and (b) region of oscillation
dependence on ρ .

It is fairly straightforward to synthesize the nonlinear resistor with a pair of OTAs,

one linear and the other nonlinear. Consider the OTAs in Fig. 27. Assuming that the

amplifier that is in the positive-feedback configuration has an attenuation factor of 1

and that the one in the negative-feedback configuration has an attenuation factor of

α, we can write the total output current as

Iout =
GmLVcL

α
·H
(
αVz

VcL

)
−GmVc ·H

(
Vz

Vc

)
, (134)

If α  1, then the negative-feedback OTA is effectively linear, in which case Iout is

approximately

Iout ≈ GmLVz −GmVc ·H
(
Vz

Vc

)
. (135)

Now, imagine that the transconductance gain of the nonlinear OTA is slightly larger

than that of the linear one. That is,

Gm = (1 + ρ)GmL, (136)
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(α) GmL

Iout

Gm

Vz

Figure 27. OTA implementation of negative resistance. The linear range of the negative-
feedback OTA is much greater than that of the positive-feedback OTA. The bias current
of the nonlinear OTA is slightly larger than Ib.

where ρ is a small, positive number. Then, the general shape of (135) is of that shown

in Fig. 26 (a). The attraction of implementing the nonlinear resistor as such is that it

merely depends on manipulation of OTA linear ranges and bias currents, rather than

on the addition and design of other types of circuit elements.

If we implement the nonlinear resistor as described, then, after nondimensionaliz-

ation of (135), (133) becomes

z̈ +
d

dz
(z − (1 + ρ)H(z))︸ ︷︷ ︸

f(z)

ż + z = 0, (137)

where we have set γ(z) = z.

We can glean some intuition about the system’s oscillatory behavior by studying

Fig. 26 (a). Close to the origin, the slope (i.e. f(z)) is negative, which implies negative

damping. So, energy is pumped into the system of (133) when it is close to the origin,
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ensuring a self-starting condition. Farther from the origin, damping is positive, which

limits the amplitude of the signal.

Once steady state oscillation is achieved, the movement of the system’s signal is

confined to the dashed region of Fig. 26(a). The size of this region can be found by

calculating the location of the extrema of z− (1 + ρ)H(z). Figure 26(b) shows a plot

of the region size versus ρ. Note that the oscillation region size is also dependent on

H(z).

Within the region of oscillation, f(z) may be approximated by the following even-

order function

f(z) ≈ −ρ (1 − z2ν/m2ν
ρ

)
, (138)

where mρ is a function of ρ such that f(mρ) = 0. This approximation is derived from

noting that H(z) is an odd function, of order 2ν + 1 ≥ 3, and then fitting a 2ν-order

function to pass through the point (0, f(0)) and the roots of f(z). Equation (137) is

now approximately

z̈ − ρ(1 − z2ν/m2ν
ρ )ż + z = 0, ρ > 0. (139)

We identify a perturbation parameter, ε = ρ and define y = z/mρ to write

ÿ − ε(1 − y2ν)ẏ + y = 0, ε > 0. (140)

From Liénard’s Theorem, (140) exhibits a stable, unique oscillation. Further, since

it is just a perturbation of a linear resonator, we can expect very-nearly sinusoidal

oscillations for small enough ε. The behavior of this oscillator can be analyzed using

multi-timescale perturbation or via the method of averaging [20].

To perform the averaging method, we write the solution to (140), as in Chapter

5, as

y = R(t) cos(t+ ψ(t)) (141)
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and require

dy

dt
= −R(t) sin(t+ ψ(t)) (142)

d2y

dt2
= −R(t)

dt
sin(t+ ψ(t)) −R(t) cos(t+ ψ(t))

(
1 +

dψ(t)

dt

)
, (143)

to hold.

Equations (141) and (142) imply

dR

dt
cos(t+ ψ) −R sin(t+ ψ)

dψ

dt
= 0, (144)

and (141), (142) and (143) substituted into (140) give

−dR
dt

sin(t+ ψ) −R cos(t+ ψ)
dψ

dt
= ε(−1 + (R cos(t+ ψ))2ν)R sin(t+ ψ) (145)

Applying the near-identity transformations to (144) and (145), we can derive the

slow flow equations to be

dR̄

dt
=

εR̄

2π

∫ 2π

0

sin(t+ ψ̄)2
(
1 − (R̄ cos(t+ ψ̄))2ν

)
dt

=
εR̄

2π

∫ 2π

0

sin(φ)2
(
1 − (R̄ cos(φ))2ν

)
dφ (146)

dψ̄

dt
=

ε

2π

∫ 2π

0

cos(t+ ψ̄) sin(t+ ψ̄)
(
1 − (R̄ cos(t+ ψ̄))2ν

)
dφ

=
ε

2π

∫ 2π

0

cos(φ) sin(φ)
(
1 − (R̄ cos(φ))2ν

)
dt, (147)

where φ = t+ ψ̄.

Equations (146) and (147) can be simplified by recognizing that sin(a1φ) is orthog-

onal to sin(a2φ) for a1 
= a2 and a1,2 ∈ N+. Also, sin(φ) and cos(φ) are orthogonal.

Recalling the trigonometric identity

sin(φ)2 = (1 − cos(2φ))/2, (148)

it is evident that only the constant term and the cos(2φ) term of the expression

1 − (R̄ cos(φ))2ν will have a non-zero contribution to the integral of (146). Further,

the integral of (147) is identically zero.
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By applying the Binomial theorem to the Euler expansion of cos(φ), we can write

1 − (R̄ cos(φ))2ν = 1 − (2ν)!R̄2ν

ν!ν!22ν
+

R̄2ν

22ν−1

ν∑
k=0

(
cos(φ(2ν − 2k))

(2ν)!

(2ν − k)!k!

)
(149)

Using the identity of (148), and considering only the constant and cos(2φ) terms

of (149), (146) becomes

dR̄

dt
=

εR̄

2π

∫ 2π

0

1 − cos(2φ)

2

(
1 − (2ν)!R̄2ν

ν!ν!22ν
+

(2ν)!R̄2ν cos(2φ)

(ν + 1)!(ν − 1)!22ν−1

)
dφ

Over one cycle, the integral of cos(2φ) is 0, while the integrals of 1 and cos2(2φ) are

2π and π, respectively. We can write

dR̄

dt
=

εR̄

2π

∫ 2π

0

1

2

(
1 − (2ν)!R̄2ν

ν!ν!22ν

)
+

(2ν)!R̄2ν cos2(2φ)

(ν + 1)!(ν − 1)!22ν
dφ

=
εR̄

2

(
1 − (2ν)!R̄2ν

ν!ν!22ν
+

(2ν)!R̄2ν

(ν + 1)!(ν − 1)!22ν

)
=

εR̄

2

(
1 − (2ν)!R̄2ν

22ν

(v + 1)!(v − 1)! − v!v!

v!v!(v + 1)!(v − 1)

)
.

At steady state, R̄ is equal to the equilibrium point of (150), which is determined

by setting the RHS of (150) to 0 and solving for R̄. This gives a steady state value of

R̄∗ = 2ν

√
22νv!v!(v + 1)!(v − 1)!

2ν ((v + 1)!(v − 1)! − v!v!)
. (150)

To first order, the steady-state solution to (140) is then

y(t) = 2ν

√
22νv!v!(v + 1)!(v − 1)!

2ν ((v + 1)!(v − 1)! − v!v!)
cos(t). (151)

For most of this chapter, we will assume ν = 1, meaning that (140) simplifies to

ÿ − ε(1 − y2)ẏ + y = 0, ε > 0, (152)

which is the van der Pol oscillator [31].

Note that Liénard’s Theorem is valid only if the nonlinearity is continuously differ-

entiable. Even though most physical circuits have continuously-differentiable transfer

functions, there exists another analysis method, describing functions [24], that can

handle the case of functions with discontinuous derivatives (i.e. piecewise linear func-

tions).
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6.3 OTA-C oscillator synthesis

An OTA-C implementation of the Liénard equation will involve a second-order section

and some form of nonlinearity. The nonlinearity may be external to the second-order

section [22–25] or may be an inherent part of it [27, 28]. We espouse the latter

approach and present here a general method for synthesizing a sinusoidal oscillator

this way.

6.3.1 Linear OTA-C second-order sections

Figure 28 depicts a general OTA-C second-order section (SOS) [32]. It has two

dominant poles, each of which is produced by a low conductance/high capacitance

node. We can derive the governing dynamics of an SOS by applying Kirchhoff’s

Current Law (KCL) to each of its two nodes. The only way that current can flow

onto a node is either through a capacitor, or through an OTA. Assuming no floating

nodes, there are at most three effective capacitors in an SOS: the two grounded

capacitors at either node, and the floating capacitor between both nodes. The inputs

to any OTA can only be a linear combination of the node voltages. If all of the OTAs

are operated linearly, then the sum of the OTA currents at a given node is simply

a linear combination of the node voltages. With all of the above constraints, any

OTA-C SOS is fully described by [32]⎡⎢⎣ C1V̇1

C2V̇2

⎤⎥⎦ =

⎡⎢⎣ G11 G12

G21 G22

⎤⎥⎦
⎡⎢⎣ V1

V2

⎤⎥⎦+ Cf

⎡⎢⎣ V̇2 − V̇1

V̇1 − V̇2

⎤⎥⎦ , (153)

where V1 and V2 are the node voltages. The quantities C1, C2 and Cf are the ca-

pacitances of the two grounded capacitors and of the floating capacitor, respectively.

Finally, each Gij is the effective OTA small-signal transconductance gain of Vj seen

by the i’th node. We make the following definitions

φ = Cf/C1; k = C1/C2; τ = t ·G/C1;

x1 = V1/Vc; x2 = V2/Vc, (154)
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Figure 28. Generic OTA-C SOS. The depicted circuit contains all possible elements
and connections, without redundancy, of an OTA-C second-order section. Any given
OTA-C SOS is a subset of this generic circuit.
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G1

G2

V1 V2 G1

G2

V1

(a) (b)

Gh = ε(G1G2)1/2+ G2

V2

Figure 29. Simple van der Pol derivation. (a) Initial SOS circuit, with all linear OTAs.
(b) A nonlinear OTA converts SOS into the van der Pol oscillator.

where G is some representative transconductance gain; for example G = max(G11−22).

Once we introduce the nonlinear OTA, Vc will be defined in terms of the correspond-

ing H(y) nonlinearity. The quantities x1 and x2 are state variables that are scaled

according to Vc. Applying the substitutions of (154), the dimensionless state-space

form of (153) is ⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ a b

c d

⎤⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎣ x1

x2

⎤⎥⎦+ φ

⎡⎢⎣ ẋ2 − ẋ1

kẋ1 − kẋ2

⎤⎥⎦ . (155)

The state variables x1, x2 are differentiated with respect to the dimensionless inde-

pendent variable, τ . We will mostly assume that there are no floating capacitors in

the SOS. That is, φ = Cf = 0.

6.3.2 Conversion from a linear SOS to an oscillator

The oscillator design is essentially a question of converting (155) to (137). The one

constraint is that this conversion to Liénard’s equation be physically realizable, using

a nonlinear OTA. Note that the OTA’s only possible inputs are the state variables,

x1, x2. Also, the OTA’s output must be added directly to the dynamics of exactly

one or the other state variable. So, converting (155) to the Liénard equation can only
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involve adding a vector of the form⎡⎢⎣ gh ·H(px1 + qx2)

0

⎤⎥⎦ or

⎡⎢⎣ 0

gh ·H(px1 + qx2)

⎤⎥⎦ , (156)

to the RHS of (155). Here, H(·) is the nonlinear OTA’s sigmoidal function and its

argument is a weighted sum of x1 and x2. Also, gh is a dimensionless representation of

the nonlinear OTA’s small-signal transconductance gain. Successful oscillator design

depends on choosing the appropriate values of p, q and gh.

6.3.2.1 Some special cases

I will introduce the synthesis procedure with the simple SOS depicted in Fig. 29(a),

where the OTAs are linear, and G1, 2 are their respective transconductance gains. By

applying KCL, we derive the following state space equation,⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ 0 b

c d

⎤⎥⎦
⎡⎢⎣ x1

x2

⎤⎥⎦ , (157)

where b ∝ G1, c ∝ G2 and d ∝ G2. Notice that A is a lower skew-triangular matrix

in this example. For A of this type, we convert (155) into the Liénard equation by

simply adding (μ − d)H(x2) to the x2 dynamics. We have picked p = 0, q = 1 and

gh = (μ− d), where μ is to be determined. Adding (μ− d)H(x2) to the x2 dynamics

of (157) yields ⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ bx2

cx1 + dx2 − (d− μ)H(x2)

⎤⎥⎦ , (158)

which, as a single differential equation, is

ẍ2 − (d− (d− μ)H ′(x2)) ẋ2 − bcx2 = 0. (159)

As discussed earlier (see (139)), this can be approximated as

ẍ2 − μ
(
1 − x2

2/m
2
μ

)
ẋ2 − bcx2 = 0, (160)

where mμ is a function of μ such that H ′(mμ) = d/(d− μ).
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If we define

y = x2/mμ,

μ = ε
√−bc, (161)

and rescale time as

T =
√−bc · τ, (162)

then (159) becomes

d2y

dT 2
− ε
(
1 − y2

) dy
dT

+ y = 0, (163)

the van der Pol equation. Note that, for the conversion to make sense, we must have

bc < 0 and d < 0. From (158) and (161), we can infer the required placement of the

nonlinear OTA. The positive input is x2, the negative input is (a.c.) ground, and

the output current is sourced onto node x2. In addition, we must bias the nonlinear

OTA such that its small-signal transconductance gain corresponds to ε
√−bc − d.

Figure 29(b) depicts the augmented SOS circuit, now an oscillator.

If A is an upper skew-triangular matrix, then we can obtain an oscillator by a

series of similar steps as above. We place a nonlinear OTA whose output and positive

input are connected to node x1. Also, its negative output must be at ground, and it

must be biased to have a small-signal gain corresponding to ε
√−bc − a. Again, we

require bc < 0, and also a < 0.

6.3.2.2 The general case

When A is not skew-triangular, it is a little trickier to convert (155) into the Liénard

system. With the general form of (155), improper placement of the nonlinearity can

cause unwanted distortion. The issue is that the dynamics of one state variable will

couple into those of the other. Assuming φ = 0, we can reduce the interdependence

of the states by changing the axes of the dynamical system.
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Consider a new state vector, v = [v1 v2]
T, defined as⎡⎢⎣ v1

v2

⎤⎥⎦ =

⎡⎢⎣ x1

cx1 + dx2

⎤⎥⎦ . (164)

Written in terms of v, with φ = 0, (155) becomes,⎡⎢⎣ v̇1

v̇2

⎤⎥⎦ =

⎡⎢⎣ a− bc
d

b
d

0 d

⎤⎥⎦
⎡⎢⎣ v1

v2

⎤⎥⎦+

⎡⎢⎣ 0

cv̇1

⎤⎥⎦ . (165)

We convert (165) into the Liénard equation by simply adding gh · H(v2) to the v1

dynamics. Again, gh refers to the small-signal gain of the nonlinear OTA. After

adding the nonlinear OTA to (165), we arrive at the following second-order ODE

v̈2 − (a+ d+ cghH
′(v2)) v̇2 + (ad− bc) v2 = 0, (166)

which is approximately

v̈2 − (a+ d+ cgh)
(
1 − v2

2/m
2
gh

)
v̇2 + (ad− bc) v2 = 0, (167)

where mgh is such that H ′(mgh) = −(a+ d)/(cgh).

Next, we rescale time as T =
√
ad− bc · τ , and define

ε = (a+ d+ cgh)(ad− bc)−
1
2 , (168)

y = v2/mgh, (169)

to get

d2y

dT 2
− ε
(
1 − y2

) dy
dT

+ y = 0, (170)

as desired. Note from (169) that we require

ad− bc > 0 (171)

a+ d < 0, (172)
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which are the same conditions for A to be Hurwitz. That is, the SOS must be stable1.

These inequalities are consistent with those for when A is a skew-triangular matrix.

6.3.2.3 Summary

Any stable linear OTA-C SOS circuit can be converted into an oscillator via OTA

nonlinearity. This is done by augmenting the linear SOS, (155), with a nonlinear

OTA in the form of the first vector in (156), choosing

p = c; q = d; (173)

gh =
(
ε
√
ad− bc− (a+ d)

)
/c. (174)

Notice that we would have arrived at a very similar alternative solution, if we had

defined v as ⎡⎢⎣ v1

v2

⎤⎥⎦ =

⎡⎢⎣ ax1 + bx2

x2

⎤⎥⎦ . (175)

6.4 Characteristics of the van der Pol equation

OTA nonlinearity is an appealing choice for amplitude limiting in oscillators, because

it is power- and area-efficient. When the nonlinearity results in the van der Pol

oscillator, we enjoy the additional benefit of having implemented a well-known and

studied dynamical system. The choices of design parameters for the oscillator can

then be informed by analytical results from the field of perturbation theory.

The van der Pol equation has no closed-form solution. However, for small enough

ε, we can use first-order averaging to find an approximate solution [20]. Setting ν = 1

in (150), we find the amplitude of y(T ) to be described by

dAy

dt
=
ε

8
Ay(4 − Ay), (176)

1It is possible to convert an unstable SOS into an oscillator, using a procedure very similar to
that which we have so far described. The main difference is that the nonlinearity involved would
be expansive (as encountered, for instance, in a current feedback operational amplifier), rather than
the usual OTA compressive function.
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which gives

Ay =
2√

1 − e−εT
(
1 + 4

y2
0

) , (177)

where y0 depends on initial conditions. The approximate solution to the van der Pol

equation is thus

y(T ) =
2 cosT√

1 − e−εT
(
1 + 4

y2
0

) . (178)

Note that, as T → ∞, the solution approaches a sinusoid of amplitude 2. Further,

this approach is roughly at a rate of e−εT . The oscillator’s start-up time is thus

proportional to 1/ε.

Applying higher-order perturbation analysis [20] reveals that, at steady state, the

solution to (170) is

y(T ) = 2 cos(T ) + 3ε/4 sin(T ) − ε2/8 cos(T ) +

−ε/4 sin(3T ) + 3ε2/16 cos(3T ) +

−5ε2/96 cos(5T ) + O(ε3). (179)

We would ideally want an oscillator that has no higher-order harmonics. The

square-root of the ratio of harmonic power to fundamental frequency power is a

measure of this nonideality, and is referred to as total harmonic distortion (THD).

From (179), we derive the following expression for THD

THD % =
ε

8

√
1 + 349ε/576

1 + ε2/64 + ε4/256
· 100

≈ 12.5ε+ 3.8ε2. (180)

According to (168), ε depends on how much bigger gh is than |a+d|. It is effectively a

measure of the strength of the nonlinear OTA relative to the linear ones. That THD

increases with ε matches the intuition that the oscillator’s nonlinearity be ‘weak’, or

‘soft’.
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6.5 OTA-C oscillator analysis and design considerations

So far, the treatment has been mostly theoretical. In this and the following sections,

we address the implications that the design framework has for a practical oscillator

implementation.

6.5.1 Frequency of oscillation

From (178), the system oscillates at a rate of one cycle per 2π units of T . Recalling

T = τ
√
ad− bc, and τ = tG/C1, this corresponds to an oscillation frequency of

wo = G
√
ad− bc/C1 rads−1. (181)

The quantity G is some representative transconductance gain of the linear SOS of

(153) (e.g. G = max(G11−22)). If we maintain the relative gains of the amplifiers —

that is, a, b, c, d are kept constant — then increasing G will cause a linear increase in

the frequency of oscillation.

6.5.2 Amplitude of oscillation

According to (178), the circuit oscillates at an amplitude of 2 units of the y quantity.

In terms of the v2 variable, the amplitude of oscillation is (see (169))

amp(v2) = 2mgh. (182)

From (164), v2 is the derivative of x2 with respect to τ . Using this fact, and replacing

x2 and τ with their expressions in V2 and t, respectively, we find the voltage amplitude

of oscillation to be

amp(V2) =
2mghVc√
ad− bc

. (183)

Recall that mgh is defined as

H ′(mgh) = −(a+ d)/(cgh). (184)
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Using the definition of ε, we can write

H ′(mgh) =
−(a+ d)

ε
√
ad− bc− (a+ d)

. (185)

The amplitude of oscillation is thus

amp(V2) =
2Vc√
ad− bc

(H ′)−1

( −(a+ d)

ε
√
ad− bc− (a+ d)

)
. (186)

For small ε, the oscillation amplitude equation can be simplified to

amp(V2) ≈ Vc√
n

2
√
ε√

3
√
ad− bc(ε

√
ad− bc− (a+ d))

, (187)

where n is the Taylor series cubic term of H(y). The equation above reveals that

the oscillation amplitude with respect to Vc/
√
n is solely determined by ε and the

topological parameters a, b, c, d. It does not depend on the specific OTA, as long as

the dominant nonlinearity is cubic, nor whether it is biased above or below threshold.

However, the specific values of Vc and ε may change with OTA bias region and with

OTA topology. Similar observations can be made for OTAs whose nonlinear function

H(y) is not dominantly cubic.

6.5.3 Inputs to the nonlinear OTA

We have shown that the input to the nonlinear OTA must be cx1 + dx2. Figure 30

depicts a generic circuit for generating the inputs in question. Notice that in the

circuit diagram, the argument to the nonlinear OTA is v3 = x1 + x2d/c, instead of

v2 = cx1 + dx2. Defining v3 = v2/c, (166) becomes

v̈3 − (a+ d+ cghH
′(cv3)) v̇3 + (ad− bc) v3 = 0. (188)

It is then straightfoward to show that the circuit of Fig. 30 meets all of the established

conditions for oscillator design, and that all of the previous results still hold, with the

slight correction amp(v3) = amp(v2)/c.
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gh
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Figure 30. Inputs to the nonlinear OTA.

6.6 An illustrative example

In this section, we will apply the oscillator synthesis procedure to the Lyon/Mead

SOS [14] depicted in Fig. 31. The oscillator designer’s choice of SOS topology should

normally depend on such considerations as noise and distortion, as addressed by

Koziel et al. [33]. This particular SOS structure is chosen less for any technical merits

of the resulting oscillator than for the sheer arbitrariness of it. The major claim in

this chapter is that any stable SOS can be converted into a controllable, well-behaved

sinusoidal oscillator. It would not be useful to support this claim with, say, the circuit

of Fig. 29, since it is a lossy resonator, whose conversion to a stable oscillator might

seem intuitive almost to the point of being trivial. The Lyon/Mead SOS, however,

has traditionally been viewed not as a sinusoidal oscillator, but for decades as a simple

filter model of the cochlea by the neuromorphic community. Hence, it is probably

unlikely to be a contrived demonstration of the synthesis procedure.
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CG
G
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V1
V2

Figure 31. The SOS introduced by Lyon and Mead [14] is normally operated as a low-
pass filter. We can apply the synthesis methodology to convert it into an autonomous
oscillator with independently-controllable amplitude and frequency of oscillation.

6.6.1 Placement of the nonlinear OTA

Applying KCL to nodes V1 and V2 of Fig. 31, we get the following set of differential

equations

C

⎡⎢⎣ V̇1

V̇2

⎤⎥⎦ =

⎡⎢⎣ Gr −G −Gr

G −G

⎤⎥⎦
⎡⎢⎣ V1

V2

⎤⎥⎦ , (189)

where the node voltages are all referenced to Vref , and each OTA is assumed to be

linear. We make the following definitions

x1 = V1/Vc; x2 = V2/Vc;

τ = t ·G/C; r = Gr/G, (190)
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to get the following dimensionless state-space expression⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ r − 1 −r
1 −1

⎤⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎣ x1

x2

⎤⎥⎦ . (191)

The transconductance matrix A is Hurwitz for r < 2, meaning that OTA nonlinearity

can convert the SOS of Fig. 31 into an oscillator. From the synthesis procedure, we

determine that the nonlinear OTA should have a differential input of x1 − x2, with

its output current sourced onto node x1. From (174) and (191), the small-signal gain

of the nonlinear OTA should be

g = 2 + ε− r, (192)

which, in dimensionalized form, is

Gh = (2 + ε)G−Gr. (193)

When the nonlinear OTA is added to the original Lyon/Mead SOS, we obtain the

circuit shown in Fig. 32(a). It should start to oscillate once Gh is larger than 2G−Gr.

6.6.2 OTA consolidation

Notice from Fig. 32(a) that the nonlinear OTA shares its inputs and output with the

Gr OTA. The linear term of the nonlinear OTA renders OTA Gr redundant. We can

eliminate this OTA, which implies Gr = r = 0. The small-signal gain of the nonlinear

OTA is now

Gh = (2 + ε)G. (194)

Figure 32(b) shows the consolidated circuit, which comprises two linear OTAs and a

nonlinear one.

6.6.3 Circuit implementation

The linear OTAs in Fig. 32(b) were each implemented as the variable gain OTA

of Fig. 33, originally introduced by DeWeerth et al. [34]. The attenuation stage is
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Figure 32. SOS conversion to an oscillator. (a) OTA-C circuit that results from direct
application of synthesis methodology. (b) OTA-C circuit after consolidation. The Gh

and Gr OTAs are merged into one, since they share the same input and output nodes.

highlighted with a dashed box, where the input voltage is attenuated by the ratio

of the transconductance gains of the nMOS differential pair to that of their diode-

connected pMOS loads. The nMOS differential pair operates in strong inversion,

while the pMOS loads are sized to operate in subthreshold. This gives an attenuation

factor of [34]

α =
UT

κ

√
2βα

Iα
, (195)

where βα is a constant that depends on the physical dimensions of the nMOS tran-

sistors in the attenuation stage, and Iα ≈ 5μA is the bias current through this stage.

The nonlinear OTA was implemented as a current-mirror nine-transistor OTA,

that is, the circuit shown in Fig. 33, minus the attenuation stage. The attenuation

factor for the nonlinear OTA is effectively fixed at α = 1.

The on-chip capacitors were fabricated as poly-poly capacitors with C = 912.5fF.

The parasitic input capacitance of the attenuators (on the order of 1pF) add to these

poly-poly capacitors, making the total effective capacitance hard to predict precisely.

A correction term must therefore be factored into the frequency-of-oscillation equa-

tion.
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V+

VpVn

Iout

Vα

Vbias

Iα

Ibias

attenuation stage

differential pair

V-

Figure 33. The variable linear range OTA. The attenuation stage of the OTA consists
of an above-threshold differential pair that is loaded by subthreshold diode-connected
transistors. The disparate gains of the above- and subthreshold transistors result in
voltage attenuation between V+, V− and Vp, Vn. The level of attenuation is controlled
by the bias current, Iα. The output of the attenuation stage is fed to a simple nine-
transistor OTA. Transistor dimensions, attenuation stage: nMOS W/L = 3μm/100μm;
pMOS W/L = 100μm/3μm. Current mirror OTA: nMOS W/L = 20μm/3μm; pMOS
W/L = 40μm/3μm.

6.6.4 Experimental results

We fabricated the OTA-C circuit of Fig. 32(b) in a 0.5μm process available from

MOSIS. The die photo is shown in Fig. 34. We had control of the bias currents

through the bias transistors’ gate voltages. The nodes V1 and V2 were accessible via

on-chip buffers. The OTAs ran on a single-ended supply of 3.3V and had a bandwidth

of a few hundred kHz.
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Figure 34. Oscillator die micrograph. The labeled portions correspond to the circuit
components in Fig. 32(b). Total area, including output buffers, is 160.35μm × 417.60μm.

For subthreshold operation, the transconductance gains were defined as

G = Iavg · ακ
2UT

, (196)

Gh = αIavg(2 + ε)︸ ︷︷ ︸
Ih

· κ

2UT

, (197)

where Iavg and Ih are the bias currents of the linear and nonlinear OTAs, respectively.

According to (181), the frequency of oscillation should be equal to

f =
ακIavg

4πCUT

(Hz). (198)

Figure 35 is a plot of (198), superimposed on measurement results. Given the uncer-

tainty of the exact value of C, the values α = 0.1 and κ = 0.67 were chosen to fit the

data. The figure depicts a linear tuning range of 2.2kHz to 100kHz. The prototype

OTAs suffered from low bandwidth, relative to oscillating frequency. So, to keep

amplitude constant across the frequency range, the ratio Ih/Iavg was manually varied

from 0.44 to 0.37 to offset parasitic effects [24]. The power consumption varies over

this tuning range from 0.19μW to 6.27μW. If we opt for above-threshold operation,

we can push the frequency of oscillation into the low 200kHz range.

Equation (183) predicts that the amplitude of oscillation is Vamp = 4mghVcVpp.

We defined mgh as the solution to H ′(mgh) = 2/(gh). For nonlinear OTAs operated
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Figure 35. Linear frequency control with current Iavg, at 100mVpp oscillation amplitude.
Increasing the current increases each transconductance gain, G, proportionally, causing
a linear increase in the oscillation frequency. The dashed line (y-axis on the right) is a
plot of the ratio of Ih/Iavg across this range of frequencies. Ideally, this ratio should be
fixed for a constant amplitude of oscillation. However, we manually changed the ratio
across frequencies to offset parasitic capacitances in the OTAs.

in the subthreshold region, H(·) = tanh(·). Hence, mgh is found to be

mgh = tanh−1
(√

(gh − 2)/(gh)
)

= tanh−1

(√
ε

ε+ 2

)
, (199)

and the (subthreshold) amplitude of oscillation is

Vamp = 8
UT

κ
tanh−1

(√
ε

ε+ 2

)
(Vpp). (200)

I took experimental measurements of oscillation amplitude versus ε, and compared

my results to the analytical expression of (200). Figure 36 shows this comparison.

We showed in Section 6.4 that the oscillator’s total harmonic distortion depends

on ε as

THD % ≈ 12.5ε+ 3.8ε2.
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Figure 36. Amplitude control with transconductance Gh, at 100kHz oscillation fre-
quency. The transconductance Gh is directly proportional to ε. From (200), the ampli-
tude of oscillation is roughly proportional to

√
ε.

Experimental results (see Fig. 37) show a similar trend to that given by the THD

equation. Comparing Figs. 36 and 37, observe that the analytical predictions based on

the van der Pol model begin to diverge from measured data as ε becomes too large for

the synthesized nonlinear resistor to be validly approximated as a simple cubic. Also,

fairly high amounts of THD are experienced for relatively small oscillation amplitudes.

We can achieve higher oscillation amplitudes with less THD if we operate the OTAs

above threshold.

Figure 38 shows a typical measured output power spectrum for when the oscillator

is operated above threshold. Here, Iavg = 10μA and ε ≈ 0.03. The resulting oscillation

is at 146kHz with a 90mVpp amplitude and a THD of only 0.47%. (Compare this to

the subthreshold case, where an oscillation amplitude of 90mV would cause a THD

of approximately 3%.)

81



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

ε = G
 nl

/G−2

T
H

D
 %

Measurement
Analytical Prediction

Figure 37. Total harmonic distortion (THD) exhibits a linear dependence on transcon-
ductance gain Gh, as predicted by (180). These THD measurements are for an oscilla-
tion frequency of 20kHz, and include harmonics up to the 10th.

The unexpected feature of Fig. 38 is that the power spectrum reveals a second

harmonic, despite the theoretical solution, (179), having no even-order harmonics.

The second harmonic is caused by input offset in the OTA differential pair. Input

offset refers to the non-zero differential input voltage at which an OTA has an output

current of 0A. Consider the differential pair of Fig. 33, and say it has an offset of Voff .

Then the output current of the OTA can be written as

Iout = F (Vp − Vn − Voff), (201)

where F (·) is some function such that F (0) = 0, and Vp, Vn are the differential-pair

input voltages. In terms of the OTA inputs, V+ and V−, we write (201) as

Iout = F (α(V+ − V−) − Voff),

= F (α(V+ − V− − Voff/α)), (202)
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Figure 38. Oscillator output for 90mVpp at 146kHz. (a) Timeseries. (b) Power spectrum.
The even-order harmonics are due to input offset in the linear OTAs. THD calculated
up to the 10th harmonic is 0.47%. Phase noise is −66dBc/Hz at a 10kHz offset.

which shows that the intrinsic offset of the differential pair has been magnified by

1/α. The effect of this magnification is so detrimental that the second harmonic

has a magnitude of −55dBc. Because the distortion analysis ignored this effect, the

THD equation is not all that accurate. Still, the experimental results in Fig. 37 are

reasonably close to the predicted values.

The power spectrum of an ideal sinusoid should have a delta function at its os-

cillation frequency. As Fig. 38 shows, a physically-derived sinusoid displays some

spreading in the power spectrum, resulting in ‘skirts’ around the oscillation frequency.

This nonideality is normally quantified as phase noise [35]. For the operating point

depicted in Fig. 38, the phase noise is −66dBc/Hz at a 10kHz offset. Earlier work

has provided analytical expressions for the expected phase noise of a van der Pol

oscillator [36].
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6.7 Low distortion sinusoidal oscillators

Although we focused on input attenuation as a form of OTA linearization, there are

many other schemes that deign to linearize an OTA without an explicit attenuation

stage [28, 37]. As we previously showed, one reason to do this is to avoid the input

offset amplification that an attenuation stage creates. So, linear OTAs used in actual

oscillators might very well not have attenuation stages at all. This fact does not

make the results any less valid; all that the analysis assumes is the availability of

linear OTAs and of one sigmoidally-nonlinear OTA.

For a van der Pol oscillator, the oscillation amplitude with respect to the charac-

teristic voltage Vc is uniquely determined by ε, the specific implementation of H(y),

and the relationships among the SOS topological parameters a, b, c, d. On the other

hand, THD depends only on ε, and not on Vc or on the SOS topology. Consequently,

the only way to increase amplitude while keeping THD (i.e. ε) constant is to find a

better SOS topology, to increase the value of Vc, or to change the implementation

of H(y). As the SOS topology may have been optimized according to some other

criterion such as low noise, we will assume that it is fixed. So, the two options left

for increasing oscillation amplitude are to increase Vc (for our example OTAs, this

can be done by increasing the bias current when in above threshold) or to change the

analytical form of H(y) using, for example, bump linearization [37].

The sigmoidal function H(y) of a perfectly-bump-linearized OTA is not cubic, but

is rather a dominantly-fifth-order nonlinearity. An oscillator built with such an OTA,

or any other OTA with a non-cubic dominant nonlinearity, would not be a van der

Pol oscillator. However, it would still fall under the general description of (140) and

the methods for its analysis are identical to that of the van der Pol oscillator.

Linear, undistorted sinusoidal oscillation is obtainable from a system that has a

center for an equilibrium point. The problem is that the amplitude of oscillation in
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Figure 39. Phase plane portrait for the low distortion oscillator given by (203).

such a systems depends not on control parameters but on initial conditions. In addi-

tion, it is practically impossible to build a physical linear system whose equilibrium

point is a center.

Instead of attempting to build a system with a center equilibrium point, we can

build one that is a perturbation of such a system. Specifically, we can build a system

that has a small but finite amount of damping. To ensure that the oscillations are

sustained, the damping must be negative. That is, the equilibrium point is an unstable

spiral.

A purely-linear system with negative damping oscillates with an exponentially-

increasing amplitude. We can limit the growth of the oscillation by using an amplitude-

dependent damping term that becomes positive after a given threshold amplitude.

Such a damping term is used in the system whose phase plane is depicted in Fig. 39.
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The system depicted is given by the following set of differential equations

dy

dt
= (a+ 1)

( |y + b| − |y − b|
2

)
− y/Q− x

dx

dt
= y, (203)

where a, b and Q > 0 are control parameters. a controls the slope of the ẏ nullcline

around the origin, while 1/Q is the slope of the nullcline away from the origin. The

parameter b determines the break point of the piecewise-linear nonlinearity.

The oscillatory motion approaches a limit cycle in some region R via the Poincaré-

Bendixon Theorem. We restate this Theorem’s criteria, namely that [17]

(1) R is a closed, bounded subset of the plane;

(2) ẋ = f(x) is a continuously differentiable vector field on an open set containing

R;

(3)R does not contain any equilibrium points; and

(4)There exists a trajectory C that is confined in R.

To satisfy (1) and (4), we need to create a “trapping region”. Since the damping

is negative at the origin, we can define the inner boundary of R to be a small ball

around the origin. The outer boundary of R is simply one that is chosen large enough

that the damping on it is positive. We know that the damping becomes positive for

large enough y, by considering the RHS of (203) for y � b. Equation (203) becomes

dy

dt
≈ −y/Q− x

dx

dt
= y, (204)

which corresponds to the damped system ÿ + ẏ/Q+ y = 0 for large y.

Thus, all trajectories on the boundary of R are pointing into R. It is therefore a

trapping region. Further, the only equilibrium point of the system, the origin, is not

in R, meeting condition (3). Claiming the usual assumptions of smoothness, there

therefore exists a limit cycle in R. Notice that, with the indicated choice of damping
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Figure 40. Amplitude control of low distortion oscillator. The phase plane portrait for
the system given by (203) is depicted. The amplitude is increased by changing the
break points of the pwl curve. The increase in amplitude is not accompanied by any
increase in distortion.

term, the system also satisfies the conditions of Liénard equation. Thus, we have the

stronger result that the limit cycle exists and is unique.

What introduces distortion to the oscillation? Recall that, for zero distortion, the

equilibrium point would have to be a center. Hence, the amount by which the region

around the origin is a perturbation off a center determines the amount of distortion.

For the case of the nonlinear function of (203), the pertinent perturbation parameter is

a. Maintaining this parameter at a small value ensures low distortion oscillation. The

amplitude of oscillation is determined by the breakpoints of the nonlinear function.

If we vary the location of the breakpoints (i.e. the value of b) while keeping the value

of a low, then the amplitude of oscillation will be varied with no effect on the level of
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distortion. Figure 40 shows that increasing the oscillation amplitude via b does not

introduce distortion.

In the van der Pol oscillator implementation described earlier, the nonlinear func-

tion was given by (see (135) and (136))

Iout(Vz) = GmL

(
Vz − (1 + ε)VcH

(
Vz

Vc

))
. (205)

Assuming H(·) is a tanh function, the dimensionless nonlinear function can be written

as (y − (1 + ε) tanh(y)). The perturbation from a center is ε and the location of the

breakpoints — more properly, the maxima — is given by tanh−1
(
±√ε/(1 + ε)

)
.

This dependence of both the amplitude and the perturbation on ε means that it

is impossible to increase the oscillation amplitude without degrading the distortion

performance.

If, instead of (y− (1 + ε) tanh(y)), we used ((1 + br)y− (1 + br + ε) tanh(y)), then

the perturbation from the center is ε while the maxima are located at

tanh−1
(
±√ε/(1 + br)

)
. Therefore, we can control the amplitude of oscillation in-

dependent of the amount of perturbation form a center, meaning that the distortion

performance will not be degraded.

6.7.1 Low distortion oscillator implementation

In order to convert an SOS into an oscillator, we can follow the previously-described

OTA-C oscillator synthesis methodology until (165). This time, though, we convert

(165) into the Liénard equation by adding ghH(v2)+gbrv2 to the v1 dynamics. Notice

that we are now adding two OTAs — one linear and the other nonlinear — to the

original system. After adding these OTAs, the SOS originally described by (165) can

be written as

v̈2 − (a+ d+ cgbr + cghH
′(v2)) v̇2 + (ad− bc) v2 = 0, (206)

which is approximately

v̈2 − (a+ d+ cgbr + cgh)
(
1 − v2

2/m
2
gh

)
v̇2 + (ad− bc) v2 = 0, (207)
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where mgh is now defined as H ′(mgh) = −(a+ d+ cgbr)/(cgh).

Rescaling time as T =
√
ad− bc · τ as before, and defining

ε = (a+ d+ c(gh + gbr))(ad− bc)−
1
2 , (208)

y = v2/mgh, (209)

we get

d2y

dT 2
− ε
(
1 − y2

) dy
dT

+ y = 0, (210)

Again, we require

ad− bc > 0 (211)

a+ d < 0. (212)

The upshot of adding ghH(v2) + gbrv2, versus ghH(v2), to the v1 dynamics is that

ε depends on the average of gbr and gh, while the amplitude of y, via the expression

y = v2/mgh, depends on the ratio of gbr and gh (modulo a+ d). Thus, the addition of

an extra linear OTA allows for the independent control of ε and oscillation amplitude.
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CHAPTER 7

A BANDPASS FILTER WITH INHERENT GAIN
ADAPTATION FOR HEARING APPLICATIONS

The majority of hearing impairment is due to sensorineural loss, which is damage to,

or loss of, hair cells in the cochlea. This condition is characterized by a reduction

of perceivable dynamic range (e.g. in recruitment of loudness). The goal of hearing

compensation in this case, be it with a hearing aid or with a cochlear implant, is to

compress the normal dynamic range of hearing to compensate for the lost ability of

the cochlea to adapt to the signal level [38–40].

There are a variety of compression schemes that are in common use in hearing aids.

For a comparative review, see [41]. In a typical analog hearing aid, signal compression

is applied uniformly on the entire audio bandwidth. However, since the patient’s

loss of dynamic range is normally frequency dependent [42], it is more beneficial to

employ multichannel compression. Available in DSP-based hearing aids, multichannel

compression allows individual frequency bands to be tuned for specific dynamic ranges

[43]. The disadvantage of this approach is the size, power and monetary cost of the

digital processor.

We will favor the form of multichannel compression that is depicted in Fig. 41, but

in a low-cost analog aid [44]. Conceptually, the hearing compensation scheme consists

of two multiple-channel filters in cascade, Hn and Hd. The filter Hn mimics the normal

functioning of the cochlea. The Hd filter is designed and tuned so as to provide the

inverse function of the damaged cochlea. The signal x(t) is thus manipulated such

that the wearer perceives the original input, s(t) as it would have been processed

by a healthy cochlea [45]. Sound processing schemes such as this, which attempt to

capture the mechanics of a biological cochlea, are probably more efficient [46] and

more robust to environmental noise [47] than other algorithms.
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Figure 41. Multichannel compression hearing aid. (a) The damaged cochlea is modeled
as a filter Hd and the healthy cochlea is modeled as a filter Hn. The hearing aid is
formed from the cascade of Hn and the inverse of Hd. (b) The Hn block is a bank of
nonlinear bandpass filters that performs a frequency analysis of the input signal. (c) In
practice, the Hd filter reduces to parameter control of each channel in the Hn filter. For
the k’th channel in Hn, there is a corresponding set of parameters that constitute Hdk.
VGA stands for variable gain amplifier, which is optional, but if present, can be used
to set the knee point of the compression in terms of input amplitude (the compression
scheme that we present here is akin to output automatic gain control [41, 48], which
defines the knee point in terms of output amplitude).

Figure 41(b) shows that each channel of Hn contains a bandpass filter. The Hd

portion of the hearing aid reduces to parameter settings for the bank of bandpass

filters (see Fig. 41(c)). This chapter focuses on a suitable bandpass filter, which

mimics pertinent local functionality of the cochlea’s basilar membrane. The main

challenge of the design is to keep power and area costs low enough for the filter to

be of practical use in a portable hearing device. We will describe a nonlinear analog

circuit approach that meets this challenge.

7.1 Implications for speech perception

Compression in hearing aids can be the source of significant distortion or artifacts.

For this reason, recent research [49] suggests that the best way to use compression is
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as an automatic gain control (AGC) that adapts slowly except as required to suppress

sudden loud noises.1 Most likely, this is because the gain functions that are typically

used are decaying exponentials that can cause noticeable harmonic distortion. These

functions are usually not memoryless and they may induce phase changes in the en-

velope that blur the temporal characteristics of the envelope. However, the operation

of the proposed circuit is somewhat different, so following is a brief analysis of the

signal characteristics in the context of hearing compensation.

We represent an acoustic signal as a sum of band-limited signals indexed by k;

each subband representation is further decomposed into a product of an envelope

(which carries the instantaneous loudness information) and a rapidly-oscillating signal

(or carrier) of nearly constant power. This signal representation can be applied to

auditory analysis by making the signal subbands roughly equal in bandwidth to the

critical bands in the ear [45, 50]. In particular, the acoustic signal, s(t), is written as

s(t) =
∑

k

ek(t)vk(t) (213)

where vk(t) is a higher–frequency band–limited signal or vibration with nearly con-

stant power; and ek(t) represents the envelope variation over time. With this repre-

sentation, the loudness of the signal perceived in any particular critical band of the

ear is primarily controlled by operating only on the envelope in that band.

The envelope has a well-defined bandwidth that is roughly the same as the band-

width, fBW , of vk(t). In particular, the gain is a monotonic function of the envelope

and is incorporated into the bandpass filter operation so the time constant for each

band is approximately 1/fBW . The fact that the gain function in monotonic has the

following implications (see also Fig. 42):

1. The envelope at the output of the filters, êk(t) has the same general shape as

ek(t) with only a change in dynamic range;

1For such a system, the perceived distortion is minimal because the slow adaptation is not very
perceptible while the fast attack may be masked by the sound that caused it.
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Figure 42. Simulation results for a single band of speech processing. The upper panel
is the original input speech. The lower panel is the processed speech for a single band.
The black area is speech compressed with the scheme that we will describe shortly.
After compression, the general shape of the signal’s envelope is maintained, but with
a reduction in dynamic range.
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2. the output signal is in phase with the input signal—that is, the phase of ŝk(t)

is the same as that of sk(t) and if they were overlaid they would line up, the

only difference being in the amplitude; and

3. temporal cues are preserved because of items 1 & 2 and because vk(t) is pre-

served.

Note, while the gain applied to the envelope does not smear or destroy temporal cues

they may be slightly diminished as their dynamic range is diminished. This is to

be expected since the audible dynamic range of the listener is diminished. However,

this has been shown to provide an improvement in speech reception, especially in

noise [51, 52]. Note that the healthy cochlea too adapts its critical-frequency gain at

a rate that is on the order of one period of the input signal [53].

Finally, care must be taken so that the high-Q bandpass filters do not ring too

long and cause temporal smearing. This is not an issue for moderate Q values. For

example, a filter with a center frequency of 1kHz and Q = 5 yields 1.6 msec of ringing

when measured to the 3dB point and after 4 msec, the ringing has attenuated by over

20dB. Thus, the ringing is much shorter than even a short speech phoneme, meaning

that it is perceptually insignificant. However, we would like to have Qs that are

high enough to reflect the cochlea’s sharp frequency-selectivity [54]. The solution is

to create high-order filters that exhibit sharp frequency selectivity without excessive

ringing. While we will focus on a second-order filter, we can readily achieve higher

orders simply by cascading multiple filters per channel.

7.2 Filter description and architecture

The cochlea can be modeled as a bank of filters that performs a frequency analysis on

input signals. The frequency response of a particular basilar membrane site is shown

in Fig. 43. For small-amplitude inputs, each filter has a narrow passband around a

resonant frequency. As the input signal energy in a particular bandwidth increases,
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Figure 43. Basilar membrane site measurements at four sound pressure levels, adapted
from [54]. The gain is calculated as the ratio between basilar membrane displacement
and sound pressure level.
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the passband of the corresponding filter widens and its center frequency gain reduces.

In effect, each filter exhibits a band-limited nonlinear response around its resonant

frequency [55]. It is through this nonlinearity that the healthy cochlea is able to

compress a wide input dynamic range into a much smaller internal one.

7.2.1 Design approach I: Linearizing about the equilibrium point

We will implement the cochlear’s gain compression as a second-order bandpass filter

with an amplitude-dependent quality (Q) factor. Figure 44 show the desired frequency

response and step response of such a filter to various levels of input amplitude.

Recall that the response of

ẋ = F (x, u), (214)

to a step input of size Ain is defined as the solution to

ẋ = F (x, Ain). (215)

From Fig. 44, the response to a small-amplitudes step input is underdamped, while

the response to a large-amplitude step is overdamped. We can elicit such behavior

from (214) by choosing a system whose equilibrium point type changes from spiral

(underdamped) for small-amplitude steps to nodal (overdamped) for large-amplitude

steps. Following is a description of the design procedure.

Assume (214) is a second-order system, and that it is nonlinear only in x1 and the

input u. Specifically, define (214) as⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ f(x1, u) − x2

x1

⎤⎥⎦ , (216)

Keeping the x2 terms linear ensures that, for moderate values of quality factor, the

center frequency of the filter remains fixed, regardless of input amplitude. Equa-

tion (216) has the following response to a step input of amplitude Ain⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ f(x1, Ain) − x2

x1

⎤⎥⎦ . (217)
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Figure 44. Desired frequency response and step response of nonlinear filter. The panels
on the top row illustrate the desired frequency response of the filter. For an input
amplitude of 3 units, the top left panel shows a frequency response with a flat pass
band. An input amplitude of 0.1 — ostensibly a “small” amplitude for the purpose of
illustration — elicits the frequency response of the top right panel, which has sharp
Q-peaking. The panels in the bottom row illustrate the desired step response of the
filter. For an input amplitude of 3 units, the bottom left panel shows a damped step
response. An input amplitude of 0.1 elicits the step response of the bottom right panel,
which shows an underdamped, ringing response.

97



Assuming f(x1, Ain) is a single-valued function of x1, (217) has a unique equilib-

rium point, given as

(x∗1, x
∗
2) = (0, f(0, Ain)). (218)

The linearization of (217) is⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ ∂f(x1, Ain)/∂x1 −1

1 0

⎤⎥⎦
⎡⎢⎣ x1

x2

⎤⎥⎦ . (219)

Evaluating the Jacobian at (x∗1, x
∗
2), we find that the determinant is Δ = 1 and the

trace is τ = ∂f(x1, Ain)/∂x1|x1=0. Applying the techniques from Chapter 3, we note

that the equilibrium point is a stable spiral if

−2 <
∂f(x1, Ain)

∂x1

∣∣∣∣
x1=0

< 0, (220)

and a stable node if

∂f(x1, Ain)

∂x1

∣∣∣∣
x1=0

< −2. (221)

In order to elicit the adaptive Q behavior, the task now is to find a nonlinear

function f(·) such that

−2 <
∂f(x1, Ain)

∂x1

∣∣∣∣
x1=0

< 0, Ain < Ath (222)

and

∂f(x1, Ain)

∂x1

∣∣∣∣
x1=0

< −2, Ain ≥ Ath, (223)

where Ath is some appropriately-defined threshold amplitude. Note that

∂f(x1, Ain)/∂x1|x1=0 corresponds to the quality factor (Q).

To simplify the problem, consider a nonlinear function of the form

f(x1, u) = g(x1 + u). (224)

Then, we can write

∂f(x1, Ain)

∂x1

∣∣∣∣
x1=0

=
dg(y)

dy

∣∣∣∣
z=(x∗

1+Ain)

=
dg(y)

dy

∣∣∣∣
y=Ain

,
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Figure 45. Phase plane portrait for potential cochlear model. The phase portraits
depicted are for the step response of the system of (216) with f(x1, u) given by g(x1 +u),
where g(x1 + u) is the nonlinear function of (227) for m = −2.5 and Ath = 1. The panel
on the left is the phase portrait for the step response when the input step is at an
amplitude of 1.5, while the panel on the right is for an input step of 0.8.

and Equations (222) and (223) become

−2 <
dg(y)

dy

∣∣∣∣
y=Ain

< 0, Ain < Ath, (225)

and

dg(y)

dy

∣∣∣∣
y=Ain

< −2, Ain ≥ Ath. (226)

The piecewise-linear function

g(y) = my + |y + Ath| − |y − Ath|, (227)

is a simple example that satisfies (225) and (226), as long as −4 < m < −2.

Figure 45 depicts the phase portrait of (217), with f(x1, Ain) = g(x1 +Ain) given

by the pwl function of (227) for m = −2.5 and different values of Ain. When Ain <

Ath, the nullclines intersect at the shallow portion of g(x1 + Ain). That is, −2 <

dg/dy|y=Ain
< 0 and the equilibrium point is a spiral. For Ain ≥ Ath, the x1 = 0

nullcline shifts such that the equilibrium point occurs at the steep portion of g(x1 +

Ain). That is, dg/dy|y=Ain
< −2, and the equilibrium point is now a node. The same

information of Fig. 45 is depicted in Fig. 46 as a time domain plot.
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Figure 46. Step response for potential cochlear model, with pwl nonlinearity. The step
responses depicted are for the system of (216) with f(x1, u) given by g(x1 + u), where
g(x1 + u) is the nonlinear function of (227) for m = −2.5. The panel on the left is the
step response when the input step is at an amplitude of 1.5, while the panel on the
right is for an input step of 0.8.

Were the nonlinear function to be actually implemented as a piecewise linear

function, the filter would suffer unwanted distortion from the discontinuous derivative.

In addition, it would not exhibit the continuously-varying amount of Q-adaptation

that is desired in the hearing aid. For these reasons, we replace the piecewise linear

function with a smoother function that also meets the conditions of (227). These

conditions merely define a nonlinear function with an increasing gradient. So, any

expansive nonlinearity will do. For instance,

g(y) = my + 2 tanh(y) (228)

is a suitable function. With this particular choice of g(y) the filter equation is⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ 2 tanh(x1 + u) −m(x1 + u) − x2

x1

⎤⎥⎦ . (229)

Figure 47 shows the dependence of the filter’s step response to input amplitude.

The quality factor does indeed appear to reduce with increasing input amplitude,

as desired. We run into trouble when we consider the frequency response of this

100



0 20 40 60
−0.5

0

0.5

1

time (s)

x
2

v

0 20 40 60
−0.5

0

0.5

1

time (s)

x
2

v

Figure 47. Step response for potential cochlear model, with continuously-differentiable
nonlinearity. The step responses depicted are for the system of (216) with f(x1, u) given
by g(x1 + u), where g(x1 + u) is the nonlinear function of (228) for m = −2.1. The panel
on the left is the step response when the input step is at an amplitude of 1.1, while the
panel on the right is for an input step of 0.5.

filter, shown in Fig. 48. First of all even though the quality factor reduces with input

amplitude, the gain remains fairly constant. Also, the output is significantly distorted.

These two effects are due to including the input u in the nonlinearity. Recall that

the original problem (see Fig. 44) called only for the quality factor to be nonlinear.

The current design involves both a nonlinear quality factor and a nonlinear gain.

In the next section, we will describe a different approach that avoids this unwanted

nonlinearity.

7.2.2 Design approach II: transition layer problem

Given the results of the previous section, we will now consider implementing a filter

where the only argument to the nonlinear function is the x1 state variable, as such⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ f(x1) − x2 + u

x1

⎤⎥⎦ . (230)
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Figure 48. Frequency response for potential cochlear model, with continuously-
differentiable nonlinearity. The frequency responses depicted are for the system of
(216) with f(x1, u) given by g(x1 + u), where g(x1 + u) is the nonlinear function of (228)
for m = −2.1. The input amplitudes are 1.1 and 0.5.

The response of this filter to a step of amplitude Ain is⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ f(x1) − x2 + Ain

x1

⎤⎥⎦ . (231)

Notice from the linearization⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ ∂f(x1)/∂x1 −1

1 0

⎤⎥⎦
⎡⎢⎣ x1

x2

⎤⎥⎦ , (232)

that the type of equilibrium point is independent of input amplitude. As such, we

cannot apply the idea of changing equilibrium point type that we used in the previous

design approach.

Instead, we proceed by observing the effect of different input step sizes on the
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Figure 49. Phase portrait for for step response of system of (233). The input step
amplitude for the plot on the left is 1.1, while that of the one on the right is 0.5. The
equilibrium point, identified as the intersection of the nullclines, shifts farther and
farther away from the origin for larger and larger step input amplitude sizes.

phase plane. Consider the step response of the following linear filter⎡⎢⎣ ẋ1

ẋ2

⎤⎥⎦ =

⎡⎢⎣ −3x1 − x2 + u

x1

⎤⎥⎦ , (233)

with initial conditions x1(0) = x2(0) = 0. As the phase plane plots of Fig. 49 show,

the larger the input step amplitude Ain, the farther the equilibrium point is from

the initial conditions. We can therefore create a nonlinear filter whose local behavior

varies with distance from the equilibrium point.

Essentially, this design approach is an inversion of the normal transition layer

problem. That is, we will define the inner and outer layer solutions and then find a

system to which these solutions correspond.

We will refer to the region that is in the vicinity of the equilibrium point as the

inner layer. The region that is far from the equilibrium point is the outer layer. A

large amplitude input step places the system in the outer layer, where we desire a

damped response. On the other hand, a small amplitude input step places the system

in the inner layer, where we desire an underdamped response. To formalize this
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idea, consider the nonlinear filter step response, (231), under the change of variable

z2 = x2 − Ain. It becomes ⎡⎢⎣ ẋ1

ż2

⎤⎥⎦ =

⎡⎢⎣ f(x1) − z2

x1

⎤⎥⎦ , (234)

with initial conditions x1 = x∗1, z2 = x∗2 − Ain. Thus, the effect of a step input of

amplitude Ain is to shift the initial condition by Ain. Thus, a large input step places

the system far from the origin and effectively in the outer layer. A small input step

keeps the system close to the origin and in the inner layer.

In the outer layer, we would like f(x1) to be such that the system is damped.

At the origin, and in the inner layer, f(x1) should be such that the system is under-

damped. These constraints are enumerated as

1) f(x1, ε)|ε=0 = x1

Qu
,

2) in the “small amplitude” layer, lim
ε→0

f(x1, ε) =
x1

Qu

,

3) in the “large amplitude” layer, lim
ε→0

f(x1, ε) =
x1

Qd

,

4) in order for (3) to occur while f(x1 still satisfies (1) and (2), the thickness of

the “small amplitude” layer must follow lim
ε→0

d(ε) = 0.

The parameters Qu and Qd represent underdamped and damped values, respec-

tively, of the filter’s quality factor.

A function that satisfies lim
ε→0

f(x1, ε) = x1/Qu is f(x1, ε) = x1/Qu. A function that

satisfies lim
ε→0

f(x1, ε) = x1/Qd is f(x1, ε) = x1/Qd. So, we have

f(x1, ε) ≈ x1

Qu

, |x1| < d(ε)/2 (235)

≈ x1

Qd

, |x1| ≥ d(ε)/2, (236)

where we are assuming that f(x1, ε) is even symmetric.
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Figure 50. Supercritical Hopf bifurcation in nonlinear bandpass filter. The phase plane
portraits shown are for the step response of the system of (230) with f(x1) given by
(238). The parameter values are ε = 1, Qd = 0.2 and (a) Qu = 10 and (b) Qu = −10.

For simplicity, say d(ε) = 2ε. Then, if we join the inner layer and the outer layer

with a piecewise-linear curve we end up with a function f(x1, ε) given by the equation

f(x1, ε) = − x1

Qd

+

(
1

2Qd

− 1

2Qu

)
(|ε+ x1| − |ε− x1|) . (237)

Similar to the other design approach, we will replace this pwl function with a

smoother one, namely

f(x1, ε) = − x1

Qd

+ ε

(
1

Qd

− 1

Qu

)
tanh

(x1

ε

)
. (238)

7.2.2.1 Instability due to bifurcation

The nonlinear function of (238) can be implemented using one linear OTA in parallel

with a nonlinear one, to give

I(V1) = −Gd · V1 +Gud · Vc tanh

(
V1

Vc

)
, (239)

where the nonlinear OTA is assumed to be based on a subthreshold differential pair

(see Chapter 6). The voltage Vc is a characteristic voltage, as defined in Chapter 6.
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Also, the OTA transconductance gains are related to Qd and Qu via

1

Qd

∼ Gd (240)

1

Qu

∼ Gud −Gd. (241)

The problem we run into is due to 1/Qu depending on the difference of OTA

transconductance gains. Ideally, we want 1/Qu to be positive. However, poorly-

matched components may result in this being a negative value. As it turns out,

the system of (230), with f(x1) defined as (238), will undergo a supercritical Hopf

bifurcation as Qu passes through 0. Figure 50 shows the phase plane plots of the

system for 1/Qu = 0.1 and 1/Qu = −0.1. As shown, for 1/Qu = −0.1, the equilibrium

point is now unstable and the system now displays an attracting limit cycle.

Proper circuit design will avoid the problem of potential instability. However, this

difficulty can be completely eliminated if, instead of (238), the pwl curve of (237)

is approximated by a simple expansive transconductance function. The rest of the

chapter will develop along the lines of implementing the nonlinear function as such.

7.2.3 Description of implemented filter

The bandpass filter that will be described is an operational transconductance amplifier-

capacitor (OTA-C) circuit that exhibits Q-peaking for small signals. An OTA-C cir-

cuit is normally operated within the linear range of all of the OTAs. In this case,

we will deliberately employ nonlinearity in one of the amplifiers in order to evoke

the cochlea’s compressive behavior. The transconductance gain2 of the nonlinear

amplifier increases with input amplitude. The filter is designed so that its damping

coefficient is directly controlled by the nonlinear amplifier’s transconductance gain.

As such, the amount of Q-peaking reduces with increasing input amplitude.

2We define a transconductance function as one whose arguments are in units of Volts, and that is
itself in units of Amperes. By contrast, a transconductance gain, with units of Ampere/Volts, is the
derivative of the transconductance function with respect to input voltage. Further, the small-signal
transconductance gain is the constant term of the transconductance gain.
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The bandpass filter is based on the circuit of Fig. 51. It has a first-order roll off

at a center frequency of

w0 =

√
GHGL

CL(C1 + Cw)
, (242)

while the quality-factor is nominally

Q =

√
CLGH

(C1 + Cw)GL

(
1

1 +GN/GL

)
, (243)

and the center frequency gain is

Aw0 = C1/(C1 + Cw). (244)

C1, Cw, CL are drawn capacitances and GH, GL, GN are transconductance gains.

The OTAs labelled GH and GL are linear, meaning that they have a constant

transconductance gain. The amplifier labeled GN, on the other hand, has a level-

dependent transconductance gain, which is of the general form

GN = f(Ṽout), (245)

where Ṽout is the energy of Vout, and f(·) is a symmetric monotonically-increasing

function. Substituting (245) into (243), we see that the quality factor is not constant,

but is dependent on Ṽout. Specifically, Q decreases with increasing levels of Ṽout.

The simplest form of f(·) is a quadratic function of Vout, which would represent the

instantaneous energy of the output voltage. The non-constant transconductance gain

is

GN = N(1 + α(Vout)
2/U2

T), (246)

where N is some programable constant, UT is the thermal voltage, and α is a coeffi-

cient to be determined.

7.3 Amplifier implementations

This subsection presents a description of the circuit implementation of the various

amplifiers used in the OTA-C bandpass filter.
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Figure 51. Bandpass filter with adaptive quality factor. For fixed capacitor sizes, the
center frequency and quality factor are determined by the geometric mean and ratio,
respectively, of the GH and GL gains. The GN transconductor augments the negative
feedback action of the GL OTA. If the transconductance gain of the GN transconductor
increases proportionally with the amplitude of Vout, then the amount of damping in the
circuit will also increase.

7.3.1 Low distortion operational transconductance amplifier

The GH and GL OTAs are highly linear, meaning that they exhibit low distortion over

a wide range of input voltages. Their design is based on the simple, nine-transistor

current mirror OTA [56].

There are three major sources of distortion from a simple OTA [57]. The first is

large differential inputs to the differential pair, which cause the amplifier’s transcon-

ductance gain to vary widely. The second source of distortion is finite offset due to

device mismatch, which introduces even-order harmonics. Finally, an inappropriate
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input common-mode voltage may push either of the differential-pair transistors or

the tail transistor out of saturation. We deal with all three sources of distortion by

employing capacitive attenuation at the differential-pair inputs, as shown in Fig. 52.

The OTA input is attenuated by a factor of M + 1 before being applied to the

differential pair. A large value of M ensures that the differential-pair input will never

vary enough to alter the transconductance gain significantly.

The input nodes of the differential pair have no DC path to ground, meaning

that, under normal operating conditions, any charge stored on them is nonvolatile.

However, we can use the high-field phenomena of hot-electron injection and Fowler-

Nordheim tunneling to change the amount of charge that is stored on these nodes [58].

In particular, we can modify the amount of stored charge so as to compensate for the

amplifier’s offset. Consider an input offset of Voffset and a difference in charge on the

differential-pair input nodes of Qoffset, as shown in Fig. 52. We set the difference in

charge to satisfy

Qoffset = VoffsetCin(M + 1), (247)

which effectively removes the offset.

From Fig. 52, the common-mode input voltage, V ′
cm of the differential pair is

V ′
cm =

Q

Cin(M + 1)
+

Vcm

M + 1
. (248)

We adjust the value of Q to ensure that the differential-pair and tail transistors are

always in saturation.

Employing injection and tunneling the way we do precludes the need for a high-

impedance-based biasing scheme, which would actually increase distortion at the low

frequencies [59]. As we will see in the experimental results section, precise control of

the floating-node charges results in a significant lowering of distortion.
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Figure 52. Highly linear OTA. The inputs to a simple OTA are attenuated via capacitive
division. Injection and tunnelling (through tunnelling capacitors, not shown) are used
to precisely control the amount of charge on the floating nodes.

7.3.2 Nonlinear amplifier

The gain of (246) is provided by an amplifier with the following nonlinear transfer

function

IGN = N(Vout + α(Vout)
3/3U2

T), (249)

which we implemented with the circuit shown in Fig. 53(a). For the purpose of anal-

ysis, we will assume that the transistors in this circuit are operated in subthreshold.

The circuit’s behavior is similar for above-threshold operation, but its analysis would

require a more complex transistor model that is valid in all regions of operation. So,

assuming that the bias voltages Vn and Vp ensure subthreshold operation, the nMOS

and pMOS drain currents are, respectively,

In = I1e
κnVn/UTe−Vout/UT (250)

Ip = I2e
−κpVp/UTeVout/UT , (251)
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Figure 53. Nonlinear amplifier. (a) Circuit implementation. Vn and Vp are fixed voltages
that are set by the bias circuitry shown in the dashed box. The output node is Vout.
The output current is In − Ip. (b) Experimental current-voltage curve. When the Vout

voltage is swept, the magnitude of the output current displays a logarithmic trend for
large values of Vout − Vref , which is characteristic of the sinh function.

where I1,2 are pre-exponential current terms that depend largely on device dimensions

and doping concentrations, and κn,p are the body-effect coefficients.

Defining Vref and IbN as

Vref = (UT log (I1/I2) + (κnVn + κpVp)) /2 (252)

IbN = 2
√
I1I2e

(κnVn−κpVp)/UT , (253)

we can write the output as

In − Ip = IbN(e(Vref−Vout)/UT − e(Vout−Vref)/UT)/2

= −IbN sinh ((Vout − Vref)/UT) ,

≈ −IbN

UT

(
(Vout − Vref) + (Vout − Vref)

3/6U2
T

)
),

(254)

which is equivalent to (249) if we associate −IbN/UT with N , set α = 1/2 and define

Vref as the reference voltage. Notice that (254) resembles the transfer function of

a transconductance amplifier with inputs Vout, Vref and a bias current of IbN. We
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therefore model the nonlinear transconductor as an amplifier in negative feedback, as

shown in Figs. 51 and 53(a).

7.4 Circuit analysis

Since the filter involves an explicit nonlinearity, the classical small-signal paradigm

is inadequate for performing any rigorous analysis. Instead, we employ tools from

nonlinear dynamical systems theory to understand its behavior.

7.4.1 Quality factor adaptation

Applying KCL to both nodes of Fig. 51, we write

CL
dVout

dt
= GL(Vx − Vout) − IbN sinh

(
Vout

UT

)
(C1 + CW)

dVx

dt
= −GHVout + C1

dVin

dt
, (255)

where we have assumed subthreshold operation of the nonlinear conductance and all

of the voltages are referenced to Vref . As a single second-order equation, (255) can be

written as

CLCT

GHGL

d2Vout

dt2
= −Vout − C1

GH

dVin

dt
−

CT

GH

dVout

dt

(
1 +

IbN

UTGL

cosh

(
Vout

UT

))
,

(256)

where CT = C1 + Cw. The corresponding dimensionless form of (256) is

ÿ = −H1L1y − L1ẏ (1 + c · cosh(y)) + L1u̇, (257)

where the variables x, y and u are related to the voltages Vx, Vout and Vin, respectively.

H1 and L1 are proportional to GH and GL respectively, while c is equal to IbN/(UTGL).

Note that c is the ratio of the small-signal transconductance gains of the GN and GL

amplifiers.
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To further simplify the analysis, we normalize (257) by setting its natural fre-

quency,
√
H1L1, to one. Then, we study the filter’s response to a pure-tone input of

unit frequency. Equation (257) is now

ÿ + y = −L1 (ẏ (1 + c · cosh(y)) + F cos(τ)) , (258)

where the input amplitude is F .

Notice that the nominal value of Q — that is, without the effect of the nonlinearity

— is equal to 1/L1. To enhance the sensitivity and frequency selectivity bandpass

filter, it normally has a Q of 5 to 10. Accordingly L1 is a small, perturbation parameter

and (258) is simply a resonator of unit frequency (LHS) that is perturbed by some

nonlinear damping and a forcing function (RHS).

Using Lindstedt’s method for perturbation analysis [20], the solution to (258) is

y = A cos(τ) + O(L1), (259)

where A, the amplitude of the fundamental frequency, is given by the following im-

plicit function

A

(
1 + c

(
1 +

A2

8
+
A4

192
+

A6

9216

))
− F = 0, (260)

and O(L1) are higher harmonics. For values of A < 2
√

2/c, the filter’s center-

frequency gain is approximately 1/(1 + c). However, as the output signal amplitude

increases, the center-frequency gain reduces. The dimensionless quantity y is normal-

ized as V/UT. So, with a value of UT = 25mV, A = 2
√

2/c physically corresponds

to an output voltage amplitude of 50
√

2/c mV. It is important to note that c is a

ratio of transconductances. In VLSI circuits, physical ratios match much better than

do absolute values, meaning that the compression characteristics of the filter ought

to vary minimally across different chips. Figure 54 shows plots of (260) for various

values of c = IbN/(UTGL). Higher values of c cause the knee to occur at lower values

of output voltage.
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Figure 54. Theoretical knee control. Larger values of c = IbN/(UTGL) elicit lower knee
values. The four curves with the most compression shown are for c = 0.046, 0.086, 0.16
and 0.3.

7.4.2 Harmonic distortion

The sinh nonlinearity allows the filter’s quality factor to adaptively reduce with in-

creasing output amplitude, as desired. Unfortunately, the nonlinearity also introduces

harmonic distortion, which is embodied in the O(L1) term of (259).

We arrive at an estimate of the distortion by solving (258) using higher order

perturbation methods. The approximate total harmonic distortion (THD) is

THD(%) = cL1
A2

64

(
1 +

A2

16
+
A4

640

)
· 100. (261)

As (261) suggests, we can reduce the amount of distortion, independently of the

amount of compression, by reducing the value of L1. Recall that the filter’s nominal

quality factor is 1/L1. So, reducing distortion by keeping L1 small is not at odds

with the desire to achieve high sensitivity and frequency selectivity. The fact that

the distortion is reducible without affecting the amount of compression is crucial to
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distinguishing this filter’s adaptive behavior from the effects of unwanted, so-called

instantaneous nonlinearity in other circuits.

7.4.3 Noise

The filter’s distortion characteristics determine its largest permissible input. In this

section, we analyze its noise performance, so as to define the smallest useful signal.

We model noise in the filter by placing a noise source at the input of each of the

otherwise noise-free amplifiers, as shown in Fig. 55. The total noise output power is

C1+Cw

CL

Vout

GH

GL

GN

Vx *
n2

H

*n2
L

*n2
N

Figure 55. Schematic for analyzing noise in filter. The noise contribution of each am-
plifier is calculated and referred to its input.

115



given as

n̄2
out =

∫ ∞

0

n2
H(

1 − ω2 CLCT

GHGL

)2

+ ω2 C2
T

G2
H

dω

+

∫ ∞

0

n2
Lω

2 C2
T

G2
H(

1 − ω2 CLCT

GHGL

)2

+ ω2 C2
T

G2
H

dω

+

∫ ∞

0

n2
Nω

2 C2
TG2

N

G2
HG2

L(
1 − ω2 CLCT

GHGL

)2

+ ω2 C2
T

G2
H

dω,

(262)

where n2
H,L,N are noise power densities and GN has been assumed to be a constant that

is much less than GL. If the circuit’s flicker noise is negligible compared to thermal

noise, then n2
H,L,N are independent of frequency. In this case the integrals of (262)

can be evaluated to give

n̄2
out = n2

H

πGH

2CT

+ n2
L

πGL

2CL

+ n2
N

πG2
N

2CLGL

. (263)

For a given bias current, subthreshold transistors yield the highest possible transcon-

ductance. For this reason, we will assume that the OTAs are operated in the sub-

threshold regime. The input-referred thermal noise density of a subthreshold OTA

is

n2 =
2KqU2

T

κ2Ibπ
, (264)

where K is the effective number of noise-contributing transistors, q is the charge of

one electron and Ib is the amplifier’s bias current [60]. K is approximately equal to

8 in the implemented OTA [56]. For an OTA with an input capacitive attenuation

factor (M + 1), the bias current must be multiplied by (M + 1) to maintain the

transconductance gain and bandwidth. Further, the noise density referred to the input

of the capacitive divider is the original OTA input-referred noise density multiplied
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by (M + 1)2. So, the input-referred noise densities of GH and GL are

n2
H = (MH + 1)2 2KqU2

T

κ2(MH + 1)IbHπ

= (MH + 1)
2KqU2

T

κ2IbHπ
(265)

n2
L = (ML + 1)

2KqU2
T

κ2IbLπ
, (266)

where (MH,L +1) are the capacitive attenuation factors of amplifiers GH and GL. The

noise density of GN is

n2
N =

qU2
T

κ2IbN2π
. (267)

We are assuming in this analysis that all of the body-effect coefficients are equal to

κ. Using the fact that GH = κIbH/2UT, GL = κIbL/2UT and GN = κIbN/UT, we

substitute (265), (266) and (267) into (263) to get

n̄2
out =

KqUT

4κCT

(
MH + 1 +

CT

CL

(
ML + 1 +

2IbN

KIbL

))
≈ KqUT

4κCT

(
MH + 1 +

CT

CL

(ML + 1)

)
. (268)

From (244), the total input-referred noise at the center frequency is

n̄2
in ≈ CT

C1

KqUT

4C1κ

(
MH + 1 +

CT

CL

(ML + 1)

)
. (269)

We can minimize the noise, and hence maximize the dynamic range, by ensuring

CL � C1 � Cw. Such a tactic comes at the expense of a larger circuit area and

increased power consumption. Figure 56 illustrates the tradeoffs involved.

7.4.4 Stability

Simple eigenvalue analysis reveals that the circuit described by (257), is a small-signal

stable system. However, as previous hearing-application front ends have shown, it

may be possible for the filter’s nonlinearity to cause large-signal instability [14]. This

concern is particularly relevant in this filter’s case, given that it explicitly introduces

and exploits a nonlinear function.
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Figure 56. Tradeoff between dynamic range (dashed line, left horizontal axis), area
(solid line, right axis) and power (asterisks, right axis) with CL size. All three specifi-
cations — dynamic range, power and area — increase with increasing values of CL, but
the different design parameters of case 1 versus case 2 yield different performance spec-
ifications. Capacitor values for the upper panel (case 1) are C1 = 2pF, Cw = 2.9pF, and
MH = 10, ML = 100. In the lower panel (case 2), we set C1 = 3pF, Cw = 0.1pF, keeping
the other variables the same. Dynamic range is calculated using (269) and assuming a
rail-to-rail linear range of 3.3V. Power consumption is calculated using (242) and (243)
for Q = 2 at a center frequency of 1kHz.

A complete analysis of large-signal stability must regard all of the amplifiers in

Fig. 51 as nonlinear; despite our best efforts as designers, GH and GL can never

be perfectly linear. So, instead of the constant gains H1 and L1, we represent the

transconductances of GH and GL as H and L, respectively. H and L are nonlinear

functions of their respective input voltages with the following properties. First of

all, they are monotonically-increasing functions, which means that larger and larger

inputs will elicit larger and larger outputs. Secondly, they pass through the origin,

that is H(0) = L(0) = 0. In practice, H and L are sigmoidal functions as they are
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formed from a differential pair. We write the filter’s describing equations as

dy

dτ
= L(x− y) − c · L sinh(y)

dx

dτ
= −H(y) +

du

dτ
. (270)

To prove large-signal stability in a dynamical system, it is sufficient to identify

its equilibrium point, and to prove that the system always tends towards this point,

regardless of initial conditions, and independent of any linearizing approximations.

Setting all the time derivatives in (270) to zero, and from the property H(0) = L(0) =

0, we identify the origin as the system’s unique equilibrium point3. Now, we define

an energy-like function

V (y, e) =

∫ y

0

H(χ) + sinh(χ)dχ+

∫ e

0

L(ζ)dζ, (271)

where e = x− y.

From the monotonicity of H, L and sinh, notice that the value of V (y, e) is

positive everywhere except at the origin, where it is equal to zero. Thus, the energy-

like function is minimized at the origin. Further, the time derivative of V (y, e) is

negative everywhere but at the origin, where it is equal to zero. So, whenever it

is not at the origin, the system possesses some positive amount of V (y, e), which it

dissipates over time. When V (y, e) = 0, the dissipation ceases, at which point the

state variables are now at the origin. This argument shows, as would a more formal

application of Lyapunov’s Theorem [61], that the circuit is large-signal stable.

7.5 Circuit implementation and experimental results

We fabricated a prototype of the adaptive-Q bandpass filter in a 0.5μm process avail-

able from MOSIS, a die photo of which is shown in Fig. 57. The pMOS transistors of

3The property that H(0) = L(0) = 0 is simply for the convenience of defining the equilibrium
point at the origin. The point (x, y) = (0, 0) in state space corresponds to the physical voltages Vx

and Vout being equal to Vref , plus some offset. That is, the operating point of Vx is Vref plus the
offset of the GH OTA, while the operating point of Vout is Vref plus the sum of the offsets of GH and
GL.
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Figure 57. Die photograph of the bandpass filter. The portions labelled 1–5 are, respec-
tively, the GL amplifier, the GH amplifier, the output buffer for the Vout node, the sinh
transconductor, and the output buffer for the Vx node. The integrating capacitors Cw,
CL and C1 are not labelled, but they are included in the 285x245μm2 area shown here.

amplifiers GH and GL were sized 30μm/3μm to allow for large subthreshold currents.

The nMOS transistors in both amplifiers were sized at 15μm/3μm. The nMOS and

pMOS transistors of the GN amplifier were sized at 3μm/1.5μm and 6μm/1.5μm,

respectively. The GN transistors were sized relatively small to facilitate the tuning of

small values of IbN, which would correspond to small values of c (for testing purposes,

Vn and Vp of Fig. 53(a) were not set by bias circuitry, but by an off-chip DAC). The

drawn capacitor values were C1 = CL = 2pF, Cw = 2.9pF4. Since Vout is an attenuated

version of the input and experiences compression at that, we chose (MH +1) = 11 for

the capacitive divider ratio of GH. The positive input of GN is Vx, which has voltage

4Analysis shows that these are not the optimal values for a low-noise filter. For this prototype
circuit, I was more concerned with demonstrating low-power, low-distortion gain adaptation than in
optimizing for noise performance.
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Figure 58. Center frequency control. The bandpass filter center frequency is directly
proportional to the geometric mean of the gains GL and GH, and is tunable independent
of the automatic gain control action.

excursions that can approach the power rails. The capacitive divider ratio for GL was

therefore chosen to be (ML + 1) = 101. My design choices placed the prototype filter

in the Case 1 of Fig. 56. With CL = 2pF, the circuit area is 0.07mm2. The predicted

dynamic range and power consumption are 55.8dB and 0.6μW (for Q = 2 at a 1kHz

center frequency), respectively.

As the results of Fig. 58 show, the circuit behaves as a second-order bandpass

filter as expected, and has a tunable center frequency across the audio range. When

programmed to a center frequency of 1.18kHz and a Q of 2, the bandpass filter

consumes 1.32μW of power, which is twice the amount predicted in Fig. 56. Power

consumption is directly proportional to the filter’s center frequency. For instance,

if the filter were programmed to a center frequency of 11.8kHz, it would consume

13.2μW.
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Figure 59. Quality factor adaptation. The upper panel depicts a reduction in Q from 8
to 2 with increasing input amplitudes. The transfer curves shown are for the following
input amplitudes: −5.2dBVpp, −4.4dBVpp, −2.3dBVpp, 4dBVpp, 10.3dBVpp. The bottom
panel shows the same information as a plot of output amplitude versus input amplitude
at the filter’s center frequency. The filter was programmed to a center frequency of
1.18kHz and Q = 10.

Experimental measurements confirm that the filter exhibits the adaptive behavior

that we designed for. Figure 59 shows how the magnitude-frequency response of the

filter changes with different input amplitudes. For input amplitudes less than 5.6

mVpp, the center-frequency gain is almost −10dB. The gain reduces progressively for

larger input amplitudes and drops by over 10dB when the input amplitude exceeds

2Vpp.

Figure 60 demonstrates experimental control of the threshold knee point. The

various curves correspond to different values of IbN, with fixed GL. We set IbN with

the voltages Vp and Vn. For Vp = 3.3V and Vn = 0V, IbN is essentially zero, meaning

that compression is turned off. For non-zero values of IbN, compression is observed

at different output amplitude knee points. It was difficult to achieve fine resolutions
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Figure 60. Threshold knee point control. The normalized input-output amplitude re-
sponse, measured at the center frequency, shows that the gain exhibits compressive
behavior past a certain output amplitude threshold. This threshold point can be ad-
justed by varying the transconductance gain of the sinh amplifier (effectively by varying
its bias current).

for small values of IbN, which is why the curves shown in Fig. 60 all have knee-points

for output amplitudes close to −20dB.

Explicit use of nonlinearity raises the question of how much distortion the circuit

will suffer. Figure 61 supports the claim that the amount of distortion is minimal.

The sinh nonlinearity contributes most of the third harmonic, since the other two

OTAs have been linearized via capacitive attenuation. However, there is a significant

second harmonic in the left panel of Fig. 61, due to input offset in the GH and GL

amplifiers. By adjusting the amount of charge stored on their differential-pair input

gates, we were able to reduce the offset significantly. This improvement is shown in

the right panel of Fig. 61, where the second harmonic has fallen from a maximum of

8% to less than 2%. At the maximum input amplitude, the THD for the improved case
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Figure 61. THD reduction with offset removal. The left panel shows the distortion
numbers for when an equal amount of charge is placed (via injection and tunnelling)
on the floating gates of each differential-pair in the filter. Transistor mismatch causes
offset, which is observed as a large second harmonic. When the offset is compensated
for with an uneven amount of charge, the second harmonic reduces, as shown in the
right-hand panel. Offset removal should ordinarily not affect odd-order harmonics, and
the slight increase in third harmonic content is due to measurement error.

is 4.3%. This THD figure falls within the acceptable range for cochlear implants [59].

Some subjective tests of hearing aids have suggested that wearers do not find THDs

of 3 to 6% disagreeable [62].

The measured output noise power spectrum is shown in Fig. 62. The total in-

tegrated input-referred noise is 2.2mVrms, which gives an input dynamic range of

54.5dB, a close match to the theoretical value of Fig. 56.

Designers quantify the adaptation speed of conventional AGCs with the attack

and release times [41]. Since the bandpass filter incorporates the AGC action, the

time constant of the input signal is always well-defined. (It is roughly the reciprocal

of the filter’s center frequency.) It therefore makes sense to employ adaptation speeds
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Figure 62. Measured noise power spectrum. The output noise has a bandpass profile
(from GL and GN) summed with a lowpass profile (from GH). The flicker noise corner
frequency is 100Hz, which is just low enough for thermal noise to dominate.

that are on the same order of the expected input-signal time constant, as shown

in Fig. 63. Also, noise-pumping is not a concern for the following reasons. First,

the filter’s gain adapts smoothly with input amplitude. Secondly, the adaptation is

largely restricted to a narrow band around the center frequency, which ensures that

the gain applied to noise of a given level is always constant, and not influenced by

other noise signals that are outside the bandwidth of interest.

7.6 Discussion of results

The experimental results of the prototype circuit conform to the theoretical claims.

However, a practical hearing aid would require more particular specifications.

Consider designing a hearing aid for patients with mild to severe hearing loss.

While this application requires compression of up to 40dB, the prototype circuit only
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Figure 63. Filter response to input bursts. As the zoomed-in figures show, the attack
and release time of the gain control scheme correspond to about one period of the input
signal.

exhibits a maximum of 15dB. One solution is to cascade two filters per channel, in

order to create a fourth-order bandpass filter, which would provide 30dB of compres-

sion. The cost of this approach is a doubling in area and power consumption. Also,

the dynamic range of the filter is reduced by Aw0. We can get the remaining 10dB

of compression from a wide-band automatic gain control. The hearing aid still offers

multichannel compression, provided the patient experiences at least a 10dB hearing

loss across all frequency bands.

Microphones deliver up to 80dB of output signal range [63]. So, even assuming

that the signal is compressed by 10dB, the bandpass filter still has to support a

70dB dynamic range of input. The prototype circuit does not meet this specification

but Fig. 56 suggests a design that would. If we chose C1 = 3pF, Cw = 0.1pF and

CL = 10pF, then, at the expense of power and area, the filter would achieve a 70dB

dynamic range. Table 1 summarizes the novel filter’s performance, in comparison to
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Table 1. Comparison of filter performance to other work
This work [59] [64] [65]

Dynamic range (dB) 55 62 57 62
THD (%) 4.3 5 2 1.1
Power (μW) 1.12 2 6 16
Compression (dB) 15 0 0 0

other filters that were designed for hearing instruments. The columns labeled The

power consumption is normalized to that of a filter with a 1kHz center frequency.
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CHAPTER 8

CONCLUSION

Analog circuit designers are concerned with much more than just the linear amplifica-

tion of signals. Rectifiers, oscillators, phase-locked loops, modulators and automatic-

gain control circuits are a few of the common analog components whose functions

are unquestionably nonlinear. However, there is a surprisingly enduring notion that a

linear-based design is appropriate for these and other analog circuits. For instance, un-

like what is presented in this dissertation, sinusoidal oscillator design is often framed

in terms of fulfilling Barkhausen’s criteria [35]. This is not a very useful concept, as

it demands a practical impossibility; that is, to design a linear system with purely

imaginary poles. Whenever linear-systems thinking fails, the common reaction is to

eschew design formalisms in favor of a heavily-experiential design approach. Un-

fortunately, the performance requirements of applications like autonomous systems,

portable electronics, and implantable biomedical devices render such an ad hoc design

approach very costly.

Not only are many classical analog circuits decidedly nonlinear, but the transistor,

which is the elemental component of integrated circuits, is itself a highly nonlinear

device. This fact can be used to great effect in scenarios such as biomedical and

human-interface applications, where processing must be performed efficiently. The

key to achieving efficient analog computation is to look beyond the customary lin-

earized view of circuits in favor of a more genuine representation that allows rich,

nonlinear processing to be efficiently and naturally implemented.

8.1 Main contributions

The overarching theme of this dissertation has been to present analog circuit analysis

and design from a nonlinear dynamics perspective. Following is a list of the specific
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contributions that have been made to this end.

8.1.1 Nonlinear dynamics in integrated circuits

An introduction to fundamental concepts of nonlinear dynamical systems theory,

suitable for an integrated circuits audience, has been given.

The procedure of nondimensionalization was used to derive the state-space rep-

resentation of circuits. In Chapter 2, the vector field was used to analyze nonlinear

phenomena in one-dimensional circuits. The implications of different types of non-

linearities on a circuit’s convergence to equilibrium were explored. The notion of

bifurcation was introduced in the context of symmetric odd-order nonlinearities. For

the OTA circuit, whose tanh function is a compressive nonlinearity, a supercritical

pitchfork bifurcation is possible. For the output buffer, whose sinh function is an

expansive nonlinearity, a subcritical pitchfork bifurcation is possible.

Bifurcation was revisited in Chapter 3, with emphasis given to Hopf bifurcations

and their classification, using the Poincaré-Bendixon Theorem. In circuit design,

bifurcation often occurs when a high-Q system loses stability. In such a scenario,

there is most likely a pair of complex eigenvalues that are crossing the imaginary

axis, which implies a Hopf bifurcation. The circuit that was used to illustrate the

concepts in Chapter 3 is the SOS described in [14].

Regular perturbation was used in Chapter 4 to predict the amount of harmonic

distortion that a circuit suffers due its nonlinear terms. The nonlinear dynamic

bases of several well-known tenets of low-distortion circuit design were provided. For

instance, the idea that operating well below a system’s corner frequency reduces

distortion is explained by the fact that the magnitudes of the first few harmonics peak

around the corner frequency. In terms of choice of transistor operating region, above-

threshold is preferable to subthreshold, because, even though a circuit’s distortion

terms are functionally identical in both cases, it turns out that, in the subthreshold

case, the terms are systematically larger, which results in more distortion. Finally,
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the regular perturbation analyses revealed why it is beneficial for a circuit to contain

some form of negative feedback. The source follower and the unity-gain amplifier

were used as illustrative examples in this chapter.

8.1.2 Design of OTA-C sinusoidal oscillators with OTA nonlinearity

A methodology for designing low-distortion sinusoidal oscillators that is based on

OTA nonlinearity was presented in Chapter 6. The use of a “negative resistor”,

whose transfer function was shown in Fig. 26, for building sinusoidal oscillators is

well-documented in the literature. Nevertheless, various attempts have been made —

some less successful than others — to exploit the natural saturating characteristics

of an OTA in an oscillator. In Chapter 6, the notion of making use of the OTA’s

sigmoidal nonlinearity was reconciled with that of the classical negative resistor. The

primary insight is that the OTA nonlinearity should not be used directly for amplitude

limiting, but that its saturating characteristic should rather be used in conjunction

with a linearized OTA to implement the negative resistor, as shown in Fig. 27.

To provide the most amount of usability, a sinusoidal oscillator’s amplitude and

frequency of oscillation must be controlled by some physical parameter in a predictable

way. Also, harmonic distortion must be kept to a minimum. The characteristics

of the oscillators that are derived from the design methodology of Chapter 6 were

analyzed via perturbation methods. Using the results of the perturbation analysis,

in conjunction with phase plane analysis, the design methodology was developed to

yield oscillators whose harmonic distortion is kept to a minimum and is unaffected by

changing the amplitude or the frequency of oscillation. An oscillator that meets such

specifications is suitable for use in communication and instrumentation applications.

8.1.3 Design of a bandpass filter for auditory signal processing

In Chapter 7, the theory and design of a novel, nonlinear bandpass filter for use

in auditory prostheses was developed, along with its circuit implementation. Like
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other auditory processing front ends, including the human cochlea, the filter de-

scribed is meant to provide frequency analysis and nonlinear gain compression of

input signals. In Chapter 7, this processing functionality was framed in terms of

step responses, as opposed to the more usual (for the auditory processing community,

at least) magnitude-frequency responses. Performing step response analysis, coupled

with phase plane analysis, the theoretical characteristics of the dynamical system that

would yield the desired behavior were identified.

Perturbation methods were used to ascertain that the geometrically-derived dy-

namical system would exhibit the gain compression and bandpass filtering functions

as desired. The amount of distortion suffered by the system was also calculated using

perturbation methods. Bifurcation analysis revealed that certain circuit implementa-

tions might result in an unstable filter. The circuit implementation that was finally

chosen is simple and area- and power efficient. In addition, a Lyapunov stability test

proves that this circuit implementation can have only one globally-stable equilibrium.

Despite its being nonlinear, the filter presented in Chapter 7 is designed to avoid

unwanted distortion. It is one of the most efficient implementations (in terms of area

and power consumption) ever reported of the cochlea’s compressive mechanism, and

it is a practical component of an advanced auditory processor.

8.1.4 Studying integrated circuit dynamics on a reconfigurable platform

The efficacy of using a reconfigurable analog integrated circuit chip as a platform

for studying nonlinear dynamics phenomena was demonstrated. The reconfigurable

analog chip is invaluable as an educational tool both for circuit designers who want to

understand nonlinear dynamics and for applied mathematicians who want a pliable

physical manifestation of nonlinear dynamical equations.
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