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CHAPTER I

OVERVIEW

Biological systems are often compact, robust, efficient, and can solve many common

engineering problems. This work seeks to emulate the power of these systems for use

in solving such problems and modeling the neurobiology of the brain. Two living

neurons have been successfully connected using electronics that are based on biolog-

ical systems. The key circuit, an electronic synapse, is compact in size, can easily

operate in parallel, and provides signals that match the biological data [1], [2]. Figure

1 illustrates the inspiration for and the schematic of the electronic synapse. Further-

more, this artificial synapse can also be adapted to reproduce other types of biological

signaling mechanisms. For instance, a neuromuscular junction can easily be emulated

in the same way as a chemical synapse, as seen in Figure 2(a). With adjustments to

the main biases, this same structure can be used to emulate an electronic synapse, as

seen in 2(b).

Figure 3 is a representation of the ideal system that can link various types of

biological and artificial systems with a neural version of a field-programmable gate

array (FPGA) called a field-programmable neuron array (FPNA). Rather than con-

necting digital gates to create digital systems with digital switching networks, the

FPNA connects electronic models of ion channels, dendrite sections and axons to cre-

ate neurons of various levels of complexity with analog synapses. Besides connecting

neurons to inputs and each other in the FPNA, there are synapses that connect the

internal connections to the external world. The inputs will ideally come from a va-

riety of systems; however, the most difficult ones to receive are extracellular voltage

recordings. An amplifier of gain A can be used to increase the signal to levels that

1



can be distinguished by the FPNA. After processing in the FPNA, the output signal

would then be sent to the next system. On-chip signal conditioning for computers

and actuators is fairly straight-forward; however, bio-compatible output signals are

not. The electronic synapse was created to generate signals that are of the same size

and shape as biological electrical signals.

Hebbian learning is an obvious extension of these experiments. The output of

the living neurons would be used to change the synaptic strengths. Using Cell 1, the

presynaptic cell, as an input to the synapse and the architecture described by Gordon

and Hasler [1], the weight between the input and output cells can be modified. The

firing of Cell 1 would select a particular floating gate for a weight change, while Cell

2, the postsynaptic cell, provides the input for the feedback circuitry, which pulses

the value of Vds and Vtun, as described in [1]. This form of learning is dependent upon

the timing of the inputs and outputs. This learning is called spike-timing dependent

plasticity (STDP). STDP has been found in systems ranging from the hippocampus,

barrel cortex, and visual cortex [3], [4], [5], [6], [7], [8], [9], [10], [11]. Synapses that

are modified by STDP are not limited to Hebbian learning rules. Other learning

rules have been found in neurons that show only a decrease in weight, anti-hebbian

behavior, and a change in the learning rule at different parts along a dendritic branch

[12], [13], [4]. Many descriptions of how the synaptic weight changes exists. This

description of how the synaptic weight can change is known as a learning rule. In

order to understand learning rules found in STDP systems, simple graphs as shown in

Figure 4 are created. Furthermore, as shown in Figure 5, many methods of synaptic

weight change exist in biology.

The signal compatibility between this system and real cells would allow for bet-

ter prosthetics. For instance, extracellular signals can be read from motor cortex,

processed on an FPNA, and then output to motoneurons. The replacement of func-

tion, particularly signal transduction, can easily be done even without an FPNA. For
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Figure 1: The biological synapse is the main communication port for the nervous
system. Here, an electrical response in the first (pre-synaptic) cell causes chemicals to
leave and be deposited into the second (post-synaptic) cell. These chemicals, called
neurotransmitters, then cause an electrical response in the second cell. The silicon
synapse has been highlighted in red to illustrate how it functionally relates to the
biological synapse.

instance, a damaged section of the auditory nerve can be reconnected by using this

small, low-power, bio-compatible system. Muliplexing circuitry can be added to help

ameliorate pin-limiting applications such as receiving dozens of inputs that are then

mapped to dozens of outputs.

Future work will incorporate more complex processing, which will allow the FPNA

to create systems ranging from large networks of simple cells to a complex model of

a single neuron. This system will be effective whether the systems are programmed
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Figure 2: Other forms of biological connections. (a) A neuromuscular junction
linking a motoneuron to a muscle fiber. The pre-synaptic cell and the post-synaptic
cells are different types of cells. The neurotransmitter here is acetylcholine. Note the
undulating surface of the muscle fibers. This surface creates a higher surface area that
contains ion channels. (b) An electronic synapse greatly differs from typical cellular
communication mechanisms since they use connexions instead of ion channels.

or adapt their synaptic weights, use biologically inspired reconfigurable circuitry or

just a simple neuron model, or connect two or 200 cells.

These electronic synapses are an effective representation of biological synapses. As

in biology, there is a high density of unique connections that can be made. This differs

greatly from other models which simplify realistic multi-valued synapses to binary

synapses [14] or create the multiple values for synapses through large, power-hungry

look-up tables and routing [15]. The electrical signals that these artificial synapses

produce are the same as the electrical signals produced by biological synapses. This

is quite different from other models which produce outputs that are similar, but do

not match biological data [16]. The utility of these synapses is greatly increased by

incorporating them in a system that allows for a true connection to living cells. Thus,

a link that can effectively be modulated by changing the charge on the floating-gate

has been created, a true electronic synapse. Presently, no other form of electronic

synapse can emulate the function of biological synapses as well as the ones described
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Figure 3: A system that can connect living neurons to each other using bio-inspired,
bio-compatible circuits has been created. This system can be seen as a bio-inspired
medium in which artificially or biologically created signals can be processed and then
sent out to artificial or biological devices or cells. The system is represented as the
IC, which contains three portions: an amplifier, a field programmable neural array
(FPNA), and output synapses. This work looks at the zeroth and first-order cases of
connecting an artificial neuron to a living neuron and connecting two living neurons,
with no extra processing done by the FPNA.

in this work.
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depend upon the time at which inputs and outputs occur, the type of neuron, and
the position of the synapse on the neuron. (Adapted from Abbott and Nelson)
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CHAPTER II

BIOLOGY PRIMER

Nature has provided a plethora of solutions to common engineering problems. One

of these solutions, the neuron, is the foundation of phenomena such as controlled

movement, intra-body communication, and learning. Nature implements phenomena

like this through communication between neurons. The fundamental unit of neuronal

communication is the action potential, a biological digital pulse. The action potential

plays a key role in learning and memory. Memory is stored information. Learning is

the act of storing information. In biology, learning and memory stem, in part, from

the strength of the links between neurons. As input action potentials create action

potentials at the outputs, these links (called synapses) become stronger. This process,

called long-term potentiation (LTP), is a foundation of learning [17, 18]. Furthermore,

a synapse can be weakened if this ideal input - output relationship is not maintained

[18]. This is known as long-term depression (LTD). These modulatory mechanisms

have been used to describe a method of learning known as spike-timing dependent

plasticity (STDP). We have created action-potential networks in analog VLSI that

attempt to mimic the effects of STDP.

2.1 Biological Model

In a biological synapse, one cell communicates with another cell through an electro-

chemical process. Rather than controlling the flow of electrons (as in electronic de-

vices), these biological synapses control the flow of ions. Figure 1 is a ligand-gated

chemical synapse.

The biological synapse links neurons to one another, as seen in Figure 1. Cellular
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signaling takes place when the first neuron fires, causing a chemical (neurotransmit-

ter) to be sent from the first cell (pre-synaptic) to the second (post-synaptic). This

chemical diffuses through a gap between the cells (chemical synapse) and binds to

receptor sites on the post-synaptic cell. This binding causes the ion channels to open

up much like how a key (the neurotransmitter) can open a locked door (the ion chan-

nel). Ionic currents through the post-synaptic cell flow because the neurotransmitters

bound on these receptor sites and allowed the ion channels to open. These currents

cause an electrical response, and the post-synaptic cell has successfully received the

pre-synaptic cell’s signal. Although the pre-synaptic cell’s electrical signal (action

potential) is basically binary in nature, it is essential that the post-synaptic potential

(PSP), the second cell’s electrical signal, remain analog in nature [17], [19], [20]. This

post-synaptic potential can be either excitatory (EPSP) or inhibitory (IPSP) and can

be modified by various pharmacological and morphological factors [21], [17], [19], [20],

[22],[23]. For instance, the number and type of open ion channels allow more or less

of an ion of a polarity to flow in or out of the cell [24]. The PSP is often modelled

with Rall’s alpha function:

Vm = Vo
t

α
e−αt = Vmaxαte(1−αt),

where Vmax is the peak of the EPSP (or IPSP minima) [19].

The type of potential produced depends on the type of ions that flow through

the cell when the neurotransmitter has binded to the cell. Ion channels, the site

of ion flow through the cell and neurotransmitter reception, are akin to doors with

locks. The door can open only when the proper key is used. GABAA and non-

NMDA ligand-gated synapses employ ion channels that are keyed by the type of

neurotransmitter present, while NMDA ligand-gated synapses are keyed by the type
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of neurotransmitter and the voltage across the cellular membrane. This ligand-gated

NMDA ion channel is much like a more secure door requiring both a physical key and

the opening of an electronic lock with keycard. Figure 6 illustrates a few of these ion

channels. Modeling of these ion channels has implications beyond chemical synapses.

Ion channels are found other places such as plant, pancreatic beta, and muscle cells.

Although this work specifically mimics synapses, it can be modified for these other

ion channels to expand the application base from just neuroscience to range from

botany, diabetes medications, heart disease, and beyond [25],[26].

The chemical synapses are one broad type of cellular connection. Another, similar

type of connection is the neuromuscular junction (NMJ) [23], [17]. In an NMJ, the

link is between a specific type of neuron (motoneuron) and a muscle fiber. The output

of an NMJ is essentially a broadcast of a neurotransmitter from the motoneuron to

a large surface area on a muscle fiber. Figure 2(a) shows how the basic electronic

synapse can also be used to emulate the input/output response of the NMJ. Unlike

the chemical synapses described above, NMJs produce end-plate potentials or smaller

versions, mini-end-plate potentials. Note that the end-plate potential is essentially

the same as an EPSP. The key difference is that the muscular fiber does not need to

process the resulting membrane voltage in the complex way neuron does. Although

the areas of learning in the brain and facilitation in muscles have not been fully

explored, the current research implies that there are more complex connections in the

central nervous system than in the peripheral nervous system.

Another more simple of cellular communication mechanism is the electrical synapse.

This synapse uses a physical exchange of ions to create a link between two neurons.

Note that this is not the same as an electronic synapse. Electronics are artificial de-

vices which control the flow of electrons (or the absence of electrons known as holes).

The flow of ions in an electrical synapse is controlled by connexons, as seen in Figure

2(b). Electrical synapses are the fastest type of synapses since the intracellular fluid,

9



neurotransmitter

 (glutamate)

Mg
2+

receptor (NMDA)

(iv) closed NMDA

neurotransmitter

(glutamate)

Mg
2+

K
+

Na
+

, Ca
2+

receptor (NMDA)

(v) open NMDA

inside

outside

cell membrane

neurotransmitter

(e.g. GABA, glycine)

Cl
-

receptor (e.g. A)

(iii) open neurotransmitter gated inhibitory

neurotransmitter

(e.g. Acetlycholine)

Na
+

receptor

(e.g. nicotinic)

K
+

Na
+

neurotransmitter (e.g. glutamate)

receptor

(e.g. AMPA, kinase)

(ii) open neurotransmitter gated excitatory

neurotransmitterreceptor binding site

inside

outside

cell membrane

(i) closed neurotransmiter gated

Figure 6: Examples of ion channels found in the nervous system.

and the ions within, can flow from one cell to another. Furthermore, although it

is possible to have a unidirectional electronic synapse, the free flow of intracellular

fluid allows for bidirectional communications. The type of electrical synapses shown

here with connexons are found in vertebrates. These connexons and ion channels in

chemical synapses and NMJs can be modeled with FETs as well. This work emulates

the effect of chemical synapses. Electrical synapses are formed when these circuits

are connected to living systems since there is no transmission of chemicals from the

circuit.

2.2 Ion Channels

The dynamics of the ion channels found in neurons have been modeled as equations

having the same form as the Fermi function [17], [19]. The equations that describe

the way charge is distributed through FETs are also modeled with Fermi functions

[27]. This is due to the fact that these phenomena, both biological and electronic, are

governed by the same physics equations. The movement of both the ions and carriers

is determined from Fick’s Laws [19], [27]. Therefore, rather than using unrealizable

potentiometers as suggested by Hodgkin and Huxley [17],[19], a model using FETs to
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represent a population of ion channels has been created [28]. This FET-based model

provides an accurate representation of ion channels that requires a much smaller die

area compared to previous models [28].

2.3 Spike-Timing Dependent Plasticity

Spike-timing dependent plasticity (STDP) has been shown as a biological method

used to modify synaptic weight [3, 29, 4, 5, 6, 7, 8, 9, 10, 11]. Although the full

underlying cause of STDP is still being debated in the neuroscience community, a

few details are understood [30, 31, 32, 33, 34, 11]

1. synaptic weights can change with the type of neuron, position of synaptic input,

and, of course, the timing between inputs and outputs,

2. the levels of Ca2+ are important to the synaptic weight.

There are many contentious, yet crucial, points that are not understood. Much like

what is found in physics, there is no ”grand unified theory” to explain how learning

works. We just see the effects as changes in post synaptic currents or voltages. Since

these points are not fully understood, any future model that depends upon them must

proved or disproved with new biological evidence. We still need to understand

1. the exact role of NMDA receptors,

2. the effect of nitric oxide,

3. the mechanism behind the dendritic effect upon learning rules.

As seen in Figure 5, the change in synaptic weight will change depending upon

the timing between the input and output. Since it is not precisely known, the timing

of possible mechanisms behind the weight change (such as [Ca] or [NO]) is not pre-

sented. When the input occurs before the input, Hebbian learning rules exhibit an
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increase in the synaptic weight (Figure 5a). The opposite case, although not men-

tioned specifically in Hebb’s law, stipulates that outputs that occur before inputs

should lead to a decrease in synaptic weight. This decrease is also illustrated in Fig-

ure 5a. Even more peculiar is the fact that neurons from the same region (such as

hippocampus) can exhibit changes to the learning rule as seen in 5b and d. Other

strange cases, such as the complete opposite of Hebbian learning is found in electric

fish (Figure 5c) and a strictly decreasing case (5e) have been found. This work at-

tempts to create a method for explaining various bio-inspired learning rules that are

found in biologically plausible CMOS circuits.
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CHAPTER III

FLOATING GATE PRIMER

To create a biologically plausible electronic circuit, we have used floating-gate tran-

sistors. These circuit elements can be cost-effectively manufactured in most CMOS

processes, are well suited to storing analog information, and can operate using low

power levels on the order of pW to µW . These factors lead floating-gates as an ex-

cellent fundamental component in circuits that can emulate the electronic aspects of

synapses.

3.1 Basics

The core of the synapse is the floating-gate transistor (Figure 7). Floating gate

transistors are basically EEPROMs. This compact, non-volatile memory cell operates

by storing electrons in an isolated portion of polysilicon called the floating gate. The

charge is trapped and must use one of three methods to move the electrons: hot-

electron injection, Fowler-Nordheim tunneling, or ultraviolet light. Ultraviolet light

requires extra equipment and will not be covered in this document. Injection and

tunneling are used to approximate the biological functions of long-term potentiation

(LTP) and long-term depression (LTD).

There are two main methods of deciding how to adjust charge: programming and

adaptation. Programming entails moving charge to a specific value that is determined

by the user, while adaptation involves the system itself deciding on where the charge

should be. These processes are akin to supervised and unsupervised learning. There

are computationally interesting types of learning which include both supervised and

unsupervised methods. Biological learning on the cellular level is unsupervised.
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Figure 7: Pedagogical illustration of a floating gate.

3.2 Injection

Injection is used to add electrons to the floating gate. Two criteria must be met for

injection to occur:

1. large voltage across the FET,

2. current through the FET.

In the case of a pFET floating gate, hot-electron injection takes place when a hole

has so much energy as it speeds through the channel that when it collides within the

lattice, it creates an electron-hole pair. Having sufficient energy to move into the

conduction band and nowhere else to go, the stray electron moves into the gate oxide.

Present CMOS technologies attempt to prevent injection by including spacers that

prevent injection in nFETs. These spacers act as a barrier that prevent electrons

from traveling into the gate. However, there are no spacers for pFETs. Thus, pFETs
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are used to inject charge onto floating gates. The process voltage is determined by

the minimum voltage needed to cause injection.

Injection has a built-in AND function since it requires both the flow of carriers

through the channel and a large enough electric field to accelerate the carriers. This

natural AND is used to isolate single floating gates within a matrix when injecting.

To take advantage of the AND, the input gates are connected along columns and the

sources and drains are connected along rows. The columns determine the current

through the FET and rows establish the voltage across the FET. The following steps

are used to inject:

1. Raise all voltages (drain, gate, source, and well) to a voltage suitable to initiate

injection. This prepares the matrix for injection without actually injecting.

2. Select the desired column by dropping the gate voltage to a suitable level for

current to flow. This prepares the column without injecting since the voltage

across the pFET is still 0 V.

3. Drop the drain voltage of the desired row so that the voltage across the selected

FET is large enough to accelerate the carriers.

As seen in Figure 8, Vsd easily modifies the rate at which the current changes.

Figure 8 also shows that the current does not increase without bound. The rate of

injection is illustrated in Figure 9. Every injection iteration is most efficient at the

boundary between subthreshold and threshold. This is shown as the peak in each of

the curves in Figure 9. Furthermore, the overall rates are quite different. The three

phases allow for very different injection dynamics depending upon the present value

of the current through the floating gate.

The first phase of injection is the increasing portion seen in Figure 9. The currents

are low enough to still be in threshold. Here the rate of injection is increasing in the

fastest manner. So, a two changes in current from two injection iterations within this
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regime will cause the second change to be larger than the first change. This allows

for exponential growth of a current.

The second phase of injection is the peak seen in Figure 9. The rate of change is

at a maximum, which still aloes for exponential changes in current. However, each

injection iteration will be about the same within this mode of operation. The peak

occurs right before threshold.

The downward slope in Figure 9 illustrates the third phase of injection. Here, two

consecutive injection iterations result in consecutively decreasing current changes.

The current is still increasing, but at a very slow rate. This slow rate can easily be

seen in the plateaued currents in Figure 8.

These three phases of injection efficiency allow for greatly different rates of chang-

ing the current through the floating gate. This is used as an advantage in crafting a

learning rule since injection allows for multiple ways of increasing a synaptic weight

without adding more circuitry.

Note that the source can remain at VDD and the drain can drop to a negative

voltage to provide a suitable Vds. A negative charge pump can be used to achieve

negative voltages on chip. A negative Dickson charge pump is shown in Figure 10a.

The diodes (diode-connected pFETs here) are in the opposite direction compared to

the original Dickson charge pump [35], [36]. Changing the direction of the pFETs

allows this circuit to act as a negative charge pump (dropping the output voltage),

rather than a positive charge pump (raising the output voltage).

This charge pump works like a bucket brigade removing water from a boat. The

task of this circuit is to remove charge from the output node (inside of the boat) to the

input node (outside of the boat). The clock and its complement are like the members

of the bucket brigade passing buckets from one to the other. Instead of buckets of

water, the circuit has capacitors that hold charge. Each stage can provide a drop

of VDD; however, the diode-connected pFETs cause a threshold drop (UT ). Ideally,

16



there is no additional drop because of the capacitors (exponentially leaky buckets).

However, there will be a drop if the capacitor size or clock frequency are inadequate.

Figure 10b illustrates the result of simulating this circuit.

The charge pump has been fabricated and has been found to work. Charge pumps

with floating-gates were fabricated as well. The ability to modify the effective VT is

a useful tool that can be used for more precise output voltages [37]. However, as we

use CMOS processes with smaller feature sizes, we do not require as large of a voltage

across the floating-gate FET. The creation of this negative can be used to program

floating-gates, but it was found to be unnecessary.

3.3 Tunneling

Tunneling removes charge from the floating gate. Like injection, a large field must be

produced to yield successful results. However, the energy needed for tunneling is not

used for accelerating electrons. Charge is trapped in the oxide by an electron barrier.

Charge can leave the oxide if the electrons overcome the barrier. However, because

of quantum mechanics, there is a minuscule probability that the electrons can go

through the barrier. This probability can be increased by decreasing the thickness of

the barrier. With a narrow enough barrier, the almost impossible task of moving an

electron through the oxide becomes a certainty. The barrier is thinned by increasing

the voltage drop between the tunneling node and the gate as seen in Figure 11.

In a 0.6µm process, the tunneling effect is easily seen at voltages above 12 V. This

voltage is currently provided off chip. In smaller processes, the necessary voltage is

much less and can be switched on and off using the high voltage FETs available in

these processes. Therefore, future designs, should incorporate amplifiers and charge

pumps to provide the proper tunneling voltage.

A further limitation seen in the 0.6µm process is the delay before tunneling. This

delay is clearly marked in Figure 12. Rather beginning the downward progression of
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current after the first iteration of a tunneling pulse, the current remains the same.

The current begins the expected exponential drop after a few iterations. The length

of this delay (number of iterations) is inversely dependent upon the current. This

effect is not widely seen across all chips in a 0.6µm process and is currently under

investigation. Furthermore, this effect is not seen in smaller processes. Figure 13

shows that tunneling begins at the first iteration in a 0.35µm process. Note that

the rate of tunneling is faster (the current decreases more for the same number of

iterations) for the same value of Vtun.

The stable behavior of tunneling in a 0.35µm process can be used to predict the

change in current using mathematical methods. The equation describing tunneling is

not as effective in a 0.6µm process since the delay causes an unexpected effect. The

effect of the time that the tunneling pulse is on (ttun) is illustrated in Figure 14.

Intuitively, the current drops more for longer pulse widths. Further analysis (Figure

15) clearly shows that this rate of change is exponential.

3.4 Array Programming

A method to quickly and precisely program large numbers of floating gates has been

developed by Serrrano and others [38]. Tunneling is used as a global erase. Injection

is used to adjust the output current of a floating-gate pFET to a specified value.

Figure 16 illustrates the process for injection. The injection process is controlled

by an embedded system. This system uses an FPGA, a custom PCB, and on-chip

support circuitry to read currents and provide the proper voltages for injection [38].

The system can program a floating gate pFET current to within 0.5 percent error in

350 ms [38]. Targets can be hit reasonably well within one injection pulse in as little

as 10 µs.

First, tests are performed to characterize an example pFET. Next, the parameters
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extracted from the characterization are used to estimate the proper Vds for program-

ming the entire array. To implement the fastest method of programming, a single,

short pulse with varying Vds values for every floating gate. The more accurate method

uses multiple, short pulses that are modified to better approach the given target.

The method of array programming illustrates the fact that no matter the size of

the array, floating-gate pFETs can be isolated and individually modified. Typically,

one can intentionally set the output current through each floating-gate pFET to a

specific value. However, the output current can also be changed without intentionally

setting the value to a specific target. This work modifies the current without using a

specific, a priori target.

3.5 Indirect Programming

The synapses have been revolutionized due to the ability to keep the operating pFET

in the loop while changing the synaptic weight. Previously, switches were used to

isolate the STLS from the rest of the operating circuit while adjusting the synaptic

weight. As illustrated in Figure 17, a second pFET has been added to the STLS. The

second pFET is used for programming, while the first remains part of the regular op-

erating circuit. The same methods of injecting can be used with the second pFET and

the resulting change in charge is mirrored in the first pFET. This method is known as

indirect programming [39]. As a result of indirect programming, the synaptic weight

can be changed during regular operation instead of entering a program state. More-

over, many other types of circuits become feasible because of indirect programming.

A few examples include the floating-gate tunable charge pumps mentioned above in

the Injection section and large networks of floating gates such as Field Programmable

Analog Arrays.

Initial data shows that indirectly-programmed FETs work, as seen in Figure 18.

Figure 18 shows that the currents match well for when the floating-gate is programmed
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to low currents, however do not exhibit a linear relationship for currents that are

programmed above the nA range. When designing the prototype devices, we did

not take the effects of W/L and input capacitor sizing into account. As seen in

Figure19, the size of the input capacitance greatly affects the behavior of the indi-

rectly programmable floating-gates. Designs made since have rectified this oversight

and indirect programming works more effectively. The collaborative efforts of David

Graham, Ethan Farquhar, Brian Degnan, and I resulted in the improvement of this

new approach to the floating-gate [40].

The true benefit of indirect programming can be illustrated when programming

multiple floating-gate pFETs. This method has been improved so that floating-gate

pFETs can be programmed while running [41]. This allows a system with many

floating-gates to be modified as a function of the value of other output currents in the

system. The ability to modify the output current of the floating-gate while running

is essential to this work.
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to the behavior of the MOS capacitor at the tunneling junction. Since the capacitance
value of MOS capacitors is dependent upon the voltage, the device may be moving
through different regions of operation depending on Vtun. The tunneling voltages
range from 13.5V to 14.5V in increments of 0.1V.
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Figure 13: Tunneling in a 0.35 µm process. Note that there is no delay in the onset
of tunneling as in the 0.6 µm process. The tunneling voltages range from 11 to 14V
in 0.2V increments.
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Figure 14: Change in tunneling rate for different pulse widths in a 0.35 µm process
at 13V. An tunneling input of 13V and pulse width of ttun was presented. The length
of ttun varied from 10ms to 0.1ms.The current began at 2µA and was allowed to drop
to at least 90nA or for 100 iterations. The current through the floating-gate pFET
was measured after each pulse.
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Figure 15: Natural log of the rate of change in tunneling in a 0.35 µm process for
different pulse widths. The natural log is taken since the rate of change is proportional
to ettun where ttun is the time that tunneling is on. Therefore, a line is created when
the natural log of the rate is plotted. The tunneling voltage Vtun is 13V in this
experiment.

27



Figure 16: Programming of a matrix of floating gates. VDD has been set to some
value that would allow for a large enough VDS for injection, such as 6 V. The floating
gate at row 1, column 2 is isolated by putting all of the other drains (rows 0 and 2) to
VDD and the other gates (columns 0,1, and 3) to VDD. The drain of row 1 is dropped
to some desired level, such as ground, and the gate is sent to another level, such as 3
V. Figure originally from Kucic.
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Figure 17: Figures of indirect programming structures. These structures allow
for the adjustment of floating gate charge without the use of switches. (a) Indirect
programming structure for a pFET. (b) Indirect programming structure for an nFET.
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Figure 18: Data from indirectly programmed FETs as reported in the indirect
programming paper.
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Figure 19: Data from indirectly programmed FETs illustrating the effect of capac-
itance values as reported in the indirect programming paper.
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CHAPTER IV

ARTIFICIAL NEURAL CIRCUITS

I have developed a family of bio-physically inspired, bio-compatible, reconfigurable

artificial synapses in CMOS. These synapses operate in subthreshold and draw power-

on the order of pW to µW . Therefore, an array of these elements has a power draw

that is comparable to a biological system. An array of these artificial synapses were

combined with artificial dendrites and ion channels designed by Ethan Farquhar. The

collaborative effort with Farquhar led to the development of a reconfigurable system

with neurally inspired core components: the Field Programmable Neural Array.

4.1 Models of Synapses

A single-transistor learning synapse (STLS) has been modified to create different

synaptic types that are based on the types of ion channels present at the synapse.

The STLS is a floating gate pFET [42]. This non-volatile method of charge storage

allows for the easy change of the threshold voltage of the pFET through hot-electron

injection and Fowler-Nordheim tunneling. The STLS is used as a memory device that

will change its output current depending on the amount of charge on the floating gate,

thus the charge on the floating gate is equivalent to the synaptic strength.

Furthermore, the forces that drive electric currents in a subthreshold MOSFET,

diffusion and drift, are the same forces that drive ionic currents through ion channels

in neurons [43], [44], [28]. Thus, subthreshold MOSFETs are ideal structures to model

ion channel behavior. These low subthreshold currents allow us to have thousands of

synapses on chip that collectively use little power. Although our present implemen-

tation has not been optimized for size, its area is less than 850 µm2 and would allow

for more than 600 synapses on a MOSIS TinyChip (1.5 x 1.5 mm die) with room for
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40 pads, testing circuitry, peripheral circuitry, and wiring.

To create accurate synaptic circuits with variable strength, we first investigate an

EPSP that is produced by an action potential-like signal. By inspection, a typical

EPSP is an exponential signal with the upgoing side’s time constant being much

faster time constant than the downgoing side, as illustrated in Figure 20. The log

of that signal is basically a triangle wave with an upgoing slope that is much faster

than the downgoing slope. Since the output current of a subthreshold MOSFET is

exponentially dependent on the input gate voltage, an asymmetric triangular signal

placed on the gate should look like an EPSP. Since, pFETs invert the input signal

instead of a fast upgoing slope and a slow downgoing slope, we should invert this

signal so that it is a fast downgoing slope followed by a slow upgoing slope. A simple

method of producing such an asymmetric triangular signal is to have a subcircuit that

can charge a capacitor faster than it discharges it. An inverter modified with pull-up

and pull-down biases can easily accomplish this task by setting the pull-up bias such

that it draws current more slowly than the pull-down bias. Furthermore, this signal

can be created with a digital pulse, which is an action potential-like signal. Thus, we

have accomplished our goal to have an action potential-like input with an EPSP like

output that can be weighted according to synaptic strength. All of the other synapse

types discussed here are built on this foundation.

4.1.1 Excitatory Synapse

There are many varieties of excitatory channels in the nervous system, as seen in

Figure 6. Acetylcholine channels allow Ca2+ to rush into the cell in the presence

of acetylcholine, while glutamate channels bring Na+ in and drive K+ out. This

circuit topology can emulate many types of excitatory synapses by simply changing

the relative values of the constant voltages (Figure 22). For instance, while ECa and

ground are used to represent a collection of ACh channels, they could be replaced
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Figure 20: A typical PSP that would be found in biology modeled from Rall’s
alpha function on top with the log of the alpha function at the bottom. The right
illustrates the steps taken in developing the synapse. Important functions, nodes,
and waveforms are highlighted in red.

by ENa and EK , respectively, to emulate a family of glutamate channels. Of course,

the digital input to the synapse should be scaled accordingly to maintain proper

operation.

Figures 22c and 22d illustrate how we can easily create a variety of EPSPs by sim-

ply modifying our pull-down (Vn) and pull-up (Vp) biases. As expected, Vn changes

the EPSP’s rising time constant, while Vp changes the falling time constant. There-

fore, by changing our location in the Vn,Vp parameter space, we can emulate many of

the natural stimuli that modify EPSP shape and size [17], [19], [21]. Although the

voltage levels given are accurate to three decimal places, the operating point within

the Vn,Vp parameter space need not be so accurate. Our experiments were repeatable

and stable using 12-bit DACs and hand-turned potentiometers.

One natural stimuli that greatly affects the PSP is the driving force that a partic-

ular ion has to propel it through the channel. The larger this driving force, the easier

it is for the ion to move through the channel. This driving force is dependent on the

membrane voltage (Vm) and the ion’s concentration gradient between the inside and
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Figure 21: An increase in the frequency of the signal results in the aggregation of
basic EPSPs, as seen in biological data.

outside of the cell. This gradient can be represented as a voltage such as ECa for

calcium. Biological experiments to explore this biological phenomena are known as

voltage clamp measurements. Figure 22b shows how we can modify our voltage levels

to re-create biological voltage clamp data [17], [19], [43].

Another biological phenomenon is that of temporal summation. EPSPs combine

to form one large aggregate signal. This effect is much like charging a capacitor with a

series of small pulses. Each individual pulse is not enough to charge the capacitor, but

if the period is small enough, the capacitor does not have enough time to completely

discharge. Over time, the capacitor will be completely charged with some ripple.
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Figure 22: (a) The input of the basic excitatory circuit is an inverter with an output that
has been slowed down by the capacitor to ECa. The net synaptic strength is proportional to the
charge on the floating gate. Like its biological analogue, this synaptic strength can be modified. (b)
Changing Vd in an excitatory synapse. In biology, decreasing the membrane voltage decreases the
size of the basic EPSP. Decreasing the voltage across the synapse channel transistor decreases the
size of the EPSP. In this case, Vn=1.259 and Vp=2.238. (c) The rate at which the initial, upgoing
side of the basic EPSP increases by increasing Vn. Note that the inset, a plot of the voltage on the
input of the STLS, illustrates only the the beginning slope changing with a change in voltage. Here,
Vn varies and Vp=2.080.(d) The rate at which second, downgoing side of the basic EPSP increases
by increasing Vp. Note that the inset, a plot of the voltage on the input of the STLS, illustrates
only the the second slope changing with a change in voltage. Here, Vn=1.994 and Vp varies.
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Figure 23: (a) The inhibitory synapse is similar to the basic excitatory, with the exception of the
location of the output terminal. The floating gate source draws current, rather than having the drain
provide current. Thus, we have an inhibiting effect on any subcircuit which this synapse is connected.
(b) As expected, these GABAA inhibitory results are basically the mirror of the excitatory synapses,
where this IPSP decreases for decreasing voltage across the STLS in this voltage clamp experiment.
Here, Vn=1.867 and Vp=2.109.

Figure 21 shows that we can achieve results similar to what is found in biology.

4.1.2 Inhibitory Synapse

The inhibitory synapse produces a decrease in membrane voltage in response to an

action potential in the pre-synaptic cell. Thus, the IPSP is effectively the mirror

image of the EPSP. This IPSP is caused by a flow of Cl− ions through GABAA

gated channels. Glycine gated channels operate in a similar fashion and these silicon

synapses can be considered to be similar to glycine biological synapses as well.

Figure 23a shows that we simply take a basic excitatory synapse and use a different

node for the output. Since we want a net flow of negative current, we use the STLS

source node for output rather than the STLS drain node. Current is now drawn rather

than provided. The resulting effect is shown in Figure 23b. Figure 23b is a repetition

of the voltage clamp experiment done above in the excitatory circuit section where

we have effectively changed the driving force of the ions through the channel in an
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Figure 24: (a) Like the biological NMDA synapse, this circuit’s response depends on the mem-
brane voltage as well as the carrier flow. Here, we use a C4 amplifier to mimic the effect of Mg2+.
(b) As expected, the NMDA voltage clamp experiment results are similar to the basic excitatory
synapse where the EPSP decreases, then goes negative for decreasing voltage across the STLS. Here
Vn=1.259 and Vp=2.238. (c) The rate at which initial, upgoing side of the NMDA EPSP increases
by increasing Vn. Note the inset, a plot of the voltage on the input of the STLS, illustrates only the
the beginning slope changing with a change in voltage. Here Vn varies and Vp=2.080. (d) The rate
at which second, downgoing side of the NMDA EPSP increases by increasing Vp. Note the inset, a
plot of the voltage on the input of the STLS, illustrates only the the second slope changing with a
change in voltage. Here Vn=1.777 and Vp varies.
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inhibitory synapse.

4.1.3 NMDA Excitatory Synapse

Biological NMDA synapses are doubly gated by the type of a neurotransmitter present

and the voltage across the cell membrane. We have reproduced this gating mechanism

by adding a feedback mechanism to the basic excitatory synapse. As illustrated in

Figure 24a, the feedback is a C4 amplifier with a gain of -1 to a second input to the

STLS. The C4 is a tunable bandpass filter in which each corner can be adjusted with

a bias [45]. We pushed the corners as far out as possible, thus allowing the C4 to

act like an all-pass amplifier. As the output of the synapse increases, the output of

the feedback decreases, thus decreasing the voltage at the input of the pFET floating

gate. A decrease in the pFET input effectively increases the output, thus repeating

this cycle. In the biological NMDA synapse, the presence of neurotransmitter initially

opens other non-NMDA channels, which begins to depolarize the cell. Once the cell

has depolarized enough, a Mg2+ ion is forced out of the NMDA channel and the

channel fully opens. The initial depolarization of the cell is like the initial voltage

change on the output of the circuit, while the feedback that augments this change on

the circuit effectively like the Mg2+ ion being forced from the channel.

Figures 24c and 24d illustrate that we can easily create a variety of EPSPs by

simply changing Vn and Vp. Similar to the basic excitatory synapse data shown in

Figures 22c and 22d we can easily choose Vn and Vp to create an EPSP to suit a

variety of applications. Figure 24b illustrates that we can drive the circuit from a

positive to negative EPSP with a voltage clamp experiment. This is effectively the

same as initially driving K+ out and Na+ in, not moving the ions much at all, and

finally driving K+ in and Na+ out.

37



4.1.4 Analysis of the Synapses

The input stage of the synapse is a modified inverter. Current flows only through the

pFETs when the input signal is low and only through the nFETs when the input is

high. We can modulate the size of the current with the biases Vp and Vn. Since we

have a capacitor at the output of the inverter, ip does not need to equal in.

Current flows through all FETs when the input is between the rails. Since the

input is a pulse, we can simplify our analysis by viewing the input as being either

high or low and ignoring the insignificant transition time. This transition time is

no longer than 10 µs for a digital pulse. For input pulses on the order of biological

timescales, this transition time is less than 0.1% of the digital action potential. The

inputs are not limited to strictly digital inputs. Here, the analysis is of the common,

simplified input of a digital action potential.

v = vc − ECa

i = in − ip

i = C
dv

dt
(1)

1

C
idt = dv (2)

∫ tend

tstart

1

C
idt =

∫ tend

tstart

dv (3)

v =
1

C

∫ tend

tstart

idt (4)

Since i is a pulse, we can think of it as a constant at two different times. The

current will be ip = Ip when the current is low and in = In when the current is high.

So, the solution to the integral is simply a line of slope -Ip or In that changes with
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time.

v =
1

C

[
[−Ipt]

tpend

tpstart
+ [Int]tnend

tnstart

]
(5)

tp = tpstart − tpend, tn = tnstart − tnend (6)

vc =
1

C
[−Iptp + Intn] + ECa (7)

Therefore, we have a square, digital pulse that is transformed to an asymmetric

triangle wave. The slopes of this triangle wave are controlled by the currents flowing

through the FETs. These currents are controlled by the biases Vp and Vn. To deter-

mine the relationship between the biases and vc, we have two methods. The FETs

can operate in either subthreshold or above-threshold. Subthreshold operation uses

lower currents and therefore a lower power operation. Ideally, we would operate in

subthreshold so that we can minimize power consumption.

First, we will assume that the currents through the FETs of the modified inverter

do not depend upon the drain voltages of the FETs. To ignore the drain voltages, we

assume that the FETs are in saturation when current is flowing (the voltage across

each FET is at least 4UT ). We will check this assumption at the end of this analysis.

Since the FETs are in saturation, the currents are:

In = In0e
(κVn−gnd)/UT , Ip = Ip0e

κ(Vdd−Vp)/UT

.

So, the triangular waveform is now:

vc = Vdd − 1

C

[−tpIp0e
κ(Vdd−Vp)/UT + tnIn0e

κVn/UT
]

(8)

Therefore, we have a voltage vc that has a slope of Ip when input is low and −In

when the input is high. As equation shows, we can easily modify these slopes with
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the biases Vp and Vn respectively.

Now, we can check our initial assumption that we can ignore the dependence of

the current upon the drain voltages of the FETs. The current Ip effectively is only

on when the digital input is low. When the input is low, the nFET M2 is off and

pFET M1 is on. No current can flow through the nFETs and all of the current must

flow through the pFETs to discharge capacitor C. The vice versa case occurs when

the input is high and the current flows through the nFETs to charge capacitor C.

As the capacitor discharges, the voltage across the cap, Vdd − vc, decreases. If the

voltage across C is Vdd, then vc is 0 V. If vc = 0, the voltage across the pFET leg

of the modified inverter is large enough for each pFET to be in saturation, provided

that Vdd ≥ 2V at room temperature. This value of Vdd is sufficient until a process

size of 180 nm. However, we see that if Vdd = 3V and vc = 1V , the pFETs slip

out of saturation. As the drain voltage Vmidp approaches Vdd (since the headroom is

shrinking), the terms dependent upon this drain voltage go to 1 and can be ignored.

Therefore, the drain voltages can be ignored and the value of vc approaches a value

dependent upon the difference Vp − V in instead of simply Vp. As we shrink the

headroom down to 0 (vc = Vdd), the pFETs are off. The value of vc remains at Vdd

until the input goes high and the process is controlled by the nFETs. The nFET case

is the analogue of the pFET case.

The next stage is the floating-gate pFET. The current through a floating-gate is

Ifg = I0pe
κVfg
UT (9)

Ifg = I0pe
κ

Qfg+CinV in

CT UT (10)

Ifg = I0pe
Qfg

CT UT e
κ

CinV in

CT UT (11)

Ifg = We
κ

CinV in

CT UT (12)
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where W is a weighting factor that represents the synaptic weight that can be altered

through tunneling and/or injection [46]. Therefore, we have a method to produce a

weighted exponential curve that has characteristics of a PSP [19], [17]. The analysis

for the other synapses is similar, except that the output current for the inhibitory

synapse is in the opposite direction and the feedback from the NMDA type adds a

term which increases the current.

4.2 Field-Programmable Neural Array

The majority of the benefit in computing comes from its reconfigurability. Micropro-

cessors are useful because software can be written for them to suit the applications de-

sired by the user. Hardware reconfigurability is a relatively recent phenomenon spear-

headed by the popularity of EPROMs, PLDs, and FPGAs. Now, field-programmable

analog arrays (FPAAs) are beginning to grow as a field. FPAAs allow the user to

connect analog circuit blocks, much like FPGAs allow a user to connect digital cir-

cuit blocks. Example blocks include amplifiers, multipliers, and single transistors

[47]. These analog blocks can be arranged to form more complex circuits, such as

matrix multipliers and filters, in a manner that is similar to building adders and pro-

cessors with FPGAs. Reconfigurability in hardware greatly reduces the design cycle

and allows for fast, low-cost systems. We have added a form of FPAA, called the

field-programmable neural array (FPNA), which is comprised of analog blocks that

are geared toward building neuro-inspired and neuro-mimetic systems. Much like

how DSPs are specialized microprocessors, our FPNAs are specialized reconfigurable

devices. Like DSPs, FPNAs are a tool that users can use to create more powerful

applications than what could be realized with a more generalized device [48], [49].

4.2.1 Architecture

As seen in Figure 25, there is a full-crossbar connected matrix of elements. Thus, any

element can be connected to any other element. Each element consists of synapses,

41



Variable
Conductance

Switch

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Soma
Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Variable
Conductance

Switch

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Soma
Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Soma
Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Ion Channels

Synapses

Readout
Dendrite

(Horizontal)

Dendrite
(Vertical)

Variable
Conductance

Switch

Floating Gate Switch Interconnect

Floating Gate Switch Interconnect

Floating Gate Switch Interconnect

A
xonal B

us

Figure 25: Schematic of the Field Programmable Neural Array (FPNA).

ion channels, dendritic sections, and readout circuitry. The latest version has two

ion channels (Na+ and K+), two synapses (excitatory and inhibitory), two dendritic

sections (horizontal connection and vertical connection), and four wide-range ampli-

fier buffers for reading output voltages. Any of these parameters can be adjusted in

future versions. These numbers were chosen to fit the following criteria in order of

importance:

1. at least enough ion channels to create an action potential (Na+ and K+),

2. at least two synapses, preferably one excitatory and one inhibitory,

3. pitch-matched to the smallest area possible,
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Figure 26: (a) Layout for the first version of the FPNA. This was fabricated by MOSIS on a
AMI 0.5 µm process. This chip is 1.5 mm x 1.5 mm and has 40 pins. (b) Layout for the second
version of the FPNA. This was fabricated by MOSIS on a TSMC 0.35 µm process. This chip is 3
mm x 3 mm and has 64 pins.

4. dendritic connections to connect in both dimensions of the matrix,

5. at least one circuit to read voltage output.

Criterion 1 required six floating gates to program and a large area (to create signals

on the same timescale as biology). Criteria 2 and 4 raised the number of floating

gates to 10. The final area was limited to 8x8 decoder-bit sections since the area of

the ion channels was so large. The leftover space was used to fit the readout circuitry.

A pitch-matched wide-range amplifier mentioned in the was used to create a voltage-

follower buffer. This provided the best voltage response compared to other circuits

such as operational transconductance or two-transistor amplifiers. There was enough

room to fit four of these structures. The output of each row is sent to the soma block.

The soma creates the triangle-shaped waveform used in the synapse circuit and is

similar to biological data [17]. This output and external inputs are sent to other

areas of the circuit depending on the arrangement of switches in the floating gate
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(b) (c)(a)

Figure 27: Networks that can be created using the FPNA. (a) One complex cell.
(b) Two less complex cells forming a simple CPG (half-coupled oscillator). (c) Many
simple cells connected in a complex network.

switch network. This switching scheme allows for full connectivity throughout the

matrix. On the initial implementation, 8192 connections can be made. The second-

generation FPNA can achieve more than 12K connections. The layout for this chip

is shown in Figure 26b; the first version is illustrated in Figure 26a.

4.2.2 Applications

This structure is used for a range of applications. Complex models of cells can be

made by modeling small sections of the cell in each subblock of the FPNA. Small

central pattern generator networks can be created by connecting a few approximate

models of neurons. Large neuronal networks can be created by connecting hundreds

of the individual blocks. Figure 27 illustrates the variety of networks that can be

achieved with this chip.

4.2.3 Improvements

The initial prototypes of the FPNA heavily relied upon indirectly programmed floating-

gates. Unfortunately, this dependence made programming impossible. Furthermore,

analyzing currents within the FPNA to determine the operation of the synapses is
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not possible since the outputs are buffered voltages. The next generation chips, called

biological FPAAs or BioFPAAs, were made by Basu and Ramakrishnan [50]. Data

collected by Basu and others showed that neurons and synapses could be made to

work individually. The next generation chip was designed by Basu and others to

make the indirectly programmed floating-gates more viable.
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CHAPTER V

METHODS OF LEARNING

Learning rules to explain how inputs and outputs can change the synaptic weights

within a system. Although learning rules were first used to describe and implement

artificial neural networks, biology has adapted to using them as well. Understanding

learning and memory in biology has resulted in the discovery of many, but not all

learning rules. This chapter describes how learning rules have been explored in the

previously described synapses. I initially explored the effects of implementing learning

with a simple floating-gate called a single transistor learning synapse (STLS). Taking

advantage of the rates of injection and tunneling, I found that Hebbian learning can

be implemented. This previous work involved providing a rectangular, digital pulse

directly to the input of the floating gate. However, the bio-mimetic synapses receive

this digital pulse at the overall input; the input at the gate is a triangular pulse. So,

experiments with this synapse were performed to explore the types of learning that

could occur.

5.1 Previous Work

Using a simple synaptic circuit, networks with Hebbian-type adaptation rules have

been realized. With increased synaptic activity, the synaptic weights are increased

or decreased. That increase or decrease continues with subsequent synaptic activity.

This work explores the relationship between synaptic activity and weight for various

inputs. Figure 29 is the schematic of the circuit that realizes this form of LTP and

LTD. As seen in Figure 28, the system will reach an equilibrium point; either it will

be pruned away to zero, or it will move toward some stable synaptic weight. The

movement of three synaptic weights is illustrated in Figure 28. The importance of
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Figure 28: (a) State-space analysis of learning rule. Two cases of simultaneous tunneling and
injection are explored. As illustrated, equilibrium points can be shifted to desired locations by
varying the tunneling and injection voltages. Furthermore, the trajectories of the weights can be
determined for a given initial condition. The arcsin function is used to magnify the detail of the
data. (b) Experimental measurements from a 3 synapse system, where one synaptic input (Synapse
2) is visited significantly more than the remaining 2 inputs. Weight adaptation at a particular
synapse is dependent upon the occurrence of input pulses with output pulses. With an increase
in synaptic activity, the probability of input and output pulse-overlap also increases. The overall
network adaptation rate is dependent upon the tunneling and injection voltages. We illustrate the
case where we have a combination of LTP and LTD occurring in the system.
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Figure 29: Basic floating-gate circuit for an action-potential learning system. Our
synapses are a single floating-gate pFET device with a DIBL transistor for stability.
The neuron element is an integrate and fire neuron that can be easily replaced with a
more biologically accurate model. The feedback circuitry moves the source (Vs) and
tunneling (Vtun) voltages after the onset of an action potential. The current from each
synapse is summed along a wire; extending this circuit to biological type dendrites
would be straightforward.

the dynamical nature of neuronal systems has been used in creating software [51],

[52] and hardware models of neurons [53] as well as synapses based in software [54].

This work was the first to illustrate a synapse with a dynamical nature that could

also be used for interfacing to living cells.

I have already created simpler systems that can modify synaptic strength in a bi-

ological fashion [1]. Biologically, synapses strengthen through long-term potentiation

(LTP) in which pharmacological and morphological changes are made to improve sig-

nal transduction from the pre-synaptic to the post-synaptic cell. After LTP, the PSP

is much stronger than it was before LTP. Conversely, long-term depression (LDP)

decreases synaptic strength such that the PSP becomes weaker. We will incorpo-

rate our previous work with these circuits to move from programmable synapses to
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self-adapting synapses.

5.2 Experiment

In order to explore the intrinsic learning rules that can be found with a floating gate,

I used a STLS with variable inputs to the input, tunneling node, and Vsd. All of the

essential inputs to the whole system are spikes. Recall that the input to the synapse

is a spike, while the input to the STLS within the synapse is a triangular waveform.

I inputted a triangular waveform to the STLS to simplify the full effect of inputting

a pulse to the synapse. This simplification allows analysis that is independent of the

biasing values of Vn and Vp. By varying the input values in size and time, spike-

timing dependent plasticity (STDP) can be explored in its basic form. An example

input sequence is illustrated in Figure 30. Although the known learning rules found

in biology exhibited in Figure 5 are an example of what could be possible, all learning

rules have not been discovered.

Inspired by the experiments of Bliss and Lømo and Bi and Poo, the initial synaptic

weight was measured, then a particular input sequence was repeated several times,

and the final synaptic weight was noted [55], [29]. Every new experiment began with

re-initializing the synaptic weight to the same value. If the initial synaptic weight

were changed, equivalent curves would occur since the the peak injection rate would

occur for an equivalent current. The curves would be more flat for a larger initial

current since the rate of injection decreases for above-threshold currents. However,

curves would have the same overall shape for these large currents. Similarly, initial

currents that are very small (on the order of 100pA) provide injection rates that are

less than optimal, but those rates are still larger than above-threshold injection. So,

initial values that were close to the optimal range were chosen.

The learning rules discovered represent the forms of unsupervised learning that

found in the STLS. Since floating-gates can be programmed, it is possible to use an
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Figure 30: Plot of the inputs to the single transistor learning synapse.

external system to force the synaptic weight to arbitrary values. Rather than using

hardware to set injection and tunneling voltages, a computer can be used to program

the weight based upon software implementing a desired learning rule. This is a trivial

exercise and is not implemented in this work.

5.3 Data and Discussion

The benefits of using an artificial system were obvious by the second experiment. Bliss

and Lømo and Bi and Poo needed to prepare another rabbit or rat in order to conduct

a new experiment. I simply programmed the synaptic weight to the initial value and

began the experiment with a different timing difference. Repeating experiments A,
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B, and C stereotyped in Figure 4 simply took a few minutes and not days.

Software yields a similar benefit, with some detriments. The detriments of software

include, but are not limited to, the in: the inability to produce real-world signals that

are of biological levels, the inability to scale easily, and the need for a high-power

device such as a processor. These are not detriments for most modelers. However

these disadvantages are crippling when seen in the greater context of attempting to

create a fully integrated system that can be implanted in vivo. Therefore, using

artificial devices to implement these learning rules provides fruitful results that are

most beneficial in the long-term.

The data collected in the artificial system yields three distinct learning rules in

a STLS created in a 0.6 µm process. The data shows that the weight can change

greatly, can be tuned for a specific timing, or can increase or decrease. The rules are

shown within a window around the input. Empirically, the synaptic weight was not

altered noticeably outside of the area shown in this work.

Outside of the time in which the input is on, there is no injection. Injection only

occurs when current is flowing. Since there is no current when the gate is at Vdd, no

injection can take place. Therefore, the synaptic weight cannot change if an injection

pulse takes place outside a prescribed window. Conversely, the delay in tunneling

causes the window for decreasing the synaptic weight to be more difficult to judge.

Tunneling can take place regardless of the value of the gate voltage. However, the

delay causes interesting effects described here.

5.3.1 A Greatly Increasing Rule

The synaptic weight obviously increases greatly if only injection is employed and

tunneling is left off, as seen in Figure 31. Figure 31 shows a single, mountainous peak

with negligible change outside of the presence of an input. Here, the peak synaptic

weight change occurs when the gate is about 3.5V (near threshold). However, the
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Figure 31: A learning rule that increases the weight most efficiently due to the
current value through the floating-gate. This form of the rule takes place when there
is no tunneling at all. Note that the peak change in synaptic weight takes place for
a current that is near the threshold.

maximum change in weight does not occur for the lowest input level (and thus the

largest current through the floating gate). This is due to the fact that the injection

rate is more efficient right at threshold as seen in Figure 32. So, the maximum

change in current occurs when an output is activated when the gate voltage provides

the current closest to this optimal injection value. The peak represents a change in

current that went from the nA range to the mA range in one step. This huge change

in synaptic weight is due to the fact that the current began in an optimal range and

that there was no tunneling.
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The data in Figure 33 show that the tunneling pulse is insignificant. Here, the

position and magnitude of the peak is altered by the tunneling pulse. When tunneling

is on, the current through the STLS can go down to zero. Therefore, injection can be

prevented by the presence of a large Vtun value. Figure 33 shows the effect of muting

the effects seen in 31 with tunneling. This effect produces a five-fold increase from

the original synaptic weight rather than the increasing in many orders of magnitude.

Tunneling takes place within the window of injection. The actual control pulse is

administered before the input, but due to the delay in tunneling, the effect is not

experienced until later.

The optimal injection point occurs at a timing difference of 4ms, as seen in Figure

33. Figure 30 show that a time of 4ms, the input value is 2V. The other time that

the input is at that value, thus producing an equivalent current, between 0 and 1ms.

Since the pulses are 1ms long, any pulse that occurs from 0 to 1ms will not have the

same effect as a pulse between 4 and 5ms. This is due to the fact that the equivalent

gate voltage is optimal for a small fraction of the pulse. Whereas, the pulse overlaps

a longer portion of an optimal gate voltage from 4 to 5ms. Therefore, the change in

current is greater at 4ms than at approximately 0.5ms.

5.3.2 A Tuned Rule

The second rule shows that the efficacy of weight change can be mitigated by the

presence of the tunneling pulse (Figure 34). This result was found for Vtun ≥ 14V

and when the tunneling pulse takes place within the first 4 ms of the input. Larger

values of Vsd did not produce a different curve. Higher values of Vtun did not produce

a curve that was noticeably different either. For lower values of Vtun, the distinct

double peak turns into one peak and results in a variation of the first rule.

Also like the first rule, the presence of tunneling decreases the the maximum

synaptic weight change possible. The double peaks are do not even double the initial
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synaptic weight. The slight dip at a time difference of 2ms is misleading. This is less

than a 10 percent change and it is within the error of the system. This setup does

not produce a true decrease in weight. Further proof is in the fact that higher values

of Vtun did not make this effect more pronounced.

5.3.3 A Rule that can Increase and Decrease

The third rule, seen in Figure 35, can both increase and decrease the synaptic weight.

This rule is interesting since it allows for optimal ”remembering” for a specific tuning

between input and output, while providing optimal ”forgetting” for another tuning.

The timing between these tunings allows for even an sharper discrimination of the

timing difference. If the timing difference is 4ms, then the synaptic weight is increased

greatly. However, if the timing is stretched by just one millisecond, then the synaptic

weight is decreased. Therefore, the relationship between input and output must be

exact. Connections between inputs and outputs that occur at the right time are

greatly strengthened while slightly tardy timing differences result in the diminishing

of connections.

This rule only applies when the the value and timing of the tunneling pulse is on

as illustrated. For lower values of Vtun, the decreasing weight simply goes to zero

weight change or to a slightly positive weight change. For values of Vsd ≥ 5V, the

negative weight change becomes zero or a slightly positive weight change.

5.3.4 Creating Additional Rules

As mentioned previously, Vtun and Vsd have been limited to pulse inputs within

certain voltages. If Vtun and Vsd were different, then different learning rules can be

manifested.

Altering the fundamental expectations of when injection is on will also result in

different learning rules. For the previous experiments, injection was on only when

there was an input. Injection was optimized for certain input values. Injection was

54



off when the input was off because the gate was set to a value to provide no current.

Hence, only one of the two necessary components of hot-electron injection occurred.

However, if the input is altered so that injection can occur at anytime, the number

of possible learning rules is expanded.

An example of a learning rule in this expanded set is created when a input pulse

is provided that does not turn all the way off. The input to the STLS was set to a

maximum of 3V instead of Vdd=5V. If Vsd is pulsed at 5V when the input is only

3V, injection can occur since there will be a current. So, timing differences that are

outside of the normal realm can create increases to the synaptic weight. This results

in a learning rule as seen in 36. Here, the maximum changes to the synaptic weight

occur outside of the time that the input pulse is present. This is because the optimal

injection rate takes place for the subthreshold currents that occur when the gate is

3V. The currents when the input is on are much higher and result in a less efficient

injection rate. Therefore, another learning rule can easily be created by modifying

our initial expectation of being able to turn injection off. Altering the requirement of

using pulses at the main inputs creates an even larger number learning rules.

Since there is a potentially unlimited number of input possibilities with unlimited

timing differences, the entire space of possible learning rules are too large to explore

through brute force. So, further explorations of the possible learning should take a

targeted approach. An example is to attempt to reproduce the learning rules found in

biology (Figure 5). For instance, learning rules (a) and (b) can be created. To change

tunneling so that it is stronger for negative timing differences, one simply needs to

change the tunneling waveform. An example waveform is to use a sawtooth, rather

than a rectangular, pulse. The maximum of the pulse occurs first and the minimum

occurs last. Changing the pulse length alters the slope of sawtooth. This waveform

should result in learning rules (a) and (b) seen in Figure 5 depending upon the slope

of the waveform.
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5.4 Effect of Ca2+

Calcium is a common ion used in many cells to regulate various processes. In neurons,

calcium has been shown to be involved in the mechanisms for learning [17], [19]. The

presence of Ca2+ augments the effect of the action potential by making the post-

synaptic cell depolarize. The depolarized neuron can be brought to threshold more

easily and produce an action potential. The time scale of the influence of Ca2+ is from

the ion channel (voltage-gated calcium ion channels) level to the second messenger

level (calcium-calmodulin-dependent kinase II) [17], [19]. This work will be restricted

to the same time scale as the operation of ion channels in order to emulate basic

learning functions.

Cellular learning stems from the presence of an input and an output action po-

tential [17]. When an action potential occurs, the entire cell depolarizes. When an

excitatory input is received, the area near that synapse depolarizes. The combination

of both signals produces a stronger synaptic weight [17]. Calcium has the effect of

modulating the strength of the synaptic weight change [19].

The basic excitatory synapse has been modified to include the the effect of Ca2+.

As seen in Figure 37, a second input has been added to the floating gate. This

second input is present on every synapse. This input is controlled by circuitry to

emulate the dynamics of Ca2+. The controlling circuitry can be shared for every

row, column, or matrix of electronic synapses. The effect of Ca2+ is enabled with a

digital signal SelectLearn. When SelectLearn is low, the secondary input is off and

the synapse is effectively the same as the previous version. When SelectLearn is high,

VinCa goes to a voltage that is inversely proportional to the concentration of Ca2+

in the area around the synapse. Thus, the secondary input can adjust the output of

the electronic synapse. The lower the [Ca2+] pool voltage, the larger the resulting

EPSP. A larger EPSP produces a stronger depolarization and when coupled with

the presence of injection can result in a greater change in weight. Here, an indirect
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programming structure is used for injection. Injection pulses are introduced on the

programming pFET. These pulses can be due to either adaptation or programming.

In biology, the initiation of learning depends on coincidences that take place on the

order of milliseconds. This system is able to meet this criterion and more. Although

precise values are not necessary to emulate biology, pulses on the order of 10 µs are

attainable when programming [38]. Moreover, the effective weight change can be

achieved within one pulse [38].

This circuit was fabricated through MOSIS in a 0.6µm process. The delay in

Vtun was experienced in this chip and created problems with estimating the time at

which tunneling should occur. This circuit, and similar circuits, will be reinvestigated

by Shubha Ramakrishnan and Arindam Basu in their biological Field Programmable

Analog Array chip. That chip was created in a 0.35µm process and the tunneling

delay should not be an issue.
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Figure 32: Change in synaptic weight per iteration. The timing differences from ∆
t = -1 to 4ms are represented with different shapes. The rate of change in current
is large for a difference of -1, 0, and 4ms. Thus, these timing differences produce a
relatively large synaptic weight change every iteration. Timing differences of 1, 2,
and 3ms result in negligible changes in current, therefore producing a slow synaptic
weight change. Note that timing differences -1, 0, and 4ms produce currents that
begin to plateau since they have reached absolute values that are above threshold.
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Figure 33: A learning rule that increases the weight most efficiently due to the
current value through the floating-gate. This rule takes place if the tunneling pulse
only occurs when the gate is off and the injection pulse is near the time that the
current is near threshold. Note that the translucent red indicates when the tunneling
pulse is on.

59



-1 0 1 2 3 4 5 6 7 8 9

-10

0

10

20

30

40

50

60

70

80

90

Vinj = 5V, tinj=1ms, Vtun = 14V, ttun = 0 to 4ms

∆ 
W

 
[
%

]

∆ t [ms]

Figure 34: A learning rule with a tuned response. This response is tuned by the
timing of the tunneling pulse. Note that the translucent red indicates when the
tunneling pulse is on.
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Figure 35: A rule that can change the synaptic weight positively and negatively.
Note that the translucent red indicates when the tunneling pulse is on.
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Figure 36: A rule that increases synaptic weight when there is no input pulse. Note
that the translucent red indicates when the tunneling pulse is on.
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CHAPTER VI

NEURAL INTERFACING

Interfacing to living, neural tissue provides many interesting engineering challenges.

These issues include: reading signals of a small value, low frequency, and from many

locations. These issues are typically encountered by analog circuit designers when

creating systems for applications such as cellular telephone service miles from the

nearest tower to detecting a few photons in an orbiting telescope. However, designing

for biological interfacing has the added danger of destroying the specimen under test.

A typical designer does not need to worry about destroying a cell tower whenever

a user speaks into a cell phone. Therefore, the challenges in designing a neural

interfacing system are more precarious than typical analog circuit design.

The low-power, low-noise circuits described in this chapter provide a foundation

that allow a neural interfacing system to be developed. Intracellular neural signals

are on the order of tens of mV. Extracellular signals are far more difficult to read at

levels of tens of µV . Local field potentials (LPFs) are an even greater challenge. LPFs

are extracellular signals for a general area of the brain with frequencies that dip into

sub-hertz levels. A greater understanding of brain areas such as cortex, thalamus,

and hippocampus has been gleaned from studying this aspect of electrophysiology

[56], [57], [58], [59], [60]. These low frequencies are easily drowned out by flicker

noise. A key component of the neural amplifier to help with flicker noise is a resistive

element. This element allows for resistances on the order of gigaohms over a limited

operating range. This high resistance allows for sub-hertz operation so that the

system can be used to measure LFPs. I have made two critical improvements to a

previously revolutionary circuit by Harrison and Charles [61]. The first improvement
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is a reduction of the physical size of the circuit so that a higher density of amplifiers

can be put on a die. The more amplifiers, the more readings can be taken from the

neural tissue. The second improvement is an expansion of the operating range of the

resistive element. I have produced a small, programmable resistive element that does

not increase the footprint of the amplifier. This improved resistive element allows

the amplifier to operate in a nearly rail-to-rail operation while providing gigaohms of

resistance.

The amplifier system is used to read in signals and cannot provide outputs. A

stimulater is needed to send signals to neural tissue. The values provided by the

aforementioned excitatory synapse were fed to living neurons in a series of experi-

ments. This synapse was used to successfully interface with a pair of living neurons.

Although the system worked well, it used bench-top lab equipment to help provide the

proper current and voltage levels. The proper electrical interface must be maintained

to prevent damage to the electrodes or the cells.

A charge balancing system was developed to replace the extra lab equipment.

This charge balancing system works for any arbitrary input current in a range from

100 pA to 37 µA. This operating range stems from the fact that this system was

designed to work with the synapses mentioned above.

Details of the amplifier, resistive elements, synapse, and charge balancing system

are described in this chapter. The amplifier, resistive elements, and synapse were all

empirically tested [62]. The charge balancing system was simulated [63], [64].

In all, these circuits are shown to provide a useful toolkit for interfacing to neural

tissue. Depending on the values programmed in the resistive element and the size

of capacitances, these tools can be used for measuring LPFs and other extracellular

signals and intracellular signals (action potentials or post-synaptic potentials). This

toolkit can be useful for single-cell, slice, and in-vivo recordings.
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Figure 38: (a) Neural amplifier based on the work of Harrison and Charles. The capacitor values
are C1 = 100 fF and C2 = 10 pF. (b) The wide-range amplifier component of the neural amplifier.

6.1 Neural Amplifier

The interface from biological cells to on-chip systems is made with an amplifier, illus-

trated in Figure 38. The amplifier is similar to the low-noise, low-power wide-range

amplifier described by Harrison and Charles [61]. This amplifier exhibits excellent

noise and power performance. This circuit uses microwatts of power while attaining

a gain of nearly 40 dB [61]. Thus, a die with hundreds of these elements will still

use little power. Multiplexing hundreds of inputs and outputs can be achieved us-

ing flip-chip technology and electrode arrays (such as the Utah or Michigan arrays)

or through a multiplexing circuit [65],[66]. The first method was not available to

me since I did not have access to micromachined arrays. The second method was

explored and provided promising results detailed in this work.

6.1.1 Design Considerations

This implementation uses smaller capacitors for C1 and C2 (100 fF and 10 pF, re-

spectively). The large input capacitors help reject input noise and the capacitor ratio

C1/C2 sets the gain. The smaller capacitor C2 is the dominant determination for the
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Figure 39: (a) Power spectral density plots of extracellular noise recordings from an Aplysia
cell. The results are similar despite the great difference in size between the rack-mounted Brownlee
amplifier and the amplifier IC. The integrated amplifier has an ideal gain of 100, while the Brownlee
amplifier has a gain set to 750. In order to better compare typical readings with the amplifier IC, an
external gain of 7.5 was added by connecting the output of the chip to another Brownlee input. (b)
Superimposed spikes from the amplified extracellular recordings. The solid line is a spike amplifed
using the rack-mounted Brownlee amplifier and the dotted line is a spike amplified by the IC. The
spikes are taken from different recordings and are not the same signal being amplified.

1/f noise corner. Although these large input capacitors also have a large footprint,

they are still not much larger than the pads needed to connect the chip inputs to the

external interface. Using smaller capacitors allows for a much smaller die footprint,

thus allowing more amplifiers per chip. Unfortunately, small C2 values expose the

amplifiers to gain mismatch and noise. The optimal trade-off between die area and

capacitor size is currently being explored. Figure 39 illustrates that the noise pro-

file for the IC and a rack-mounted amplifier are similar. As seen in Figure 39b, the

output is still easily distinguishable for an equivalent gain. The noise is comparable

and the action potential can easily be sorted using various spike-sorting techniques.

The extra gain that was added to compare the signals can easily be added with an

on-chip gain stage. Future tests will use another amplifier IC that has an extra gain

stage. Although the gain of the on-chip amplifier is more susceptible to mismatch,

the footprint is now about 30 percent smaller than the equivalent circuit with C1 =
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200 fF and C2 = 20 pF. Here, better matching has been sacrificed for the benefit of

increasing the number of amplifiers that can be placed on a single die. Precise gain

values are not necessary since the following stage needs information on whether a

spike has been produced and not an exact value for the size of that spike. Future ver-

sions of this amplifier will compensate for the mismatch caused by smaller capacitors

for applications that require better matching.

Amplifiers of varying capacitor size have already been fabricated. By varying the

size of the capacitors used, it can be shown that it is unnecessary to have such large

capacitors to achieve a satisfactory noise performance. Furthermore, having a second

amplification stage allows for smaller capacitors as well. This is important for systems

composed of multiple amplifiers. By multiplexing the outputs of multiple amplifiers,

precious die area can be saved by having a single second gain stage.

In addition to reducing the capacitor size, other improvements will include adding

floating gates to the wide-range amplifier portion [67] and resistive element. The float-

ing gates will provide offset removal in the wide-range amplifier and should increase

the operating range of the resistive element.

The following multiplexing schemes were explored: scanned T-gates, addressable

and scanned T-gates, and switched buffers (Figure 40). The prototype multiplexer

needed to switch among 32 signals to read each signal at a rate of at least 40 kHz.

Therefore, the overall switching rate needed to be at least 1.28 MHz.

6.1.2 Discussion

The modified amplifiers successfully amplified voltages akin to both intracellular and

extracellular neural signals (Figure 39). Therefore, these amplifiers can be used for

single-cell, slice, and in-vivo recordings. The improved amplifier has been useful for

our collaborative efforts with Neural Signals, Inc. However, the multiplexer designs

have not been as fast as the required MHz scale switching speed. The latest version
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(a) Simple Scanner (b) Modified Scanner with Select (c) Buffered Scanner

Figure 40: Examples of different multiplexing schemes. Note that each figure is one
cell out of an array of cells.

of the multiplexer can switch at over 1 MHz when more power is applied. If the

power is increased by 130%, the output can effectively switch at the proper rate. The

multiplexer with the option to skip values was deemed unnecessary since programming

the control circuitry would not be desired once the chip was implanted to interface

with the cortex.

6.1.3 Resistive Element

A major improvement to the above amplifier can be made by reducing the lower

range of frequencies that the circuit can operate. The design consideration to use

large input pFETs helps with reducing flicker noise of the amplifier. However, the

lower frequency corner is also determined by the size of resistances used in the filter.

Most CMOS processes do not include a high resistance layer. If a high resistance

layer is available, it is usually on the order of 300 to 1500 ohms/square. Resistance

of over 1 MΩ are rarely used in designs due to size limitations. However, these

resistances are linear across voltage ranges. This type of resistance cannot be used

in this system since resistances of at least GΩ range are needed. Furthermore, each

amplifier requires two, separate resistance values (series elements are effectively one

element in layout). Therefore, therefore each resistance would be on the about the

same size as each 10 pF capacitor. The area of each amplifier would balloon by a
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Figure 42: CMOS based resistive element with programmable MOS and BJT ends.

third. This is an unacceptable design tradeoff.

The original resistive element can provide effective resistances of over 1 GΩ, but

the operating range is limited to ±0.2V. These devices are an attempt to provide

high resistance in a compact area in a CMOS process and across a larger voltage

range. These elements would not been realizable without using indirectly programmed

floating gates. Resistances of this size are practically impossible using high resistance

layers in current CMOS technology.

Four resistive element designs are presented: one is the original design by Delbruck

and the other three are my modified designs [68]. These designs are shown in Figures

41 and 42. The elements provide a higher resistance, however, they have not been

incorporated into an amplifier design yet. So, the full benefits have not been reaped

in the new amplifiers yet.
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Note that the experiment was limited by the operating range of the D/A con-

verter used, so the voltages were only measured from -3V to 3V. Furthermore, the

picoammeter used could only read currents as low as around 30 pA and the data also

reflects that limitation.

The simple resistive element can be considered as two diodes in parallel as seen

in Figure 43. The diodes are in opposite directions and only one diode will operate

depending upon the voltage across the device. One diode is formed by the connection

to the body of the transistor. This is a diode-connected BJT. The other diode is

formed by the connection to the gate: a diode-connected MOS. The current when the

voltage is negative is mostly due to the element operating like a diode connected BJT.

The element behaves like a diode connected MOSFET when the voltage across it is

positive. The current-voltage relationship for the simple resistive element is shown

in Figure 44. Note that the exponential rate of change of the current is far larger for

the BJT side than the MOS side. This is due to the fact that the rate of the BJT

operation is proportional to eUT V , while the rate of the MOS operation is proportional

to eUT V/κ.

Figure 45 shows the absolute value of the current in logarithmic scale. This view

clearly illustrates the exponential relationship between the current through the device

and the voltage across it. Although this relationship is not linear, for the purposes

of decreasing a low-frequency corner, the resistance simply need not drop below a

certain value (such as 1 MΩ). Here, the useful operating range is about ±0.2V.

Some current escapes through the substrate as the device operates as a BJT. This

is due to current flowing from the n-well to the p-substrate. This substrate current

was calculated by measuring the current source from a voltage source to each of

the two accessible nodes. These opposite currents are summed to provided the net

difference. This substrate current cannot be measured in this CMOS process since

the substrate is shared among the entire chip. The substrate current is large when the
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Figure 43: MOS versus BJT operation of the simple CMOS based resistive element.

device is operating as a BJT and negligible during MOS operation. In BJT operation,

the total current must include the substrate current, while the total current can be

approximated to be the current measured at either terminal. Figure 46 shows this

relationship between the currents.

The effective resistance was calculated using Ohm’s Law, the given voltage, and

the measured current. The effective resistance of the simple resistive element is shown

in Figure 47.

The first design is shown in 41b. Here, the MOSFET side of the device can

be programmed indirectly. Figure 48 shows the data from this element. Initially,

the modified design had a particular floating gate charge. After programming that

charge so that the current through the floating gate decreased, the current improved
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Figure 44: I-V curve for the simple resistive element near the operation point.

to provide an effective resistance in the teraohm range. The programmed current

widens the operating range on the MOS current to at least 3 V. Furthermore, this

resistance is relatively linear in the MOS operating regime. This modification provides

a linear effective resistance from 0 to 3V in a value that is over a million times the

largest value that is usually attempted in a CMOS process while being only a fraction

of the size.

The second design is shown in Figure 41c. The BJT side of the device has been

programmed to expand the operating range. This improved device operates for a

range of at least -3V as seen in Figure 49. The maximum resistance dropped, but

is still on the order of megaohms from -3V to 0.2V. The MOS operating range is

essentially the same as the original design since that part of the circuit is unaffected

by the floating gate value.
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The third design is a combination of the first and second (Figures 41b and c).

Figure 50 shows that this improved device operates for a range of at least -3V to

1.25V. The maximum resistance dropped, but is still on the order of megaohms within

the expanded operating range. The MOS operating range could be improved by

programming that floating gate to a lower current. Unfortunately, at the time that

this device was created, indirectly programmed floating-gates were brand new and

design techniques had not been developed. To improve the operation this device, the

FETs and capacitors need to be sized more precisely.

6.2 Interfacing Experiment

The true test of the electronic synapse is whether or not it can actually act as the in-

terface between two living neurons. As seen in Figure 51, the full system is comprised

of living cells, portions of an electrophysiology rig, and ICs. Ideally, the interfaced sys-

tem would look more like Figure 3. Unfortunately, because the change in impedance

introduced by the microelectrodes, the electrophysiolgy setup must be used as part

of the interface. This external equipment also helps maintain the proper amount

of charge needed in the system to prevent the destruction of the electrodes and cell

death. A system to provide this functionality is described here as well. Therefore,

a full system containing all necessary components can be produced in an affordable

CMOS process.

6.2.1 Linking An Artificial Neuron to a Living Neuron

Figure 52 illustrates the ability to link an artificial integrate-and-fire neuron with a

living neuron. First, a spike train is produced by providing a constant input current

to the artificial neuron. This current is provided by a pFET current source, such that

the resulting frequency reaches some desired value. Here, we set the frequency to be

approximately triple the natural frequency of the neuron. Next, the output of the

artificial neuron is fed to the artificial synapse. The shape and size of the synapse
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were chosen to approximate similar EPSPs that the neuron would normally receive.

Note that the electronic synaptic output is already a biologically accurate shape and

size and does not need any further signal conditioning. The output of the electronic

synapse then goes through two converters to prevent any possible damage to the

testing equipment. The signal is finally sent to the cell intracellularly. Biologically,

synapses are electrochemical devices. Instead of applying neurotransmitters to the

postsynaptic cell, we inject a current similar to the one created by the biological

synapse. The resulting change in membrane voltage is read, digitized, and stored on

a computer. Figure 52 shows that we can produce these signals and effectively change

the output of the cell.

6.2.2 Linking Living Neurons Through Electronics

A true electronic synapse has been created using circuitry to link two living cells.

Figure 53 shows the signal flow of the system. Cell 1, the presynaptic cell, is stimu-

lated to produce action potentials. The output of Cell 1 receives no amplification and

remains on the order of tens of millivolts. If amplification is needed, the rack-mounted

amplifier can be replaced with a neural amplifier IC. The intracellular voltage is then

sent to the integrate-and-fire neuron. Here, the neuron acts as a spike identifier that

sends an output spike when an input spike is received. This digital spike is then sent

to the artificial synapse, which creates the EPSP. As in the previous section, the sig-

nal goes through converters to protect the equipment for these preliminary tests and

are not needed for signal conditioning for the cell. Cell 2, the post-synaptic cell, now

begins to produce output when it would normally remain at the resting potential.

6.2.3 Effect of Different Synaptic Weights

The expected result is that the larger the synaptic weight, the larger the output of

the postsynaptic cell until the action potential threshold is reached. If threshold is

reached, then an action potential is produced. Figure 54 illustrates three EPSPs for
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different synaptic weights. By taking the logarithm of these waveforms, as shown in

Figure 54b, it is clear that the rising and falling rates are exponential and do not

change. The rates do not change because the biases Vn and Vp have not changed.

Only the charge on the floating gate has changed, thus, only changing the overall

weight of the signal by shifting it upward. The tail end of the signal is dominated by

instrumentation noise. The slight 60 Hz noise seen on the largest signal is due to the

fact that a portion of the setup was unshielded during that experiment. The 60 Hz

noise is more apparent in Figure 54 and is due to the fact that the microelectrodes

are unshielded. As expected, the smallest EPSP produced the smallest response. The

response is so small that threshold is not reached. However, the largest EPSP does

not produce the largest signal since both of the larger EPSPs are large enough to

elicit an action potential. The discrepancy in size is still within normal parameters.

6.3 Charge Balancing

A major limitation of neural interfacing systems is the amount of time that the

electrodes can be coupled with living tissue. The interface time is primarily due to

two interactions: corrosion and cell death.

6.3.1 Corrosion

Electrodes corrode due to the presence of ions. This corrosion is effectively a layer of

rust around the electrode. Unlike verdigris that improves the appearance of copper

over time, the black patina that is formed around a silver electrode degrades the

interface and will cause it stop operating. Therefore, the presence of the essential

component which causes electrical responses in cells, ions, also undermine the behavior

of the equipment measuring those responses.
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6.3.2 pH

The presence of ions also changes the pH level of the area around electrode. In small

amounts (such as typical cellular behavior), this effect is negligible. However, the

external addition or removal of charge can cause the area around the electrode to

become more alkaline or acidic. The cells have no way to compensate for the ions

that are introduced or removed from the system over time. Therefore, the ionic charge

(whether negative or positive) will build up over time. When the pH level exceeds the

tolerance of the cells, they will die. Therefore, greatly altering the balance of charge

in a neural interfacing system will cell death. Cell death is expected in the laboratory

setting, but this effect is life-threatening when experienced in vivo (such as a deep

brain stimulator).

6.3.3 System

The simple solution to this problem is to provide a method to balance the charge in

the system. Presently, that is done by using a biphasic signal. Stimulation signals

must have a positive and negative phase. This solution greatly limits the type of

stimulation that is possible. Collaborating with Jingzhen Hu of North Carolina State

University, I have implemented a system that can balance the charge of an arbitrary

waveform within a current range of over six orders of magnitude. The system allows

a series of output signals and in between each signal, the system will discharge the

electrode.

The proposed charge balancing system is illustrated in Figure 55. This system

allows an arbitrary current waveform in the range of 100pA to 37µA to be balanced.

The amount of current needed to be discharged is dependent upon the present output

at the electrode and how much current has been built up. The rate of discharge can

be modified with a scaling factor Vref. The electrode is connected to the output node.

A current comes into the system and is detected by the first block. This current

77



detector produces a digital pulse to indicate when the current is on and when it is

off. The input node also provides a voltage proportional to the current directly to

the output block. This on-off semaphore allows the system to know when to allow

the signal through and when to discharge.

The detection pulse stream is then converted to a current to indicate how long

the current is on. This time is then modified by a scaling factor Vref. The value

of Vref helps to adjust the operating range of the current. The scaled time is then

integrated. These calculations are needed to operate a charge pump that modifies

the discharge current. The discharge is controlled by the present output value, the

desired discharge rate, and how much charge has built up. The resulting summation

of parameters yields the expression

V dis ∝ V out− (V ref − V refdt/T )

. The discharge control signal is sent to the discharge block. The discharge block

is comprised of standard discharge circuit. This standard circuit is the same as the

input stage of the synapse: a modified inverter. The top-most pFET allows the input

to pass through. The bottom-most nFET controls the discharge current. The inverter

section controls which operation takes place, input or discharge.

A system tailored for providing PSC-like outputs [63] and the general system de-

scribed above [64] were simulated in Cadence by Jingzhen Hu. The initial simulation

results showed that the upper range of operation can be as high as 37µA. The bot-

tleneck for lower range of 100pA is caused by the leakage current of the FETs in the

modified inverter. The range can easily be shifted upwards to allow for the larger

stimulation values used in visual, intramuscular, and deep brain stimulation systems.

These stimulaters often use currents on the order of 1µA to 11 mA. The lower current

range was chosen to operate with my low current synapse circuits. Hu also created a
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prototype system in a 0.6µm process through MOSIS.
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Figure 45: I-V curve for the simple resistive element. Note that this data set is
limited to the range of the picoammeter used. The curve fit here illustrates what
the resistive element current would be if it were operating in subthreshold and there
were no experimental limitations. The normal operation range is limited to ±0.2V.
Using another resistive elements in series helps to expand the range to ±0.4V. The
exponential rate of change for the BJT side is calculated as 37.715 while the rate for
the MOS side is only -26.455.
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Figure 46: I-V relationship through each node the simple resistive element. Note
that the current through the substrate was calculated since there was no way to
measure the substrate current in this process. For empirical data, a triple-well process
is needed to measure the current due to the resistive element that is flowing through
the p-substrate.
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Figure 47: R-V curve for the simple resistive element. The normal operation range
is limited to ±0.2V. Using another resistive elements in series helps to expand the
range to ±0.4V. Even with this limited operating range, the effective resistance is in
the gigaohm range. The effective resistance was calculated using Ohm’s Law on the
original data collected from the picoammeter.
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Figure 48: R-V curve for the resistive element with a modification to the MOS side
of the device. Note that this data set is limited to the range of the picoammeter
used. The maximum that the picoammeter could output is 2µA, so the values above
2/muA should be regarded as well above 2µA. The slight slope is due to using Ohm’s
Law with a constant current and changing voltage.
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Figure 49: R-V curve for the resistive element with a modification to the BJT side
of the device.
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Figure 50: R-V curve for the fully modified resistive element.
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Figure 51: The full setup uses electronics to link two cells that are not normally
connected. Cell 1 is the presynaptic cell and Cell 2 is the postsynaptic cell. Ideally,
the amplifiers and converters would not be necessary. However, we have initially
included them. Note the switch between the I-V converter and the V-I converter that
can be used to isolate the circuitry from Cell 2. All of the necessary processing is
done by the circuitry. Other test have used an on-chip amplifier to amplify the signal
from Cell 1.
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from 2.5 s onward.
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Figure 54: (a) Output of silicon synapse for various synaptic weights. (b) Output of silicon
synapse in logarithmic scale. Note that the slopes for the curves are all the same, yet the maximum
values differ. (c) Output of Cell 2 (postsynaptic cell) for given synaptic weights. Note that the third
and smallest input did not elicit an output response since the input did not reach the threshold of
the cell.
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CHAPTER VII

CONCLUSION

This work outlines a collection of circuits that are used to form a system that has

biologically-plausible learning rules, can interface with neural tissue, and can oper-

ate in parallel. This collection forms a toolbox that allows for the development of

advanced neural interfaces. These neural interfaces fall into two camps, intracellular

and extracellular. Intracellular interfaces can be used for tools used by neuroscien-

tists such as dynamic clamp setups. I have performed an intracellular connection

from an artificial neuron to a biological neuron and between two biological neurons.

Extracellular interfaces are useful for slice preparations in the lab and neural pros-

thetics. The current version of the neural amplifier is well suited for reading from

slices. However, in vivo readings are difficult since the input electrodes may move.

Such movements introduce an unacceptable level of noise and are currently a problem

for existing neural prosthetics. Cortical prosthetics are often affixed to the skull to

minimize electrode migration. Improvements to the physical structure of electrodes

and electrode arrays are needed and will not be addressed here.

I have successfully created a family of biologically plausible synapse circuits that

produce electrical outputs and implement learning rules. Support circuitry for these

synapses has provided a framework for successful experiments proving that I can

perform intracellular recordings, can read signals on the order of extracellular neu-

ral outputs, and perform basic analysis on these neural signals. Furthermore, this

circuitry has shown that it is plausible to have a system on one chip that can read

neural signals, analyze these signals in a bio-mimetic fashion, and produce outputs

that are electrically equal to biological signals.
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The continuing goals of this work strive toward implementing tools for neurosci-

entists and engineers. Although this work has provided important advances in our

ability to re-create biological systems, more work can be done to make these systems

easier to use, more efficient, and a better fit to biology.

7.1 Learning

Scientists, mathematicians, and engineers have made great strides in our understand-

ing of learning over the past 50 years. The work of pioneers as disparate as Minsky

and Kandel have helped us explain or reproduce some of what is found in biology.

However, before this work, no tool had been created that could produce individu-

ally plastic synapses with electrically compatible signals that can produce a variety

of learning rules in a core area that is less than 200µ2. Improvements upon our

biologically feasible learning rules include:

1. porting our designs to a smaller process to more easily implement high voltage

amplifiers and to use lower voltages (can be done by a M.S. student),

2. using multiple tunneling fingers to implement multiple tunneling rates,

3. incorporating feedback for multiple synapses.

All of these improvements can be accomplished by an M.S. student in a special top-

ics course. The first improvement may be able to be completed by an advanced

undergraduate student.

7.2 Interfacing

The toolbox that I created is flexible enough to use in many intracellular and extra-

cellular applications. To maximize potential funding opportunities, I have decided to

explore both avenues. The following improvements can be made with the interfacing

circuits:
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1. porting our designs to a smaller process to increase the density of components,

2. perform extracellular readings with our neural amplifier,

3. analyze extracellular readings with our hys diff circuit,

4. design, fabricate, and test an on-chip voltage clamp system,

5. design, fabricate, and test charge-balancing circuits.

An advanced undergraduate can perform the first task. The rest of the work can be

accomplished by an M.S. student. Items 4 and 5 would be done as part of an M.S.

thesis while items 2 and 3 could be done as a special topics project.

7.3 Processing

Although the initial version of the FPNA had some programming problems, improve-

ments for another system can easily be made. Since the fabrication of initial version

by Farquhar and I, we now have a better understanding of how to effectively use

indirect programming and to make large networks. The level of expertise has grown

due to the implementation of several FPAA chips, including FPAAs with biological

elements such as our synapses. Improvements for our neural processor are:

1. implementing a new version of the FPNA with the improved indirectly pro-

grammable components,

2. using a traditional switch network rather than floating-gate switches for faster

operation,

3. implementing a feedback system that can change connections on the fly using

the switch network.

4. implementing a hybrid FPNA-FPGA analog/digital system that can take ad-

vantage of the biomimetic properties of the FPNA and traditional computing

properties of FPGAs
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The first two improvements can easily be done by an M.S. student taking a special

topics course. Thoroughly exploring the biologically plausible and computationally

interesting aspects of the third improvement would require the time of a Ph.D. stu-

dent. Initial steps toward the fourth improvement have already been made with a

student at North Carolina State University, Gary Charles [69].

Ting Zhu, a student at North Carolina State University and I have begun work

on the analysis of rebound signals. Rebounds are a specific type of neural signal that

has been found in the cerebellum and retina [70], [20]. We have created a method

that can eventually automatically analyze these signals and produce database entries

that describe the characteristics of these signals. Even though the processing of these

signals are currently done in Matlab, it can be implemented on chip. Therefore, the

following improvements can be made:

1. design, fabricate, and test a real-time hardware gaussian classifier,

2. design, fabricate, and test a method of converting the classifier information to

a digital form in real-time,

3. test the full system with intracellular recordings,

4. use the system to predict the behavior of cells that produce rebounds.

The first task can be accomplished as part of an M.S. thesis. The second item can

be done as a semester-long project by an M.S. student if the first item is done. The

rest can be done as part of a Ph.D. project.

7.4 Final Synopsis

I created a toolkit that can be used to bridge the link between artificial and natural

neural systems. This toolkit includes the following components:

1. a family of artificial synapses that
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(a) is inspired by biological synapses,

(b) interfaces with living systems, and

(c) implements a form of learning

2. a compact, low-power, low-noise neural amplifier

3. a dense, wide-range, high resistance element

Several Masters and Doctoral works can easily branch from the work described here.

Future work that stems from this can be used to create fully integrated, scalable,

low-power systems for the fields of engineering and neuroscience.
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