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CHAPTER I

TECHNOLOGICAL MOTIVATION

Much of the electronically engineered solutions of today are digital solutions, due in

large part to the ease and speed of design, cost of parts, and reliability of digital

components. Analog designers, however, have long been pointing out that many

robust solutions could and maybe even should be analog systems. Analog systems

take longer to develop, but do not have issues with process time scaling, and usually

use much less power than their digital counterparts. However, they tend to not be as

precise as digital systems [34].

To date, the most complex processing system known is the human brain. It is

composed of around 100 billion neurons (simple processing units). It is massively

parallel in the way that it computes responses to stimuli, but each individual cell is

capable of complex operations on its own. Additionally, each cell has mechanisms

for memory. Many of the approaches seen in digital solutions are modeled after the

nervous system, but a purely digital solution does not model the biology since biology

is a mix of digital and analog. An action potential is clearly a digital signal in that it

is an all or nothing event, but much of the computation that takes place in a neuron

is performed by graded responses to that same discrete signal [34].

The brain is a marvelous system. It demonstrates many elegant solutions to prob-

lems that engineers have yet to robustly solve. This becomes more remarkable when

one considers that it does all of these things while dissipating less power than cur-

rent commercial digital processors (obviously there are many microprocessors which

dissipate less power than the human brain, but if the processor has any real degree

of complexity, like the Pentium 4 for instance, it invariably burns more power than
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the nervous system). Gene Frantz laid out a relationship (subsequently called Gene’s

Law) for digital processors, which states that the power dissipated per million multi-

ply accumulates (MMAC) will be reduced exponentially with time. Some data from

various commercially available DSP’s are shown in Fig. 1. It is easy to see that these

processors do in fact follow Gene’s law. Also plotted on the same graph is the ad-

vantage from moving from the digital world to the analog world. It shows that there

is approximately a 20 year advantage in terms of power dissipated per MMAC. Also

shown for comparison is where biology is. It is true that this comparison can not

be precisely made, since the biology does not perform multiply accumulate functions.

However, the brain does perform approximately 1016 “complex operations” per second

while only dissipating 10 watts.
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Figure 1: Figure illustrating Gene’s law, as well as the advantages of the simple analog approach
and where biology is today. Gene’s law (the black lines) says that the power dissipated by digital
processors per million multiply accumulate functions (MMAC) will be reduced exponentially with
time. The stars illustrate the power dissipated by several commercially available DSP’s per MMAC.
By moving from digital to analog methods, one can potentially see a 20 year gain is power dissipation.
Even with these standard methods though, biology has a 10 year advantage over where we might be
today. This graph, however, does not show that both the digital and analog technologies will roll
off as time progresses. In fact, current DSP processors are already showing this rolling off trend.
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Carver Mead states in [30] that, “The brain is a factor of 1 billion more efficient

than our present digital technology [note that this paper is from 1990], and a factor

of 10 million more efficient than the best digital technology that we can imagine.”

The brain is capable of making sense of bad sensory input, and responding to it in a

way is better than anything we have in the engineered world. Therefore, if we are to

develop efficient solutions to some of the problems that biology has robustly solved,

it would seem that actually understanding what the biology is doing and emulating

that would prove to be a necessity.

This work lays out the development of a reconfigurable electronic system, which

is composed of biologically relevant circuits. This system has been termed a Field-

Programmable Neuron Array (FPNA) and is analogous to the more familiar Field-

Programmable Gate Array (FPGA) and Field-Programmable Analog Array (FPAA).

At the core of the system is an array of output somas based on previously developed

bio-physically based channel models [11]. Linking them together is a complex 2D

dendrite matrix, FPAA-like floating-gate routing, and associated support circuitry.

Several levels of generality give this system unprecedented re-configurability. The

dendrite matrix can be arbitrarily configured so that many different topologies of

dendrites can be investigated. Different soma circuits can be connected / disconnected

to / from the dendrite matrix. Outputs from the somas can be arbitrarily routed to

input synapses that exist at each dendrite node as well as the soma nodes. Lastly, the

dynamics of each node consist of a mixture of individually tunable parts and global

biases. All of this can be configured in concert to investigate neural circuits that exist

in biological systems. Examples of systems that can be investigated with this chip

include:

• Single cortical cell with a complex dendrite structure.

• Several smaller cells with less complex dendritic arborizations.

• Dendritic processing.

• Neural circuits consisting of many neurons with inhibitory and excitatory con-
nections.

3



As future chips increase in size and complexity, it is easy to imagine them beginning

to perform some of the basic functions that biology is capable of doing.

This chip will have a significant impact on research in many fields including neu-

roscience, neuromorphic engineering, and robotics. This chip will allow for rapid

prototyping of spinal circuits. Since the fundamental circuits of the system are

chosen to be biologically relevant, outputs from the various nodes should also be

relevant, thus yielding itself to use by neuroscientists. This system also provides

a tool by where biological systems can be emulated in real-world electronic sys-

tems. Solutions to many problems faced by roboticists (such as bi-pedal stand-

ing/walking/running/jumping/climbing and the transitions between states) are present

in biology. By providing a chip that can duplicate the same neural circuits that are

responsible for these processes in the biology, the hypothesis is that researchers can

begin to solve some of the same types of problems in artificial systems.

4



CHAPTER II

BIOLOGY BACKGROUND

2.1 Cell Anatomy

The following chapter is intended as a primer on neurobiology. It is not meant to

be exhaustive, but is included for the benefit of those whose background does not

include the biology.

There are a few elements that are common to most all cells. One such element

is a lipid bi-layer membrane that separates the outside of the cell from the inside.

Think of it as the skin of the cell. It surrounds the cell on all sides. In fact, without

this membrane the cell would not exist, because the intracellular fluid would simply

mix with the extracellular fluid. The bi-lipid layer is composed of two layers of a

lipid with a hydrophobic head and a hydrophilic tail placed tail to tail, Fig. 2. This

membrane creates a tight seal around the cell which does not allow for any substances

to pass through it (for practical purposes).

The lipid bi-layer membrane does such a good job at separating the extracellular

from the intracellular fluid that if the membrane were only made of this structure,

nothing interesting at all could happen. Luckily, however, this is not the end of the

story. The membrane also has large protein structures which transect the membrane.

These proteins create tiny channels which allow for certain ions to flow across the cell

selectively. These channels are very important, and there are many different kinds

of channels: some voltage-gated, some ion gated, some activating only, and some

activate and then inactivate after a time. This is by no means an exhaustive list of

channel types, nor could we include all types as this is an active area of research in the

field of neuroscience. It is meant, however, only to illustrate the diversity of channels

5



Hydrophilic
Tail

A B

Hydrophobic
Head

Figure 2: A) The basic lipid unit of the cell membrane. It is composed of a hydrophobic head
(water repelling) and a hydrophilic tail (water attracting). When this unit is placed tail to tail and
then repeated as in B), only the hydrophobic heads are exposed to surrounding fluids. This makes
a tight seal that does a very good job at separating the extracellular fluid from the intracellular.

types. We are going to focus on two particular types of channels at this time. These

are the voltage gated sodium (Na+ ) and voltage gated potassium (K+ ) channels

(Fig 3).

2.1.1 The Basics

Electrical current involves the movement of electrons from one point to another.

Under normal operation, however, there should not be free electrons roaming through

the body in significant quantities. Therefore, it can be clearly seen that it is not the

movement of electrons directly that is interesting. It is, instead, something which

was alluded to earlier called an ion. Ions are chemical elements which have either

gained or lost part of their charge (the atom may be have an extra electron and

carry a net negative charge, or it may have one less electron and therefore have a net

positive charge). Again, we are going to be discussing the sodium (Na+ ) ion and

6



Figure 3: The lipid bi-layer creates an uninteresting seal for the cell. Thankfully cells have
membrane spanning proteins which allow for certain elements to flow through them. It is the
movement of these ions that make such things as movement, thinking, smelling, and communication
possible. We will only be dealing with two types of membrane channels, the voltage gated sodium
(Na+ ) and the voltage gated potassium (K+ ) channels. For illustrative purposes, I have included
a third type of channel to indicate that there are more than just these two types of channels. These
other types of channels make the cell even more interesting, and provide for such things as cell
bursting. However, since these behaviors are beyond the scope of this thesis and only the two
aforementioned channel types are necessary to produce an action potential, the other types will be
neglected.

the potassium (K+ ) ion. Both of these ions have a “+” indicating that they have

a net positive charge on them. There are many other ions which effect the operation

of a neuron, among them Cl−, Mg2+, and Ca2+. Although these have significant

effects, they are not relevant to the story here and will therefore be neglected.

Cells have a large number of K+ ions on the inside of the cell and a small amount

of them on the outside. Conversely, they have a large number of Na+ ions on the

outside of the cell, and a small amount on the inside. The disparity between the ion

concentrations leads to a voltage difference across the cell. Walter Nernst derived

an equation using first principles in the late 19th century which helps determine the

equilibrium potential of certain ions. This is the voltage at which zero current will

7



Extracellular Intracellular Equilibrium
Ion Concentration Concentration Permeability Potential
K+ 20 mM 400 mM 1.0 -75 mV
Na+ 440 mM 50 mM 0.04 55 mV
Cl− 560 mM 52 mM 0.45 -60 mV

Table 1: Concentration and Permeability of Biologically Relevant Ions. This ta-
ble shows the concentration of ions both within the cell (intracellular) and outside
of it (extracellular). The equilibrium potential can be calculated using the Nernst
equation. This table was adapted from [23] .

flow through a particular channel. This potential is sometimes referred to as a reversal

potential because it is at this voltage that the current through the membrane will

change directions (i.e. change from flowing into the cell to flowing out of it). The

Nernst equation is given by

Ex =
RT

zF
ln

[Cx]o
[Cx]i

, (1)

where Ex is the equilibrium potential of an arbitrary ion x, R is the gas constant, T

is temperature in Kelvin, F is Faraday’s constant, z is the valence number of the ion

(i.e. K+ has a valence number of 1 but Ca2+ has a valence number of 2), [Cx]o is the

extracellular concentration of the arbitrary ion, and [Cx]i is the intracellular concen-

tration of that same ion. Electrical engineers should recognize RT
F

as being equivalent

to kT
q

, which evaluates to approximately 25.8mV and is referred to as thermal voltage

(UT ). Table 2.1.1 gives some typical data from real neurons.

Let us take as a brief example the potassium channel (K+). Plugging in the

numbers from the table we get the following result:

EK = (0.025V ) ln
20mM

400mM
= −74.9mV (2)

If there were no other ions in the system, the cell would sit at -74.9 mV and zero

current would flow across the cell membrane. However, we know that for this system

8



to actually work, there must be other ions present. The reversal potentials for the

other ions are also listed. All of the ions together affect where the resting membrane

voltage (Vm) of the cell or the voltage that the cell sits at when it is not doing anything.

The relationship is given by the following equation called the Goldman equation.

Vm =
RT

F
ln

PK [K+]o + PNa[Na+]o + PCl[Cl−]i
PK [K+]i + PNa[Na+]i + PCl[Cl−]o

(3)

Vm is the resting membrane voltage, and the respective Px refers to the permeability

of the different ions (i.e. PK refers to the permeability of potassium).

To find the resting potential for a cell with just these three ions we plug numbers

from table 2.1.1 into (3) and we get the following:

Vm = (0.025V ) ln
1.0(20mM) + 0.04(440mM) + 0.45(52mM)

1.0(400mM) + 0.04(50mM) + 0.45(560mM)
= −59.3mV (4)

There are two fundamental physical forces which work to try to drive the ions

across the membrane: electrostatic force, and diffusion. These forces attempt to

move ions in opposite directions. While the cell is at rest, both of these forces are

held in balance. However, when something perturbs the system (such as the opening

of a neuron channel) these forces will again try to balance the cell.

Electrostatic forces will tend to make the ions flow based on an electrical field. As

we learned by playing with magnets, like charges repel, and opposite charges attract.

Since the ions are charged particles, they set up an electric field which will either

attract or repel other ions based on the direction of this field and the particular

charge of that ion.

Diffusion also affects the ions because, as we stated before, the individual ions

exist in differing concentrations (concentration gradients) from inside the cell to out-

side. Because of this concentration difference, the ions will equalize the concentration

by diffusion (i.e. areas with high concentration will be reduced while areas of low

concentration will be increased). Take, for example, the brief period in which a Na+

9



channel is open. The extracellular fluid (which has a high concentration of Na+ ions)

is joined with the intracellular fluid (which has a low concentration). As a result dif-

fusion will attempt to equalize the concentrations by making ions flow from outside

the cell to the inside.

Both of these forces only dictate the direction of flow of ions across the membrane

and the magnitude of the resulting currents. They don’t control the dynamics of the

actual channel; the how, why, and for how long the channel opens to allow current

to flow through it. Understanding the channel dynamics has been paramount in

understanding how an individual neuron works.

2.2 Hodgkin and Huxley

Neurons communicate with each other using a very special signal. This signal is called

an action potential, and the dynamics of it are very important. The dynamics of the

action potential are directly controlled by the dynamics of the channels themselves. If

the channel changes, so to will the action potential. Understanding and implementing

the channel dynamics is the cardinal achievement, and as of yet, little attention has

been given to implementing them in silicon. In biology, however, this work garnered

steam half a century ago.

Before the 1950’s, little was actually known about the method of neural communi-

cation. There were many theories. Some thought that they communicated electrically

while others believed it was chemical. It was very had to prove one way or the other

because there are many problems with experimenting with neurons due to the fact

that neurons are very small. Probing them to get reliable results proved to be very

difficult with preparations and tools that existed in that day. Thankfully Alan L.

Hodgkin and Andrew F. Huxley were not deterred by the difficulties.

Hodgkin and Huxley found a preparation which would in fact allow them to do

recordings, that of the Squid Giant Axon. The squid giant axon is relatively large

10



physically (approximately 1mm in width). Due to this size, they were able to pierce

the axon with three tiny silver wires. With these wires they were able to develop a

set of experiments which are still being used today. One set is referred to as voltage-

clamp experiments, and the other as current-clamp (these are similar to voltage-step

and current-step responses).

For a voltage-clamp experiment, one would fix the voltage to something and mea-

sure the current through the cell needed to keep the cell at that particular voltage.

Current-clamp is just the opposite. A known current is injected into the cell and the

resulting voltage change is measured. Voltage-clamp experiments are very similar to

step response curves that electrical engineers are used to seeing. The current that

they measured for their voltage-clamp experiment is shown in Figure 4.

Hodgkin and Huxley, much to their credit, realized that the total current was

due to the summation of multiple currents which have completely separate dynamics.

Since they were dealing with a biological system, they were able to discover phar-

macological agents which would selectively block the effects of certain ion channels.

Using these agents they found a current due to a sodium (Na+ ) channel and one

due to a potassium (K+ ) channel. Figure 5 shows this from their data. In this figure

we can clearly see the Na+ Current (INa), the K+ current (IK), and the combined

current due to the summation of the separate ionic currents. K+ channel effects can

be selectively blocked using tetraethylammonium (TEA) to isolate the effects of the

Na+ channel. A similar agent, tetrodotoxin (TTX), selectively inhibits the effects of

the Na+ channels, and isolates the effects on current due to K+ channels.

Figure 6 shows the Na+ current for different voltage steps. It is easy to notice

that the current does not look the same for every voltage step, and it is also clear

that the change in voltage activates the current. Due to this, this channel is called a

voltage-gated Na+ channel.

Figure 7 shows the K+ current for different voltage steps. It too is voltage-gated.

11



0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

28mV
42mV

56mV
70mV

84mV

98mV
112mV

Total Cell Current

Time in milliseconds (ms)

Inward Current Region

Outward

Current

Region

B

A

Figure 4: A) Voltage clamp experiments involve stepping voltages from one given voltage to
another as shown here. In this example, 0 represents resting voltage, and 120mV is a positive
120mV step from rest. (i.e. if rest is -65mV, the voltage is clamped at +55mV). B) The data shown
here is the total measured current across the membrane of a squid axon (H & H’s axon 21) and
has been adapted from one of Hodgkin and Huxley’s original papers. The curves show the response
of the axon to different voltage clamp experiments corresponding to the steps shown in A. When
current is negative, the current is directed into the cell (through Na+ channels), and when current
is positive, current is directed out of the cell (through K+ channels). [21]

It is, however, easy to see the differences between it and the voltage-gated Na+

channel. The current is in the opposite direction of the Na+ current, and the time

constant of the K+ channels are much slower than those for the Na+ channel to name

a few.

Tables 2.2 and 2.2 summarize some of the constants that Hodgkin and Huxley

were able to extract from the Na+ and K+ channel current curves respectively.
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Figure 5: This figure shows the current responses in a cell to a 56mV depolarizing step (0mV
represents voltage of the cell at rest). IK was isolated by the use of TTX. INa was isolated using
TEA. Summing the currents together gives us a curve which closely resembles the curves found in
Figure 4. This figure shows nicely the underlying ionic currents that combine to give us the cell
currents we find Figure 4. [21]

2.3 IK and INa

As Hodgkin and Huxley correctly deduced, and as was stated earlier, there are at

least two different currents acting independently and in parallel with each other. We

have also already discussed some about how they work, but we will discuss them now

in more detail.

INa is defined as the current through the Na+ channel. It is the first current to

respond to changes in the cell so we will discuss it first. When the cell is at rest,

the voltage across it with respect to the extracellular fluid is -70mV to -60mV (a

reasonable but not exclusive range) depending on conditions and the cell. When the

cell is depolarized by some means (whether a natural cell acting through a synapse

or by artificial means such as an electrode) the Na+ current responds very fast. The

classical view of this channel specifies that there are two gates on a Na+ channel
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Figure 6: This figure shows the Na+ current across the cell for different voltage-clamp experi-
ments. The membrane voltage was stepped to different voltages (as shown in A) and the current
response was measured (B). Since the system was in the presence of TEA (K+ channel inhibitor),
only the current response of Na+ channel is seen. Adapted from Hodgkin and Huxley’s data. [19]

which are in series (Figure 9). One of these gates is normally open (the “h” gate),

and one is closed (the “m” gate), thus the cell does not normally allow current to flow

through it (Figure 9 A). When the cell is depolarized the m gate opens very quickly

(τm from table 2.2) and allows current to flow through it (Figure 9 B). Since there is

a high concentration of Na+ outside of the cell, current very rapidly rushes into the
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Figure 7: This figure shows the K+ current across the cell for different voltage-clamp experiments.
The membrane voltage was stepped to different voltages (as shown in A) and the current response
was measured (B). Since the system was in the presence of TTX (Na+ channel inhibitor), only the
current response of K+ channel is seen. Adapted from Hodgkin and Huxley’s data. For the top two
curves of B, they only provided enough data to last through 4ms. [21]

cell. (This, of course, is true unless the depolarizing voltage step is large enough that

it places the cell close to the reversal potential of Na+ . If this were to happen, ion

movement would be governed by drift instead of diffusion, and they would be pushed

out of the cell by electrostatic force. However, this is not the normal operation of a

cell that we are interested in for this thesis). At this point, the cell is fluxing current

into it, but because the h gate is also voltage controlled, it moves from its normally

open state to a closed state with a slower time constant (τh from table 2.2) (Figure 9
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Figure 8: Conductances for K+ channel are shown in A. Conductances for Na+ shown in B. Both
curves adapted from Hodgkin and Huxley’s classic paper. [21]

C). The difference between these two time constants is what allows current to flow.

If τh <= τm the channel would never allow current to flow through it, but thankfully

this is not the case. Once current into the cell is stopped, if there is nothing to return

the cell voltage to its resting potential, this cell will be spent and will bo of no more

use. However, due to the effects of the K+ channel which will be discussed in just a

moment, the voltage of the cell does again begin drop and return toward its resting

state. Because of this re-polarization of the cell, the m gate will again close (Figure 9

D) and the h gate will open (Figure 9 A). Since the m gate responds so much quicker

than the h gate, the channel does not reopen during the transition from its open

state back to the resting state, but once the resting state has been reached again the

channel is ready to respond to a depolarizing event.

IK or the current through the K+ channel is a bit simpler than the previously

described Na+ current. It only has one gate which is normally closed, the “n” gate

(Figure 10 A). This n gate also responds to depolarizations in the cell. When the

cell is depolarized, the n gate opens with the time constant τn found in table 2.2

(Figure 10 B). Since there is a high concentration of K+ ions intracellularly than

extracellularly, diffusion dictates that the ions will flow from the inside of the cell

to the outside (the discussion of drift from the preceding paragraph is also true for
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V ḡNa m∞ τm h∞ τh

(mV) mS/cm2 (msec) (msec)
109 40.3 0.980 0.140 0 0.67
100 42.6 0.997 0.160 0 0.67
88 46.8 1.029 0.200 0 0.67
76 39.5 0.975 0.189 0 0.84
63 38.2 0.963 0.252 0 0.84
51 30.7 0.895 0.318 0 1.06
38 20.0 0.778 0.382 0 1.27
32 15.3 0.709 0.520 0 1.33
26 7.9 0.569 0.600 (0.029) 1.50
19 1.44 0.323 0.400 (0.069) 2.30
10 0.13 0.145 0.220 (0.263) 5.52
6 0.046 0.103 0.200 (0.388) 6.73

Table 2: Values taken from Hodgkin and Huxley’s work on the Sodium (Na+ )
channel. Terms enclosed in parenthesis were too small to be considered reliable by
Hodgkin and Huxley [19]

Gate Closed

Gate ClosedGate Open

Gate Closed

Gate Open

Gate Open

Gate Closed

Gate Open

A B C D

Fast Gate ("m") Quickly Opens Slower Gate ("h") Closes Change in polar-
ization causes fast

gate to close

The slower gate eventu-
ally resets to its normal

open state.

Extracellular Fluid

Intracellular Fluid

Figure 9: The Stages of the Na+ Channel. (A)In its resting state, the fast gate of the Na+

channel (or the “m” gate) is closed while the slower gate (the “h” gate) is open. (It is important to
note here that the slow gate of the Na+ channel is still very much faster than the slow gate found
in the K+ channel.) In this state ions cannot flow through the cell. However, when a depolarization
occurs, the fast m gate flies open (B). Momentarily, both gates are in the open state allowing ions
to flow through the channel. However, since the slower h gate is also voltage activated, it will close
(C). Again this blocks ion flow. Due to the reduction in Na+ ions flowing into the cell, the cell
voltage will decrease causing the fast m gate to close (D) faster than the slower h gate can open
which returns us to our original state (A). Due to this cycle, ions are only allowed to flow through
the cell membrane in one state. The Na+ channel inactivates itself which is why in the curves seen
in Figs. 5-6 show the magnitude of the Na+ current increasing and then decreasing.

K+ ions). As the cell re-polarizes the n gate closes again and current through it is

stopped.
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V ḡK n∞ τn

(mV) mS/cm2 (msec)
109 20.70 0.961 1.05
100 20.00 0.953 1.10
88 18.60 0.935 1.25
76 17.00 0.915 1.50
63 15.30 0.891 1.70
51 13.27 0.859 2.05
38 10.29 0.806 2.60
32 8.62 0.772 3.20
26 6.84 0.728 3.80
19 5.00 0.674 4.50
10 1.47 0.496 5.25
6 0.98 0.448 5.25

Table 3: Values taken from Hodgkin and Huxley’s work on the Potassium (K+

) channel. The left column is the size of the depolarizing voltage step from rest.
Column 2 describes the maximum conductance seen by the K+ channel for each
given depolarizing step. n∞ is a number that shows statistically how many individual
channels are open (1 = 100%) when time goes to ∞ and the voltage of the membrane
is held steady. τn is the time constant for these curves. [19]

2.3.1 m, h, n What do they mean?

We have just described how channels behave and shown curves of the current through

them. However, the data does not accurately reflect the current through a single

channel. Channels are actually quantal devices. That is, if a channel is open, only a

certain amount of current can physically pass through that channel every time it is

open. If three channels are open, approximately three times the amount of current

that flowed through a single channel now is able to flow into the cell. For instance, if

one channel is open and we assume that 1nA of current can and will flow through it

into the cell, then if there are three channels open, 3nA of total current will flow into

the cell. So the curves that we have been showing are actually the current through a

population of channels (and the population is very large). Figure 11 shows what the

curve would look like if we only measured the current through three channels.

But what are m, h, and n? When Hodgkin and Huxley were developing their
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Figure 10: The Stages of the K+ Channel. (A) In its resting state, the only gate of the K+

channel (the “n”gate) is closed. However, when the cell is depolarized, the gate opens allowing K+

ions to flow through it (from inside the cell to outside) (B). This channel would not close except
for the fact that under normal operation, when this channel is open, the cell is fluxing K+ out of
it. This causes a polarization (making the cell more negative) of the cell and eventually closes the
channel. This effect cannot be seen in the curves shown in Figs. 5 and 7 because in voltage-clamp,
the cells are held at a constant voltage for the duration of the experiment.

equations (more later) they came up with terms that represented the probability that

a given gate was open at any given moment. The m gate has a given probability curve

as does the h and n gates. These curves are governed by rate equations with the rate

terms α and β (as are many things in biology). These terms relate membrane voltage

to speed of activation and inactivation. For our purposes, it is not important to know

what the exact probability curves are (although one can find them in equations 9 and

16). However, one should understand that if we took a large population of channels

(for instance 1e6), applied the “n” probability distribution to each channel and then

summed the resulting currents, we would see a resulting current which resembles the
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Figure 11: Biological channels are actually quantal in nature. They allow a certain amount of
ions to flow through them in a given period every time that they are open. This figure shows a
representation of what the current would look like if we were only measuring from a population of
three channels instead of thousands or millions. This data is simulated.

curve shown in Figure 7.

2.4 Action Potential Generation

As was mentioned earlier, most neurons communicate with each other using a special

voltage signal which is called an Action Potential. Up to now we have been discussing

only the currents through the membrane. So, the question is how do these currents

cause the action potential (the voltage spike) that we are interested in?

Remember that the electrical system we are dealing with here is actually chemical

ions which have either gained or lost parts of their charge. In our case we are dealing

simply with Na+ and K+ ions which both have a “+1” charge. The disparity between

the concentration of ions on the inside of the cell versus the concentration of ions on

the outside sets up a voltage difference across the cell. We have already determined
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the resting potential of a cell with the Goldman equation (3), and that it is -̃60mV,

but remember that this is for the squid. For other species of animals, this voltage

will be different, although the equations and and general principles will still hold.
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-60

-50

-40

-30

-20

-10

0

10

Time (secs)

Hyperpolarization

Resting Potential

Threshold

Voltage

Figure 12: A typical Action potential. This figure does not absolutely reflect the magnitude or
time scale of every single action potential of every single type of animal. It does, however, reflect
some of the important aspects of every one. The membrane voltage sits at rest. When the voltage is
changed due to some force, the cell begins to slowly depolarize. If the threshold voltage is reached a
vast number of the Na+ channels will open shooting the voltage very high very quickly. Eventually,
however, the K+ current will start to act and bring the voltage down. This is very sharp due
to the fact that the Na+ channel is closed at this point, so all current is directed outward. The
hyperpolarizing region is due to the fact that K+ channels respond slowly to voltage changes. By
the time the voltage has reached its resting voltage, not all of the K+ channels have closed, so the
voltage continues to drop until all of the channels can close. Then the cell can return to its resting
voltage and stay there.

The action potential shown in Figure 12 shows the typical characteristics of these

spikes. This spike was taken from the invertebrate snail Helisoma Trivolvis [33].On

the right of the graph we see the resting potential of the snail which is approximately

7mV different from the resting potential of the squid. Starting from the left side of

the graph we see a rise in voltage of the cell (although we don’t see the entire rise

for clarity’s sake). This rise is caused by some external force (in this case it was
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an electrode). When we reach the threshold voltage of this cell, the Na+ channels

open very quickly causing a strong and fast increase in the membrane voltage. This

is due to the fact that the positively charged Na+ ions move from outside the cell

to the inside. Since our voltage is referenced to the outside, this effectively raises

the voltage of the cell or depolarizes it. As we approach the top of the spike, we see

that the “h” gates have started to shut and the voltage rise slows down. While all of

this is happening, the slower K+ current starts to open. This current moves positive

ions from inside to outside the cell. This effectively lowers the voltage across the cell

(or re-polarizes it). The hyperpolarization is due to the slow response time of the

K+ channels. They do not fully inactivate which causes current to continue to flow

even after the resting voltage has been reached. The channels do, however, finally

inactivate, and other cellular mechanisms eventually return the cell back to rest.

2.5 Hodgkin and Huxley Formulation

While Hodgkin and Huxley were doing their work, they were able to observe action

potentials and all of the currents that we have shown so far. However, they did not

have the advantage of a model that they could go to to verify their ideas. They had

to develop the model from the ground up. We will look at the different parts of the

model here.

The first and most obvious portion of the model (Figure 13) is the capacitance.

As we stated earlier, the membrane separates charge in the extracellular fluid from

that in the intracellular fluid. In electrical engineering, a charge separating element

is called a capacitor, and since Hodgkin and Huxley were attempting to derive an

electrical model of a neuron they included a capacitor. Since the membrane is the

capacitor, it “spans” the entire membrane. One terminal of it is on the inside of the

cell and the other is extracellular. The capacitor can be sized to model large cells

or small by simply increasing or decreasing its size respectively. A capacitor has the
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Figure 13: The membrane of the cell acts like a capacitor in that it separates charge. It is
modeled as a capacitor in the Hodgkin and Huxley model. This is very good, because the model
here is modeling something physical.

advantage that it is both a physical device (it can be realized) and it models the

effects of the membrane well.

Everything else in the model will be connected parallel with the capacitor since

the capacitor represents the entire membrane. Each of the channels in the neuron

span the entire width of the membrane to connect the extracellular fluid with the

intracellular. Each channel is modeled by two separate devices. The simplest of these

is a battery. The battery represents the reversal potential for each channel. As was

stated earlier, the reversal potential is that potential at which the ions will begin

to flow in a direction opposite that of their concentration gradient. This number

is different for each channel, and depends on the relationship of the concentration

of ions intracellularly and extracellularly as defined in the Nernst equation (1). A

battery does a very good job of modeling this as it is also a physical device and models

reversal potential well (Figure 14).

The most difficult part of the model is that of the conductances. The channels are

either more or less conductive based on the membrane voltage (Vmem). This means

that they have a conductance that changes based on environmental conditions. Figure

14 shows two states. Hodgkin and Huxley choose to model these conductances with
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Figure 14: The channels have a conductance that changes based on the state of the channel
(which is based on Vmem). At certain points (as in A) the conductance is very low, and at others it
is very high (B). The Nernst potential is represented by a battery.

a resistor. This resistor, however, is no ordinary resistor. It is a resistor in which the

conductance can change. The simple fact that such a resistor was used is why this

thesis exists.

Hodgkin and Huxley ended up with a model that looks like that shown in Figure

15 A. It looks very simple, however, it is deceptively labyrinthine. The dynamics

of that arrow on top of the resistor make up much of the work that Hodgkin and

Huxley did. There are several reasons why this conductance is such a problem for the

model. Firstly, no such resistor exists in reality that can be used to physically build

this model. All of the other pieces in their model exist in reality, but the resistor

that they require simply cannot be built. This fact turns this model into either a

thought experiment (which can be useful) or a simulation. This may explain why

neurobiologists rely heavily on software simulations rather than on physical models.

Secondly, we have the problem (as we will see momentarily) that the resistor linearizes

the circuit. Thus we inherently loose some of the real dynamics of the circuit.

Figure 15 shows their model. Using Kirchoff’s current law we can see directly

how they developed the first step of their equations (shown in equations 5 and 13).

We also already talked about how they collected the data that they used to help
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Figure 15: A) Equivalent electric circuit model of a neuron as conceived by Hodgkin and Huxley.
B) Taking a look at the evolution of one of these channels: We start with a simple linear model. We
have to realize that the conductance gk is a function of the membrane voltage Vm. We eventually
end up with the model where gk (which is defined as the maximum value of conductance reached by
gk) is multiplied by some fitting parameter n4. C) When we take a look at what n4 is, we see that it
has been defined by Hodgkin and Huxley as a rate equation with α and β activation and inactivation
curves. These curves are defined by an equation set that shows them to be exponentials.

formulate this model, but we have yet to discuss how they used this data to develop

this model. Since they realized that this conductance (gNa and gK) was variable,

they wrote an equation which defined the conductance as the product of maximal

conductance ( ¯gNa and ḡK) and the previously described probability terms m,h, and

n (equations 6 and 14) Since biologists tend to describe everything in biology by rate

equations, the described the probability terms with rate equations with activation

parameters, α, and inactivation parameters, β. Once they had the standard rate

equation defined they curve fit their data to define the α and β terms in a way that

made the system work. While rate equations can be developed which have similar

output responses to what a biological cell would produce, they do not have their basis

in the underlying physical principles governing ion flow in neurons, and little insight

can be gained about the complex physics by investigating them.

Na Equations

INa = gNa(Vm − ENa) (5)

gNa = gNam
3h (6)

dm

dt
= αm(1 − m) − βm(m) (7)

dh

dt
= αh(1 − h) − βh(h) (8)
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αm =
0.1(V + 25)

[exp V +25
10 − 10)

(9)

βm = 4 exp(
V

18
) (10)

αh = 0.07 exp(
V

20
) (11)

βh =
1

(exp V +30
10 + 1)

(12)

K Equations

IK = gK(Vm − Ek) (13)

gK = gKn4 (14)

dn

dt
= αn(1 − n) − βn(n) (15)

αn =
0.01(V + 10)

[exp V +10
10 − 1]

(16)

βn = 0.125 exp(
V

80
) (17)

As one can see, the Hodgkin and Huxley model, although certainly elegant for

its time is deceptively complex. It contains a set of equations which are already

linearized, and uses circuit elements which do not exist. This makes it very hard for

us to build this model in reality.

2.6 Recent Advances

While Hodgkin and Huxley’s model has been the standard by which many models have

have been measured over the years, the imperfections in this model have encouraged

many researchers to continue improve this work. Our purpose in including the above

formulation is to aid in one’s understanding of how the cells work (as this is very

important to our arguments), and because it is such an important work that most

works in this area are measured against it. We include the following to illustrate that

work is still continuing in this field, with efforts to improve over what Hodgkin and

Huxley were able to do 50 years ago.

John Clay is a current researcher who has noticed that there is a some discrepancy

between the Hodgkin Huxley model and the real data. Hodgkin himself notes this
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discrepancy which Clay notes in his paper [20] [9].

Clay says, “The model [Hodgkin and Huxley’s model] has been so widely accepted

as a paradigm for excitable membranes that its appropriateness for the giant axon

itself has generally not been questioned. The main finding in this report [Clay’s paper]

is that the model does not provide a good description of many electrophysiological

properties of the axon, in particular the refractory behavior of the preparation in

response either to sustained or periodic current pulse stimulation.”[9]

He takes a kinetic description given by Vandenberg and Bezanilla [40] and modifies

the rate parameters to suit the particular conditions that he is experimenting under.

This kinetic description is shown in Figure 16. A kinetic description simply shows in

figure form, the different states that a cell can be in. The transitions between these

different states are given by rate equations, again with α and β terms to describe the

rate of change from one state to the next.
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Figure 16: A kinetic description of INa as given by Vandenberg and Bezanilla [40]. The “C’s” of
this model are closed states, the “I’s” are inactivated states, and “O” is the open state. The arrows
between states describe possible transitions with rate parameters (a, b, c, d, f, g, i, y, and z).

He then uses a relationship for the fully activate Na+ channel which he derived

using the Goldman Hodgkin and Katz (GHK) equation. He develops the following

equation to describe current through the Na+ channel. Note that it is very different

from that which was proposed by Hodgkin and Huxley.

INa = gNaPoVmem
e

Vmem−ENa
UT − 1

e
Vmem

UT − 1
∗ [1 + 0.4e

−0.38Vmem
UT ] (18)

Clay uses a similar method to derive a new equation to describe the current

through the K+ channel. Again he starts with an expression derived from the GHK
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equation and comes up with the following equation:

IK(Vmem, t) = gKn(Vmem, t)4Vmem

e
Vmem

UT − Ks

Ki

e
Vmem

UT − 1
(19)

It is important to note here that these equations are much more similar to those which

describe the current through a transistor than the Hodgkin and Huxley equations are.

Even more important to note is that there is a dependence in both of these equations

on the term UT . In the following chapters we will see that the current through a

transistor also depends on the exponential relationship of some voltage over UT (e
V

UT )

being a dominant term.

In his paper, Clay goes on to show that the equations that he has derived do a

much better job at predicting the membrane response of an actual squid axon than

the Hodgkin and Huxley equations do. For instance, in many cases Hodgkin and

Huxley predict a series of spikes in response to a given input when both the actual

neuron and Clay’s equations show a single spike as the response.

28



CHAPTER III

ANALOG NEURON MODEL

Fig. 17 shows two parallel views for understanding and modeling ion flow in biology.

Both views start from the biological action potential. Underlying the action potential

is ion flow through channels. From this point the two views begin to diverge. The

classical view (left path) seeks to model the system by empirically deriving equations

describing the current through a population of channels. While these equations do

capture many of the important dynamics present in channels, they are not physically

based. That is, they are not derived from a set of fundamental forces underlying the

ionic motion. They are, instead, curve fit approximations to data that was taken. As

is the case with any equations that are not directly tied to physical properties, they

are difficult to implement in the real world, and frequently lead to large, convoluted

circuits.

In contrast to the above approach, we sought to use the numerous similarities

between biological channels and semiconductor channels to develop a circuit which

behaves as a neuron does (right path). The remainder of this document seeks to

develop further the reasoning and method behind the development of this circuit and

the path down the right side of Fig. 17. We start with a description of the underlying

biological mechanisms to compare them with the corresponding transistor ones.

3.1 Previous Work

Since one can show voltage versus current relationships for these channels, one might

be tempted to model these channels as variable conductances. In fact, starting with

Hodgkin and Huxley, this is exactly the method that has been employed to date.
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Figure 17: Two parallel views for modeling electrical activity in neurons. The path down the left
side describes the classical path taken by neuroscientists. The right shows the path that we have
chosen, and shows the progression from bio-physics to the corresponding silicon physics. Both views
start with an action potential (in this case from the particular snail helisoma trivolvis). Both views
also acknowledge the ionic currents and their underlying macro-transport phenomenon. However,
the classical view seeks to extrapolate equations from the data and develop a model of the system
based off of these equations. This we term the empirical method. The other method requires one to
look at the numerous direct analogies between biological channels and MOSFET transistor channels.
We believe this leads to a totally new way of looking at the biology. Both methods can lead us to
an action potential, however, the path on the right not only gives results consistent with biological
data, but also can be directly realized.

Hodgkin and Huxley used a variable resistor to model this behavior. The resistor they

chose has the dynamics shown in Eqns. 12-17 (Fig. 19 B). This element, however, is

a linearized conductance model of the channel.

Maholwald and Douglas employed a similar technique [28]. They have developed

a circuit which is realizable in current technology. However, they seem to have used a
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VLSI approximation of the linearized conductance that Hodgkin and Huxley postu-

lated. In their paper they state that the geometry of the conductance transistor was

modulated to make it behave more ohmically than regular devices (pg. 516), indicat-

ing the use of a short channel device. Fig. 19 C clearly shows that such a device can

approximate the conductances that Hodgkin and Huxley postulated. The EK and

ENa voltages they used clearly put the device into saturation, but the conductance

of the transistor can still be tuned by modifying the gate voltage.
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Figure 18: A real action potential from the invertebrate snail (helisoma trivolvis). Note that
omitted from this graph is the rise from resting potential to threshold voltage, although threshold
can be clearly seen. Also note that Hodgkin and Huxley used a squid for their preparation. The
concentrations of the various ions are different in the squid than for this snail. Due to this, various
voltages (i.e. Vrest, ENa, EK , etc.) are different, but the theory is the same.

Obviously, a control circuit to modulate the gate voltage needed to be developed.

For this control, they sought to implement the Hodgkin and Huxley equations. They

realized that the rate equations (Eqns. 12-17) had the same shape as a tanh curve.

A simple differential pair circuit also has a tanh curve, and was therefore used to
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implement them. The results of this circuit are admirable, but the actual implemen-

tation of the equations was not perfect. For example, instead of implementing m3h

as Hodgkin and Huxley specified, they implemented m − h. This circuit model also

is very large due to the large number of transistors. This does not allow for many of

these circuits to be implemented on a reasonably sized chip.

Simoni and Deweerth took this concept further [36]. They added adaptation to

their circuit model thereby reducing the sensitivity to mismatch, and they chose a

different set of equations to model (see [1]). Adaptation is a large jump in progress

as it lends itself to investigation of interesting neural behaviors. However, the basic

design procedure of this circuit remains the same as the Maholwald and Douglas case.

They used differential pairs to implement the needed curves found in the equations.

Again, the results of this work are admirable, but implementing equations leads to

large circuits.

Georgiou et. al. developed another Hodgkin Huxley circuit implementing the

equations [14]. The authors uses a sub-circuit termed a Bernoulli Cell which is capable

of implementing Bernoulli differential equations. They translate the Hodgkin Huxley

equations to the form capable of being implemented in a Bernoulli cell, and then plug

in the appropriate cell for that equation. Results from the simulated circuit show the

concept works, but again, the resulting circuit is quite large.

3.2 Circuit Overview

It is our contention that the implementation of equations, particularly the Hodgkin

Huxley equations, is not the best method of modeling neurons in VLSI. We have

discussed these equations because they are the canonical set. Others have developed

equations which are more correct at predicting actual biological behavior than the

Hodgkin and Huxley equations [9]. This shortcoming was noted by Hodgkin himself

[20]. It is important to note that equations with variables converted to numbers
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Figure 19: A Hodgkin and Huxley recorded data from ion channels to create their model. B
Their model utilizes a linearized conductance to model the channel. True, the conductance can be
modified, but it is always linear. Note that in their paper [19] it is clear that their model does not
fit the data very well. C Other VLSI models have relied on their equations (or some other set of
equations) and have used VLSI techniques to approximate the linear conductance that Hodgkin and
Huxley first proposed. For instance, a short channel length transistor in saturation can be used to
approximate this conductance as was done in [28]. D In contrast to this is our model which relies on
the physical similarities of MOSFETs and ion channels. E In a true I-V plot of a channel, one would
expect a figure similar to that shown here. For some small operating range, the conductance can
be modeled linearly. However, the conductance clearly is not linear. A transistor and ion channel
should have this same type of curve since the same macro-transport phenomenon exists in both
technologies. F This gives rise to a simplified circuit model. The transistor is not a linear model of
a conductance, but rather is a model of the channel itself.

represent the equations for a specific animal (e.g. Hodgkin and Huxley’s equations

only describe the squid). The basic physical forces remain the same for every animal

while the particulars (concentrations of ions, etc.) are different.

Instead, we believe many similarities between the physics of neurons and the

physics of silicon exist. It is the goal here to describe a circuit which makes use of

these similarities instead of relying on equation implementation. Certainly differences

exist in the physics. As pointed out in [4] one is dealing with ions moving in a fluid
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(bosons), while the other electrons in substrate (fermions). Due to this difference

the MOSFET can only asymptotically approach a slope of kT
q

per e-fold of current

change, while the biology is not limited to this (Fig.4.6 in [29]). Our claim is not that

the physics are equivalent, but that they are good approximation of each other. Ask

yourself, if the MOSFET had been around in 1952, and Hodgkin and Huxley had

understood it, would they have used a different circuit model?

Biological channels allow current to flow through a membrane. They have a

non-linear exponential current relationship to the voltage on the membrane. This

relationship simply cannot be accomplished using a resistor. One would ideally like

to replace them with elements which also have an exponential relationship between

voltage and current. This brings to mind two types of devices: a BJT transistor, and

a sub-threshold MOSFET transistor. We chose to use the MOSFET transistor for

several reasons: the extremely low amounts of power dissipated by it in sub-threshold,

current levels from it are naturally comparable in magnitude to those seen in biology,

it is smaller, available in standard CMOS processes, and we don’t have to deal with

base currents. Fig. 19 B shows the model as described by Hodgkin and Huxley while

Fig. 19 D-F shows our new conception.

As stated before, the primary driving force in ionic channels is diffusion, and in

both cases an energy barrier is present that the carrier must surmount [8, 7, 13, 41, 3].

This same fact is true in a subthreshold MOSFET. This accounts for the exponential

I-V relationship. Since the driving force is the same type of force, we have replaced

the ionic channel with a silicon channel (the channel of the MOSFET, Fig. 19 D).

Biasing the transistor so that it operates in the ohmic regime (Fig. 19 E) allows the

transistor to naturally operate in a non-linear regime closely related to biology. The

natural range between ENa and EK of ∼ 150mV naturally biases them in the ohmic

regime.

Biological channels are really made up of two high level parts: the pore (the

34



physical structure that ions flow through) and the gating mechanism which controls

the opening and closing of the pore. Sub-threshold MOSFETs have this same idea.

The channel of the MOSFET is a piece of silicon between the drain and the source

(Fig. 17), and the voltage gating mechanism modulates the channel. A MOSFET’s

gating mechanism comes out to a wire and does not have dynamical control built into

it. If one could develop a circuit with same dynamics as the gating mechanisms of the

biological channel to be modeled, it could simply be connected to this wire; resulting

in the same high level structure being preserved, Fig. 19 F.

Current through ion channels has an exponential I-V relationship if one looks at

a population of channels. Current through an individual channel is stochastic. This

fact also holds true for MOSFETs. Imagine the existence of a MOSFET of extremely

small width (∼ 1nm). If one could measure the current through the channel it would

also be stochastic in nature. If many of these transistors were connected in parallel,

the resulting current would be the familiar smooth exponential curves. Obviously

the process is different (bosons vs. fermions) between the technologies, but the same

stochastic phenomenon is present. Many small parallel MOSFETs is equivalent to a

single MOSFET of width equal to the sum of the smaller transistors. Therefore, a

MOSFET with reasonable width actually models a population of biological channels,

Fig. 20.

3.2.1 Na+ Circuit

Having established the use of a MOSFET as an analog to an ion channel, now the

design of the control circuitry can be undertaken.

The step response of the biological Na+ channel has already been described as a

bandpass filter. Looking at Fig. 21 certain parameters in the design of this circuit

become apparent. This figure shows voltage data taken from Hodgkin and Huxley’s

paper [19] on the x-axis, while the y-axis shows us the voltage needed on the gate
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Figure 20: This discussion of biological channels, modeled by transistors, actually refers to models
of channel populations. A A single biological channel is stochastic in nature. That is current through
it shows a on/off behavior, not the smooth current curves that have been discussed to this point.
Smooth currents require a large population of channels to be present. The same phenomenon can be
observed with an extremely small width transistor (≈ 1nm in width). B However, when a transistor
of reasonable width is used (as in our case), smooth currents can be generated in much the same
way that a large population of biological channels can generate smooth currents.

of a MOSFET transistor to get the needed current out of it. In other words, take

a voltage step on a biological channel and measure the resulting peak current; then

relate that value to the voltage needed on the gate of a MOSFET to get an equivalent

current flowing through it. It is easy to see several regions of operation in this

curve, with the first region showing a definite gain in the system. Since the gain

parameter, determined to be ≈ 8, was so obviously important, any amplifier design
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had to incorporate this value. This gain parameter aids in overcoming the natural kT
q

limitation described in [4].
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Figure 21: The Na+ channel has a set of complex dynamics that seem hard to model. However,
looking at the step response data shown in Fig. 6, it should become clear that this channel is a
bandpass filter. The above plot shows that this channel is also a linear amplifier (with a gain of
approximately 8) that saturates, and then eventually rolls off. We know that we get a current out
of the channel when we place a voltage across it, and we know that the same is true for a MOSFET.
This plot shows the voltage placed across the biological membrane on the x-axis, and the voltage
needed on the gate of a transistor to get the same current out of it on the y-axis.

This gain value was the only concrete value which was used in the design of this

amplifier. There was a strong desire to make the poles of this circuit adjustable since

it is our belief that many different channel types can be modeled by changing this

gain term and the pole locations [27]. With that in mind, Fig. 22 shows the Na+

amplifier circuit and the controlled channel transistor. This tunable bandpass filter

has poles which can be moved based on voltages placed on the nodes Vτm and Vτh.

This feature will enable the circuit to respond as quickly as the biological circuit does

by setting the biases. The following equations are derived to relate the time constants
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to the currents in the transistors, and the capacitor sizes.

3.2.2 Na+ Bias Voltage Calculations

The Na+ circuit shown is a modified bandpass amplifier. Consequently, there are

several regions of operation for this particular circuit. Two areas of interest for

this application include the low and high frequency regions. The high frequency

region (capacitive feed through) is outside the range of operation for this application,

although the derivation of its time constant, τcap, is shown as it naturally flows from

the other derivations.

3.2.2.1 Low-Frequency Model

To find the low frequency corner, an important assumption is made. Assume that the

current through Mτh
is large enough to keep up with any changes to Vmem. Therefore,

the voltage Vg is held constant.

Start with the following node equation:

(CNa + CZ)
dVg

dt
= CNa

dVmem

dt
+ CZ

dVNa

dt

+ Iτh
e(−κ∆Vτh

)/UT [e∆VNa/UT − e∆Vg/UT ] (20)

However, Vτh
does not change (as it is a fixed voltage) and Vg is being held constant.

As a result, the above equation simplifies to:

CZ
dVNa

dt
= −CNa

dVmem

dt
− Iτh

[e∆VNa/UT − 1] (21)

Next, define a new term X = e−∆VNa/UT and dX
dt

= −e−∆VNa/UT (∆VNa

UT
) and plug these

into the above equation to get:

CZUT

Iτh

dX

dt
= −

CNaX

Iτh

dVmem

dt
+ (X − 1) (22)

The low-frequency cutoff (τh) is defined by:

τh =
CZUT

Iτh

(23)
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Note that the subscript h does not refer to the word “high”, but rather to the h term

used by Hodgkin and Huxley actually making it the low frequency pole.

3.2.2.2 High-Frequency Model

To solve for the high frequency corner, again an assumption must be made. As-

sume the capacitive currents are much greater than the currents flowing through the

feedback transistor (Mτh
). The following equation results:

(CNa + CZ)
dVg

dt
= CZ

dVNa

dt
+ CNa

dVmem

dt
(24)

At extremely high frequencies, the currents through the transistors are negligible

as compared with the currents through the capacitors. Thus a capacitive feed-through

regime will eventually be observed with the following equations holding:

∆Vg

∆Vmem

=
CNa(CZ + Cleak)

(CNa + CZ)(CZ + Cleak) − C2
Z

(25)

∆VNa

∆Vmem

=
CNaCZ

(CNa + CZ)(CZ + Cleak) − C2
Z

(26)

However, what happens between the low frequency cutoff and the capacitive feed

through regime? A composite circuit combining traits of the low frequency and high

frequency circuit results. This circuit has an initial jump (for voltage step) due to

capacitive feed through which is counteracted by the pseudo-floating-gate voltage,

(Vg). This voltage settles back to equilibrium due to current through the feedback

transistor (Mτh
). To derive this equation the equation for the low frequency model is

combined with the high frequency model resulting in the following equation:

(CZ + Cleak)
dVNa

dt
+ Iτm

e(−κ∆Vg)/UT = CZ
dVmem

dt
(27)

After substitution:

(CZ + Cleak)(CNa + CZ) − C2
Z

CZIτm

dVg

dt

−
CNa(CZ + Cleak)

CZIτm

dVmem

dt
= e(−κ∆Vg)/Ut − 1 (28)
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Once again a variable substitution is utilized with Y = e(κ∆Vg)/UT and dY
dt

= e(κ∆Vg)/UT (κ∆Vg

UT
).

This yields the following:

τm
dY

dt
=

κτcap

UT

Y
dVmem

dt
+ 1 − Y (29)

where τcap = CNa(CZ+Cleak)UT

CZIτmκ
which denotes the starting point of capacitive feed

through and

τm =
(CZ+Cleak)(CNa+CZ)−C2

Z
)

CZIτm

UT

κ
is the high frequency cutoff time constant of inter-

est. This neuron circuit should never run at frequencies that would place it in the

capacitive feed through regime.

The gain for this circuit can be shown to be ANa = CNa

CZ
. From the previously

mentioned data (Fig. 21), this value needs to be ∼8. The capacitors are chosen by

this ratio.

Step response data from this circuit is shown in Fig. 22. Select data from the

left is blown up on the right for clarity. This data shows resulting currents for input

steps up to 100mV. The current magnitude increases as expected until the input

step approaches ENa (the reversal potential) at which point the magnitude starts to

decrease, as can be seen in the data.

3.2.3 K+ Circuit

Similar to the terms τm and τh, Hodgkin and Huxley used the term τn. This term

described the time constant of the activation of the K+ channel. A similarly named

Vτn
, is the bias controlling the activation time constant of the K+ channel. In other

words, it controls where τn is. The following equation gives the equation for current

through this transistor:

I = Ioe
(κVτn)/UT (e−Vgk/UT − e−VK/UT ) (30)

The conductance of this transistor at any given value of Vsd can be found by taking

the partial derivative of the current with respect to Vsd. In our case, Vsd is VK This
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yields:

∂I

∂VK

= Ioe
(κVτn)/UT (e−VK/UT ×

1

UT

) (31)

At steady state, since the voltage Vgk and VK equal each other, we know that the

difference between the source and drain voltage (Vsd) is 0. So if we plug this into the

above equation we get that

∂I

∂VK

= Ioe
(κVτn)/UT

1

UT

(32)

We rename Ioe
(κVτn)/UT to Isat because this is the same equation for a subthreshold

transistor that is in saturation. We know that the time constant of a node is equal to

the resistance seen at that node times the capacitance seen there (or RC). Therefore

with ∂I
∂VK

= gk = 1
Rk

, we multiply RkCk and get the following: 1in

∂I

∂VK

= Isat
1

UT

=
1

Rk

RkCk =
UT Ck

Isat

= τn

Isat =
UT Ck

τn

However, the substituted current, Isat, is actually the desired current and is therefore

renamed Iτn
. Thus, the following equation:

Iτn
=

UT Ck

τn

(33)

Knowing the needed time constant for this node determines the amount of current

needed given a particular capacitor size. Using Hodgkin and Huxley’s data it was

determined that this time constant should be in the neighborhood of 5ms. At steady

state, the nodes Vk and Vgk are the same value so 0 current will flow through this

transistor. An input step causes a difference between the two nodes causing current

to flow. Most input steps do not cause a depolarization enough to put the transistor

in saturation, with different step sizes causing different conductances. This means
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that the time constant for this lowpass filter will be slower for smaller input steps and

faster for larger ones. This correlates to what Hodgkin and Huxley actually measured,

and is therefore desirable. The use of this transistor also makes the conductance in

the channel non-linear. This helps to preserve the ‘S-shaped’ curve seen in Fig. 7.

Voltage step data is shown for this circuit in Fig. 23. Select data from the left

is blown up on the right for clarity. Notice the step in current at the onset of the

pulse. This is due to the capacitive coupling from Vmem to VK . This phenomenon was

desirable, as the same step can be seen in Hodgkin and Huxley’s data. Note also that

the current magnitude keeps increasing as the voltage step keeps increasing. This is

due to the fact that EK is below the resting voltage so the input steps never cross

it. These voltage clamp experiments (performed on the Na+ and K+ channels) were

meant to emulate those done by Hodgkin and Huxley.

The maximum currents reached for each input voltage step is shown in Fig. 24.

This clearly illustrates that as the input step increases, INa also increases to a point.

But as the input step gets close to ENa the maximum starts to decrease, to the point

where it actually changes direction. EK is below the input step so it never turns

around. The shape of both of these curves is consistent with biology, (Fig. 6.3 [22]).

3.2.4 Neuron Circuit

The spiking neuron is created by tying these two circuits together. Much like the

biology, the interplay between the two currents on the membrane node yields the

desired behavior. Tying these circuits together gives us another point to consider,

the resting voltage Vrest. A resting voltage where nothing will ever happen can be

observed. This is expected, and is tied to the steady state conductance of each of the

channel transistors.

In one case, the K+ conductance is too high causing Vmem to sit at some low

voltage (∼ EK). The K+ circuit easily sinks any current the Na+ circuit may try

42



to source, thus keeping the charge on Cmem steady. The resting current through the

K+ transistor can be tuned by the Vgk node. At DC, the gate on MK will equal the

voltage Vgk. By moving Vgk, the steady state conductance of MK can be brought into

balance.

In the second case, the Na+ conductance is too high causing Vmem to move to

a high voltage (∼ ENa). The Na+ circuit can source much more current than K+

channel can sink. This is an equally undesirable case, as no action potentials can be

created. Tuning of this parameter is a bit more difficult. It involves changing VNa.

This can be tuned by a combination of raising or lowering Vsat, Vamp (which in our

case was tied to Vdd), Vτm, or Vτh. However, notice that moving any of these values

causes a change in the time constants. Therefore, care must be taken not to tune the

parameters out of the desired range when tuning this part of the circuit.

In the case of the whole neuron circuit, voltage clamp experiments are not par-

ticularly useful. A current clamp experiment, however, will allow us to see an action

potential. For this type of experiment, a known current is injected onto the node,

and the voltage response is observed. For low amplitudes of input current, an action

potential is not generated. A depolarization can be observed, but the voltage never

reaches the threshold voltage where the Na+ channel fully activates. However, once a

large enough current is injected, action potentials are generated and can be observed

as in Fig. 25 B. Currents in the particular channels during the action potential are

shown in Fig. 25 C-D.

This circuit has been fabricated on commercial processes available through MO-

SIS. It has been built and shown to work on chips with very large W
L

ratios, down

to quite small. It is important to note that current levels will be determined by this

ratio, and the current levels directly influence the size of the capacitors needed. So

care must be taken when designing this system.

We also simulated this circuit in SPICE using EKV models [10]. Since this circuit
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Node Name Voltage (V)
Vτh 0.276
Vτm 1.01
Vamp 1.13
Vsat 0.325
ENa 0.975
EK 0.825
Vgk 0.322
Vτn -0.31

Table 4: Bias values for one particular simulation paradigm. Notice that the differ-
ence between ENa and EK is 150mV.

is running in the subthreshold regime, common models such as early BSIM can not

be used to accurately predict experimental measurements. Using the EKV model,

simulation results closely matched experimental measurements. Simulation data for

several different input currents is shown in Fig. 26. Notice that the spikes look very

similar from one to the next, save that the approach to the threshold voltage is much

faster. The spikes in the third graph have decreased in size, but the input current is

21µA which is huge for this circuit, and has a good chance of killing a real cell. An

input of this size causes a significant change on charge stored on Cmem causing an

increase in the resting potential.

Due to the fact that this circuit can be tuned to operate in many different regions,

certain action potentials can look quite different from each other. However, for a

fixed set of biases, the action potentials will look very similar to each other regardless

of the magnitude of the input current with only the frequency of action potentials

changing. The dynamics of the action potential are not affected (for reasonable

current magnitudes) since the control circuitry of both channels is current isolated

due to the capacitors. If the voltage on Vmem never changes, the current through

the channel transistors will also not change. The size of the input current builds up

charge on Cmem (and therefore voltage on Vmem) with a rate that is in proportion to

the magnitude of that input current. Higher current means faster charge rate, which
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means that Vmem reaches threshold voltage that much quicker.

A frequency versus current plot can be seen in Fig. 27. The shape as well as

the frequencies correspond well to data from real neurons (Fig.4d [28]). This is

simulated data. Real data of this type proved to be quite problematic to attain

due to high frequency ambient noise, and instrument difficulties. As illustrated in

Fig. 28, high frequency components will pass through the Na+ amplifier and cause

an action potential. The experiment here shows the neuron circuit response to a large

hyperpolarizing input that is suddenly released. It causes an action potential to be

generated. This result is expected from the biology and is referred to a postinhibitory

rebound. For an example see [5].

During the frequency vs. current test, a particular current would be input which

theoretically should cause a steady firing frequency. However, high frequency ambient

noise sources would cause the spike frequency from one sample frame to the next to

change significantly. Therefore a reliable data set was not acquired.

As a final illustration of this point, look at the real data shown in Fig. 29. A

constant, below spiking threshold current was placed on the membrane node. The

aforementioned high frequency ambient noise sources cause the circuit to spike ran-

domly (with 0 input current, the currents generated by the noise sources are not large

enough to generate spikes). This data, shown in Fig. 29, was taken over a period of 90

seconds. This is not meant to be a rigorous noise characterization of the chip. Rather

it illustrates the difficulty in acquiring the actual frequency vs. current curves.

3.3 Conclusions

We have shown a new circuit model which accurately models action potentials and

channel currents of real neurons. It generates this waveform by taking advantage of

the numerous physical similarities between biological channels and silicon channels.

As with any circuit, there are some considerations to think about when using this
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circuit. Since these time constants are slow compared to the normal time constants in

silicon technology, there is a trade off between low current levels (in the bias circuitry)

and large capacitors. This is not limiting though. The size of the capacitors can be

large enough without being overly huge ( 100’s fF) and still have current levels large

enough to be accurately measured. We hope to one day fit thousands of these channel

models on a single chip to approximate a cortical cell (obviously other circuits will

be involved including synapse models, dendrite models, and even other channels).

Therefore, we need to optimize for space. Already more than 100 of these circuits

have been placed on a chip 1.5mm x 1.5mm in a 0.5µ process. As processes get smaller,

and die sizes larger, thousands of models on a single die is not an unattainable goal.

There are 5 main biases for this circuit (excluding ENa and EK). ENa and EK

should be global variables regardless of the number of channels models on chip. How-

ever, due to mismatch, presumably the other biases should not be global. Some

method of generating these biases or storing them on chip needs to be investigated to

achieve the density spoken of above, as pin limitations will quickly become apparent.

Several benefits arise, though, from the use of this model over other models. First,

it does not attempt to model a set of equations. Recall that equations such as Hodgkin

and Huxley’s are curve fits to their data, and therefore, attempts to model these

equations adds yet another layer of abstraction. Second, the model preserves many

of the non-linearities present in the real neuron by utilizing the same fundamental

forces that move ions through a channel. Lastly, this model is very small and compact

allowing for large numbers of them to be placed on chip.
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Figure 22: A The Na+ circuit. One can easily see the channel transistor and membrane capacitor.
Connected to the channel transistor is the circuit which controls its dynamics. It is a bandpass filter
with a gain term (set by the relationship between CNa and Cz). B Data from the Na+ voltage
clamp experiments performed in lab. These responses are indicative of the bandpass filter that
was implemented. Notice that as the input voltage approaches ENa the max current decreases and
starts to approach 0 again. Although, not shown here, when the input step voltage exceeds ENa,
the current will start to flow in the opposite direction, as one would expect. C Selected data from
B for clarity.
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Figure 23: A The K+ circuit. Again, it is easy to see the channel transistor and the membrane
capacitor. The circuit connected to the channel transistor is a lowpass filter, as is needed from
observing the step response for a biological channel shown in Fig. 7. B Data from the K+ voltage
clamp experiments performed in the lab. Note that all show a low pass response. Note also an
instantaneous jump in current at onset. In our circuit this is due to capacitive coupling from V mem

to VK . This is expected, and if one closely examines Hodgkin and Huxley’s data, this same step is
apparent, and therefore desirable. C Selected data from B for clarity.
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Figure 24: The maximum currents reached for both INa and IK under voltage clamp conditions.
Notice the reversal in sign for the Na+ channel. This is due to the input step being larger than
ENa. Results are consistent with biology. This is experimental data.
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Figure 25: A Complete Neuron model circuit as a combination of Na+ and K+ transistor
channels. Notice that in terms of size, it is roughly that of an ”AND” gate. B An Action Potential
generated by the circuit. Due to the tunability of the circuit, there can be significant variation in
shape from one action potential under a certain set of bias conditions to the next. However, within
a fixed set of biases, the action potentials all look alike regardless of the input current magnitude
(obviously within the boundary conditions of the circuit). The voltage shows the voltage of the spike
minus the voltage of the circuit at rest. This was done to show the relative pulse size of an action
potential from this circuit. C Current through the Na+ channel during an action potential. Notice
the kink as time approaches 1msec. Notice that in Fig. 25 b that the action potential is at its peak
around 1msec. This peak is very close to the reversal potential for Na+ , and therefore causes the
current magnitude to decrease (less driving force). This can also be seen in biological Na+ channels.
D The current in the K+ channel during an action potential. Its shape also models the biology. All
three of these plots show experimental data from the same action potential.
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Figure 26: Using the EKV model, the circuit can be accurately simulated. Spike frequency change
for different input currents (2µA, 6.4µA, and 21µA respectively) can clearly be seen.
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Figure 28: Response of the Na+ circuit to a large hyperpolarizing event. An action potential
is generated after the release of the hyperpolarizing event. This response is consistent with biology
and is referred to a postinhibitory rebound.
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Figure 29: Experimental measurements of the neuron circuit with the input current biased just
below the threshold of firing. The activity seen is in response to ambient noise. This noise adds to
the input current signal to push the circuit past the threshold voltage and cause firing to occur.
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CHAPTER IV

ANALOG DENDRITE MODEL

4.1 Dendrites

Dendrites are colloquially referred to as the inputs to the cell. Their function, how-

ever, is significantly more complex than just inputs. Dendrites significantly increase

the surface area of a given cell without dramatically increasing the volume of that

cell. 97% of the surface area of a motor neuron is in the dendrites [12]. They are

referred to as the inputs due to the fact that the vast majority of neural connections

(synapses) are made on them. Dendrites are not passive wires transmitting data to

the cell body. They are active elements that integrate data in complex ways. We

believe that the form of a given dendrite cannot be separated from its function. Just

what that function may be is not well understood at this point, but some theories

are available. While we are not making a specific claim about the exact transform

dendrites perform, we hope to show a circuit model which can be used to aid in such

an investigation.

4.1.1 Biology

As was stated, dendrites dramatically increase the surface area of a cell without a

comparable increase in volume. This significantly increases the available area to make

connections to other cells without increasing the energy needs of the cell, helping to

make the cell a very efficient machine.

Dendrites are composed of the same bi-lipid membrane as the cell body. Also

embedded in the membrane are the same protein channels that have already been

discussed. These proteins change shape based on triggers such as voltage changes on
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the local membrane or the presence/absence of certain chemicals to allow or disallow

particular ions to flow across them. It is this ion flow that causes action potentials.

These channels are not only present in the cell body, but are also present in the

dendrite, Fig. 30.

To SomaTo Distal End

Figure 30: A microscopic view of a dendrite. The dendrite has the same bi-lipid membrane
that the cell body has. This membrane separates charge from the outside of the cell to the in-
side. Protein channels can selectively allow or disallow ions to flow across them causing the cell to
polarize/depolarize. Ions can also diffuse down the length of dendrite.

4.1.2 Classical Modeling

Dendrites are a physical entity. They have a physical width and length, albeit very

small. With increasing width comes increasing conductance, and with increasing

length comes increasing resistance; the same phenomenon seen in transistors. Larger

surface area also leads to larger leak conductance across the membrane. Classically,

to study them, neuroscientists have compartmentalized them into small isopotential

segments and analyzed the electric activity using cable theory. The model for each

section consists of horizontal resistor, modeling the W/L ratio, a vertical resistor

to ground, modeling the leakage due to surface area, and a capacitor, modeling the

charge separation properties of the membrane. Fig. 31 shows this model. While we

agree that this is good in principle, we feel that it has some deficiencies as described

in the next section.
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Figure 31: Neuroscientists have traditionally studied dendrites by assigning conductances (resis-
tances) inhibiting ion flow out of the cell and along the length of them. The membrane separates
charge and is therefore modeled by the capacitor. Classical cable theory is then used to analyze this
circuit. While this model is easy to understand, it linearizes these exponential conductances.

4.2 Dendrite Circuit

As one looks down the length of a dendrite, it appears to be a tunnel. The tunnel’s

diameter decreases as you proceed distally (that is away from the cell body). In some

neurons this diameter change is exponential. The tunnel is not empty, but rather

is full of different types of ions suspended in an intracellular fluid. There are two

axes along which ions can flow; across the cell membrane and along the dendritic

axis. Some of the protein channels are always open allowing some current to leak

through them. While this idea is modeled in the classic view by the leakage resistor

(rm), it has been shown that current through protein channels can better be modeled

by sub-threshold MOSFETs, Fig. 32a. This is due to the fact that diffusion is the

primary force at work driving ions through the channels of both technologies. [11]

The second axis of ion flow is along the length of the tunnel. The ions “see” a

conductance/resistance to flow in the tunnel, but flow along this axis is also a result of

diffusion. This conductance is, again, better represented by a sub-threshold MOSFET

transistor than the resistor. In this circuit under normal conditions, the transistors

are going to be operating in the ohmic regime, thereby replicating the linear current

seen in biology, but the diffusive current is preserved. It may be argued that the

energy barrier seen in the MOSFET is not present in the biology, but this can simply
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be thought of as a DC offset in along the line. The real concern should be the barrier

difference from node to node, but this potential should be quite small, thus ensuring

that the transistor stays in the ohmic regime. This concept is shown in Fig. 32b.
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Figure 32: If one looks at the two axes that ions can flow (that is through an ion channel or
along the dendrite itself) it is easy to see that an ion “sees” two different types of conductances.
(a) One is a conductance (or resistance) to flow in/out of the cell. An ion must flow through a
channel. Ion flow through channels is governed by diffusion and is therefore exponentially related
to voltage. Electron/hole flow in a sub-threshold MOSFET transistor is also governed by diffusion,
and is therefore also exponentially related to voltage. (b) A second direction that ions can flow is
along the length of the dendrite itself. The ion, again, “sees” a conductance (resistance) to this
flow. Ion flow down the length of dendrite has been shown also to be governed by diffusion. This
again is better modeled using a sub-threshold MOSFET rather than a resistor. (c) The diameter
of a dendrite is not constant. It is quite large at the base of the dendrite, and very small as we
proceed to the distal end. In some cortical pyramidal neurons the diameter change is exponential.
(d) This shows the basic diffuser circuit that we are proposing as a better model of the conductances
in dendrites.

4.2.1 Diffuser Circuit

One may notice that the resulting circuit, Fig. 32 is simply a diffuser circuit as

described by [6], [39] with the addition of membrane capacitors.
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We take this one step further, however. The diffuser circuit is still a passive

circuit. Current passively diffuses from one node to the next. Dendrites are not like

this. They posses the same types of active channels as those found in the cell bodies

of neurons making them active parts of the cell. Because of this we have included two

channel types that we have previously developed at every node which are capable of

generating an action potential. These channels enable a signal to be repeated as it

travels down the line.

4.2.2 Active Channels

The active channels are described in depth in [11] and in Chapter 3. A short discussion

is included here for the convenience of the reader. Two types of active channels are

included (though certainly more could be as they are developed). The first channel

we refer to as the Na+ (sodium) channel. It is a bandpass channel with two fast time

constants. This channel is responsible for the fast increase in voltage (depolarization)

found in typical action potentials. The second channel, the K+ (potassium) channel,

is a low pass circuit. Its single time constant is much slower than either of the two

time constants for the Na+ channel. Its current direction is also opposite that of the

Na+ channel. Therefore, once activated, the K+ channel works to bring the voltage

back down (repolarization) to a resting voltage. Due to the relatively slow response

of this channel, the voltage will drop below the resting potential of the membrane

(hyperpolarizes) before the K+ channel is fully inactivated. Fig. 33 shows an action

potential developed by the two active channel circuits we have developed.

Neuroscientists have generally described the interaction of these two types of chan-

nels by using the Nobel winning work of Hodgkin and Huxley [19]. However, this work

was theoretical and utilized resistive devices which cannot be physically built, thus

making a real implementation of this circuit impossible. This is not to say that it is

impossible to build a circuit which emulates their equations as this has been shown
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Figure 33: Dendrites are not passive. They, instead, have active channels along them. Previously
we have described a new model for studying neural action potentials using transistors as an analogy
to the ion channels. Using this model, we have generated action potentials including the one shown
here.
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Figure 34: The active channels that we have implemented to date, although other work is seeking
to increase this repertoire, include a Na+ and K+ channel. The circuit encompassing both of these
channels is shown here. They can both be characterized as a channel transistor (M6 and M5 for
Na+ and K+ respectively) with a control circuit connected to it. This circuit generated the action
potential shown in Fig. 33.

on several occasions [28][37], simply that their actual circuit model must be left to

the theoretical realm. Implementations of the equations lead to large circuit mod-

els which do not utilize the many physical similarities between silicon and biology.
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These circuits would therefore be prohibitively large if we intend to place many differ-

ent channels types at every node of our dendrite model. We have, instead, made use

of this large list of similarities between biological channels and sub-threshold MOS-

FET transistors to develop a new modality for thinking about these channels which

yields a very compact circuit solution. This circuit is shown in Fig. 34. Our long term

goal is to implement a model of an entire cortical cell on a single IC, therefore a very

small, yet accurate model of the channels was paramount to us. Work is continuing

to develop more channel types since this cell has many more types of channels than

just the two described here.

Active

Channels

Active

Channels

Active

Channels

Figure 35: By placing active channels at nodes of the diffuser, we extend the ability of the diffuser
from a simply passive structure to an active one, much like what we see in biology.

4.2.3 Arrays

As we have stated, neuroscientists have studied dendrites by sectioning them into

small isopotential pieces that can influence the nodes that they are directly connected

to. We too, have adopted this approach. By placing a Na+ channel and a K+

channel at the node of a diffuser, we can create a compartment that includes all of

the important functional components of a dendrite, Fig. 35. By stringing many of

these different compartments together into an array, we can start to investigate long

sections of dendrites.

Using this array we can explore many aspects of dendrites. As we said, dendrites

do not simply conduct an input signal to the cell body. Their physical dimensions

greatly influence how signals are propagated, and consequently the computation that
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Figure 36: (a) Data from a 1 by 30 array of dendrite segments. Active nodes have been placed
at every 5th node. A stimulus is applied at node 15. The axial conductances are tuned so that they
are equal. One can easily see as we progress through time that the action potential is propagated
from one node to the next. Since it takes more time to charge an active node, due to the fact
that the node is actively trying to stay at rest unless the threshold voltage is reached, there is a
“step like” appearance to this figure. However, one can see that the action potential propagates
bidirectionally and at the same speed. (b) This is a similar experiment to Fig. 36 with the exception
that the axial resistances are not tuned to be equal. Instead that are exponentially tuned with the
higher conductance to the left side of the figure. One can see the speed up as the action potential
propagates through the higher conductance region. In the other direction, the action potential dies
due to the lower conductance in this region. Not enough current is able to pass from one node to
the next to cause that node to fire off its own action potential. (c) A similar experiment to that
in Fig. 36a except that the input is placed at node 30 (all the way on the right). (d) A similar
experiment to that shown in Fig. 36b. Again the axial conductances are tuned to be exponential
(with higher conductance at the left of the figure) and stimulus is applied to the right. It is easy to
see that the propagation “speeds up” as if moves to the left.

a particular cell is able to perform. Extremely small sections of the dendrite have a

tough time conducting the same potential into a very large section, while large sections

can easily propagate to smaller ones. Since the diameter is very small on the farthest

point of the dendrite, it can be imagined that an input signal occurring distally would

have a tough time conducting to the cell body where it can be transmitted to another

cell. Many times, multiple inputs must occur either simultaneously at different close

regions of the dendrite (spatial), or close together temporally to cause the cell to

respond. With this circuit, it becomes easier to investigate such properties with

simple bias and input configuration changes, and such spatio-temporal phenomenon
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have been witnessed.

The biases of the diffuser directly relate to the geometry of the dendrite. As the

dendrite diameter changes, its axial resistance changes (due to changing W
L

ratio).

If the change is exponential, as it is in many cortical pyramidal cells, we also get

an exponential change in axial conductance. For this diffuser circuit, an exponential

conductance change translates into a linear gate voltage change for the horizontal

transistors due to the nature of transistors. However, any W/L combination can be

calculated and implemented. A similar argument holds for the leakage transistors.

4.2.4 Data

Shown here is simulation data from a 1 by 30 array of dendrite nodes. In these

examples, active nodes have been placed at every 5 nodes. In Fig. 36a we see a

current stimulation at node 15. The current pulse has been predetermined to cause

an action potential at the input node. The nature of the active node will tend to slow

the charging of that node and hold the voltage down until such time as the threshold

potential is finally met. Once the threshold is met, the channels will force the voltage

to follow the shape of the action potential. This explains the “steps” in voltage

through time. Nodes which do not have to overcome the threshold associated with

the active channels charge extremely fast. The voltage proceeds from the stimulated

point in both directions, and at the same speed. This is due to the fact that the

voltages on the gates of the axial resistance transistors are equal.

Fig. 36b shows a similar experiment. This time, however, the axial conductances

are not equal. The conductance is tilted with high conductance being toward the left

side of the figure. We can see as we proceed from the center to the left that the speed

of transfer increases, however when we proceed from the center to the right that the

conductances decreases quickly to the point that the charging cannot be transmitted.

Similar experiments are shown in Figs. 36c-36d. The one difference is that the
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stimulation occurs on the far right side of the array.

4.3 Re-Configurable Branching Dendrites

Remember, dendrites are not a static entity. Rather, they are constantly growing,

shrinking, increasing connection strength, decreasing that strength, and should be

thought of as dynamic fascinating structures. They are also not merely 1 dimensional.

They are, rather, 3 dimensional circuits. The following sections discuss an attempt

to model both the reconfigurability and the multi-dimensionality of dendrites.

To this point, we have shown a circuit which models a single compartment or

a non-branching segment of dendrite quit well. However, this model needs to be

extended to incorporate the ability to branch as real dendrites do. An assumption

must be made at this point though. Dendrites exist in 3 dimensions. However, if we

make the assumption that a particular branch of dendrite does not branch off of a

segment, and then “grow” back into that segment or any of that segments children,

then the 3 dimensionality of the dendrite can be compressed into 2 dimensions and

still be electrically correct. For the purposes of the circuit described here, electrons

do not see up or down, left or right. They simply see a conduction path, and if it has

two or three directions it can possibly move in, quantum physics tells us that it has a

probability of moving across that path. A segment of dendrite along the Y axis, may

have a branch on the Z axis and the X axis. The ion flowing in that dendrite may

flow down the either of them. Similarly, an electron at a node may see two different

branches that it also can flow down. It does not matter to the electron which axis

the path is in space (at least for the purposes of the analogy being drawn here).

The 2 dimensional diffuser matrix extends the dendrite circuits into a struc-

ture that could conceivably implement any arbitrary dendritic arbor geometry. A

schematic of this is shown in Fig. 37. At every node, voltage has the ability to spread
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either up, down, left, or right, and by controlling the voltages on the diffusive tran-

sistor gates we can selectively allow voltage to spread in directions that we want.

We can effectively remove particular nodes from the system, allow certain nodes to

conduct uninhibited, or place the node somewhere in between all by setting a voltage

on the gate which relates to what we are trying to accomplish. For instance, since

this structure is a PFET, by placing a gate at V dd we open the connection circuitry

leading to that node. If all of the paths to that node are broken, the node is effec-

tively removed from the system. By placing a voltage close to GND on the same

node we can “short” two nodes together. By placing voltages higher than GND we

can cause the conduction to proceed slowly or quickly from one node to the next.

This parallels biology nicely since depolarizations in small areas of the dendrite may

not cause much of a change at all in a close region which is significantly larger. The

opposite, however, is usually true in that depolarizations in large areas of dendrite

will cause significant changes in smaller areas.

With this approach, however, a very large number of biases are introduced to

the system. For very large systems, there could be thousands (or millions) of them.

Floating gate devices provide a small analog storage device, which can alleviate this

problem. Floating gates devices have a node that is DC isolated from ground. Using

the quantum physical processes of Fowler-Nordheim Tunneling or Hot-Electron Injec-

tion we are able to control the actual amount of charge stored on this node. Fig. 38

shows the I-V gate sweep relationship from a particular PFET that has been both

tunneled and injected. Using the concept of an array we can place many of these

floating gate transistors on chip, Fig. 39. We can selectively program each individual

floating gate to control many of the needed biases. We have used floating gates not

only in the active channel circuits, but also in the diffusers as seen in Fig. 32d. With

so many bias voltages, it would have been extremely impractical to try to implement

this circuit on chip. There would have to be so many pins with so many different
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Figure 37: (a) Here we see a schematic for the 2D diffusor. Every node has a leak transistor to
GND, and diffusive transistors connecting it to 4 other nodes through diffusive transistors. Active
channels are also present at every node. By varying the gate voltage on the diffusive/leak transistors
we can vary the conductance through that transistor. By placing a gate voltage near VDD we can
effectively eliminate conductance through a transistor. We do this to remove some nodes from the
circuit. These gates are all floating gate nodes and are individually programmable. (b) To aid in our
understanding we abstract a node of the 2D diffuser to a dot. (c) When we see a cartoon diagram
of a neuron, we can see easily how to make connections in our 2D array (d) We simply take the
relative lengths of the dendritic arbor and extrapolate that to our array.

voltages that even a simple 10 segment array would have required approximately 100

different biases. The floating gate approach affords us the individual control that we

need while still maintaining a small circuit size.

To aid our understanding, we reduce each node of the diffuser with its active

channels to a dot, Fig. 37. By doing this we can quickly see how easy it is to connect

the dots to build the dendritic arbor shown in the cartoon figure of Fig. 37. If we

65



V
d

V
dd

V
g

Figure 38: A floating gate transistor has no DC path from the gate to GND.

TunnelInject

D
ra

in
 C

u
rr

en
t 

(A
)

Gate Voltage (V)
0.5 1 1.5 2

10-11

10-10

10-9

10-8

10-7

10-6

Figure 39: Using the quantum physical processes of Fowler-Nordheim Tunneling and Hot-Electron
Injection we can actually change the charge on this node, with a stable voltage otherwise. Tunneling
removes electrons from the gate thereby raising the voltage on it, decreasing the current through
the transistor. Injection places electrons on the gate thereby lowering the voltage and increasing the
current through the transistor.

reduce each dendrite into a relative segment length, we can simply implement each

dendritic branch point as a connection to more than one dot and the dendrite itself

as connections from one node to the next. The diameter of the dendrite relates to the

strength on the conduction placed between each node, and the strength of conduction

towards GND (on the leak transistor).

Data from this circuit is shown in Fig. 41. This data is actually trying to display
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Figure 40: By organizing the floating gate transistors in an array form, we can selectively isolate
a particular transistor to program. This allows us to have many floating gate transistors on chip,
all with individually programmable biases which can be used in other circuits. This is the way that
we can afford to have 100’s-1000’s of individual biases on chip without needing many pins or lots of
overhead circuitry to provide those biases.

4 dimensions, so each frame of the figure shows the matrix positions and the voltage

at those particular positions. The individual frames show a snapshot of the matrix

at particular points in time.
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Figure 41: These four plots show 2D diffuser to an action potential as we progress through time.
In this case, all nodes that are “off” have their diffusive gates placed at VDD. Conduction is constant
through this entire case which would relate to a biological dendrite that has the same diameter all
the way from the proximal end to the distal. The left side of each section shows the array as we have
it programmed with each node color coded as to the relative voltage at it. Red is highest. (a) In
this frame we see the array almost immediately after stimulation at node [6,1]. The time is 0.2msec.
The stimulation current was already determined to be large enough to cause an action potential at
that node. (b) This frame is at 2.6msecs. We can see that an action potential has occurred and
has spread to the surrounding nodes. Unlike a passive diffuser, the voltage is not decreasing as the
voltage spreads due to the activity of the active channels. (c) The time here is 5msecs. We can see
that the original node voltage has returned almost to rest, but the action potential has continued to
spread. (d) The last node shows us the array at time 7.4msecs. Here we are seeing the remainder
of the array beginning to return to rest. The action potential is spreading through to the final few
nodes, but will die at very soon. This shows just one of many different examples that we could show.
However, space restricts our ability to show more here.
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CHAPTER V

BIASES

It quickly became apparent that a problem with the neuron and tunable dendrite

circuit existed. That is, there are several biases for each neuron which would ideally

be independent from node to node (i.e. it is not desirable to have these biases be

global) and three different biases for each node of the dendrite. With this in mind,

floating gate circuits were investigated as a way of have many (potentially thousands

or millions) individually tunable biases.

5.1 Floating Gate Circuits
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Figure 42: Cutout showing parts of a typical floating gate transistor.

Floating Gate (FG) circuits are small compact structures that allow for charge

(bias) storage on the gate of an individual transistor. The gate of a MOSFET tran-

sistor (unlike in a BJT for example) is capacitively isolated from its channel region.

This means that the current through the gate of a MOSFET is ideally zero amps. If
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a second capacitor is placed which isolates the other end of the gate from any input

(Fig. 42 B), then a node has been created which has no DC path to GND (hence

the term floating). This means that any electrons that are present on that node are

effectively trapped.

If, however, there was no way to modify the charge stored on this gate these

devices would not be very useful devices (they would still have some uses). There are

at least 3 such ways: Ultraviolet Light Bombardment, Fowler Nordheim Tunneling,

and Hot Electron Injection.

5.1.1 Ultraviolet Light Bombardment

Ultraviolet (UV) Light Bombardment is a technique where the chip is physically

exposed to UV light. The UV light provides the energy needed for the electrons

trapped on the floating gate to surmount the SiO2 barrier and be carried away through

the channel or bulk.

However, this technique has several problems associated with it, and was not

chosen as the preferred method. First is that the chip must be removed from the

circuit and exposed to UV light. UV light is also non-selective. It is possible that the

light could be focused to selectively modify individual transistors, however this would

undoubtedly be prohibitively expensive. Non-selectivity means that the chip would

have to be globally erased a the whole chip re-programmed every time something was

to change. This method was not utilized in this setup due the limitations mentioned.

5.1.2 Fowler-Nordheim Tunneling

Fowler-Nordheim Tunneling is a process whereby electrons can be removed from the

gate. It is a quantum physical effect where electrons are able to pass through (tunnel

through) thin barriers in the presence of a strong electrical field.

Electrons on the gate “see” a large barrier due to the presence of Silicon Dioxide

(SiO2), Fig. 43 A. This barrier is quite large (since SiO2 is such a good insulator)
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Figure 43: Energy diagram illustrating Fowler-Nordheim Tunneling. A The electrons see a
silicon dioxide (SiO2) barrier that they don’t have enough energy to surmount. B-C However,
as the potential of the one side of the barrier is reduced, the effective width of the barrier is also
reduced. Eventually, effective width is reduced enough that the electron is able to tunnel through
the SiO2 barrier.

and the electrons do not have enough energy to surmount this barrier on their own.

However, by increasing the energy differential between the two sides, the effective

width of the insulator seen by the electron is significantly reduced, Fig. 43 B. Even-

tually the point is reached where the electron is finally able to tunnel through the

barrier to the other side, Fig. 43 C. EFG represents the energy level of the electrons

on the gate, and ETun represents the level at the tunneling junction. This lowering

is actually made by raising the voltage on the tunneling capacitor. It is interesting

to note that it is possible to tunnel in both directions (by either raising or lowering

the voltage on that node), however, for the purposes discussed here, tunneling is used

strictly for removing electrons from the gate of the FG transistor [26].

Since all of the transistors that are programed are pFETs, this process is effectively

a clear or erase function. Removing electrons from the gate of a pFET reduces

the channel current, eventually shutting off the transistor. As a note, care must

be taken when tunneling to not tunnel the transistor so far that it cannot be re-

programmed with Hot-Electron injection (discussed in section 5.1.3, which requires a
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certain amount of current in able to inject).

Tunneling is more selective than UV irradiation, however, it is not completely

selective. Therefore, it is again used as a semi-global erase. However, it does have

the advantage that the chip can be erased while still in the circuit, assuming that

the circuit is able to supply the needed high (relatively) voltages needed to induce

tunneling.

5.1.3 Hot Electron Injection

Eox
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EV

Gate Region

Channel

Source

Drain

Figure 44: Energy diagram illustrating Hot-Electron Injection for a pFET. Normally, there are
no electrons in the conduction band (EC). However, an electron traveling through the channel with
sufficient energy can strike a silicon lattice site with enough energy to create an electron-hole pair.
These holes will flow through the drain, and the electron will appear in the conduction band. From
here it has two places to go. First (and this is where the majority flow) is back into the bulk.
However, some will have a trajectory that will place them on the gate. For clarity, only an electron
going to the gate has been illustrated.

Hot-Electron injection is a classical physics process that enables electrons to be

placed on the floating gate, thus (because this is a pFET) increasing the current

through that transistor.

Hot electron injection requires two things to be present in the transistor. First

there must be current through the channel. This is because injection requires im-

pact ionization to occur, which requires electrons to be moving through the channel.

Secondly, there must be an electric field which can direct electrons into the gate.

Under normal circumstances, no electrons are present in the conduction band of
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a pFET. However, a certain amount of holes traveling through the channel will strike

a silicon lattice site with sufficient energy to produce an electron-hole pair. The old

hole and the newly created one will flow out through the drain, but the electron will

jump to the conduction band. This electron now can go one of two places. Most of

these newly generated electrons will flow into the bulk, however a certain percentage

of them will have the proper trajectory to flow in to the gate where they become

trapped, Fig. 44.

This process can be very accurately controlled, and is also highly selective. It is

therefore chosen as the major means of programming the transistors.

5.1.4 Matrix Programming of Floating Gate Transistors

As with any analog circuit, the number of different biases can quickly become a sig-

nificant limiting factor. Since the goal is to have an IC with hundreds of individually

tunable nodes, the use of global biases must be minimized. In fact, the only globals on

this chip are those which are directly related to biological values, or are a drain/source

bias.

Floating-gate transistors have been shown to be very useful acting as precise cur-

rent sources when directly programmed with a combination of hot-electron injection

and Fowler-Nordheim tunneling [17, 31, 32, 24]. Programming these floating gates

has previously required using a T-gate switch to disconnect the transistor from the

circuit for a programming phase and then reconnecting it for a run-time phase [38].

The addition of a T-gate switch for every floating gate to be programmed is

costly. It is costly both in terms of area used, and the additional T-gate switches

significantly increases the power supply overhead needed in order to run the circuit.

For this circuit, this power supply increase causes the difference between ENa and

EK to be larger than biology, reducing the biological relevance of the circuit. This is

an unacceptable trade off, and consequently a new method of programming needed
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(a) (b)

Figure 45: A The active channels model with some of the needed circuitry overhead to program
it utilizing the direct method. The red capacitors designate which of the nodes are floating gate
nodes. They gray T-Gate symbols represent where just some of the switches would need to be.
(There are many others external to the circuit). Each one of these symbols represents just one
place where the circuit would not behave properly due to losses in the T-Gate themselves, and the
switches significantly increase the size of the circuit. B By using the indirect method discussed in
this chapter, all switches are removed from the operation of the circuit removing these circuit losses.
Individual tunability is maintained, and results in a smaller overall circuit.

to be developed.

The concept of indirect programming of floating-gate transistors is illustrated in

Fig. 46 (a-b). With this indirect programming technique, multiple MOSFETs share

a common floating gate. One pFET is connected to the programming structure while

the source and drain of the other FET are connected to the respective circuit. The

first pFET is programmed in the fashion of [35] using hot-electron injection and

tunneling. Since the charge on this “programmer” pFET is modified, the current of

the other transistor (the “agent”) will also be set.

Since direct measurement of the needed currents is impossible with this method,
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Figure 46: (a) Programming struc-
ture of a pFET indirectly programming
another pFET. The left transistor is
connected to the external programming
structure and is actively programmed.
The transistor on the right is connected to
its circuit (shown by the dotted lines) and
is passively programmed. (b) Program-
ming structure of a pFET indirectly pro-
gramming an nFET. (c) Direct method
of programming a pFET. Direct program-
ming requires disconnecting the pFET
from the rest of the circuit with T-gates.
This schematic represents a best-case sce-
nario in which only two T-gates are re-
quired. For some applications, two T-
gates each at the source and gate would
also be required. (d) Direct method of
programming an nFET. Direct program-
ming requires programming the current in
a pFET and then mirroring that current
into the nFET that is connected to the
circuit.
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strategies must be developed which allow for the deduction of the current by measur-

ing the current through the indirect transistor. Such strategies are discussed in the

following sections

5.2 Benefit of Indirect Programming

To illustrate the usefulness of an indirect programming method for ordinary circuits,

Fig. 47 (a) shows the floating gate current mirror introduced in [2] for matching

the two leg currents. The full schematic of this current mirror is actually given by

Fig. 47 (b), with the increase in complexity clearly evident. The additional resistances

and capacitances introduced by the eight T-gates, used to break the floating gate

transistors out of the mirror for programming, seriously hamper the performance of

the current mirror, especially at high frequencies. The simple two-transistor current

mirror becomes a complex 18-transistor circuit.

The use of indirectly programmed floating gate transistors simplifies the pFET

current mirror to that of Fig. 48 (a). Now, only a minimal amount of disconnects
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Figure 47: (a) Floating-gate transistors for offset removal in a current mirror. (b) Implementa-
tion of the floating gate current mirror using direct floating gate programming techniques. To allow
complete disconnection of each floating gate transistor for programming, many T-gate switches must
be used which add parasitic capacitances (shown in dashed lines) and resistances. These switches
increase the required area and supply headroom while concurrently degrading the operational per-
formance.

need to be included. Only two cascoding transistors and a single T-gate are now

used, and the cascoding transistors serve the dual purpose of isolating the floating

gate transistor and enhancing the current response of the mirror.

Aside from the potential of adding floating gate functionality to a circuit with-

out the complex overhead, a second major benefit from indirect programming arises.

Heretofore, precise programming of nFETs with hot-electron injection has been virtu-

ally impossible due to process-control techniques that specifically work to avoid nFET

injection [16]. To program an nFET before required a pFET to be programmed, and

that current source an nFET current mirror, as shown in Fig. 46 (d).

The process of programming an nFET is more explicit with indirect programming.

Since an nFET and pFET can share the same floating gate, the nFET current is set by

programming the pFET. This technique allows the construction of an nFET current

mirror that is completely analogous to the pFET version of Fig. 48 (a).
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Figure 48: (a) Implementation of the floating gate current mirror with the indirect-programming
technique. The use of indirectly programmed transistors greatly reduces the complexity of the
circuitry and minimizes the parasitics. The two cascode transistors are included for both improved
performance and also for isolation of the gate voltage for programming. (b) Implementation of an
nFET floating gate current mirror with indirect programming. This current mirror is a simple design
(the same as the pFET version), whereas the construction of an nFET programmable current mirror
is virtually impossible.

5.3 Indirect Programming of pFET Transistors

The most basic method of indirect programming uses injection in the programming

pFET to set the current in the agent pFET (Fig. 46 (a)). The programming pFET

can be connected in large floating gate array similar to [38]. The output of the agent

will be a scaled version of the programmer, assuming the drain and source potentials

of the two devices are similar. Scaling is due to W
L

ratios and any mismatch between

the two devices. Figure 49 shows the I-V characteristics for a gate sweep of two

identically sized devices.

Assuming that the sources and drains of the two transistors are at similar poten-

tials is not always valid. Figure 50 shows the effects of varying the source potential of

the agent. With both transistors in the subthreshold regime, varying the programmer

current yields approximately a 1 : 1 change in the agent current.

The programmer’s measured current is used to predict the agent current, with
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Figure 49: I-V characteristics of an indirectly programmed pFET and its programming pFET.

the relationship shown in Fig. 50. Figure 51 shows that this technique can be used

to accurately set the current in the agent within tolerance for two different values

of the agent’s Vs. Only the current through the programmer is observable during

programming.

5.4 Indirect Programming of nFET Transistors

As was stated previously, an important advantage of indirect programming is that

it provides a simple mechanism for programming an nFET (Fig. 46 (b)), whereas

process-control parameters make direct nFET programming difficult. However, cer-

tain design issues must be considered since the programming pFET and the agent

nFET share a common floating gate.

Figure 52 shows the I-V characteristics of both the nFET and pFET. If the tran-

sistors are not properly sized, then these curves will be significantly skewed. Unlike

the pFET-pFET case, a direct relationship between the two transistors is not easily
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Figure 50: Ratio of the programming pFET to the operational pFET for various values of Vs. The
slope of each trace begins to differ from unity at low current levels due to measurement limitations.
At high current level, the slope differs since the programming pFET leaves subthreshold sooner than
the operational pFET for smaller values of Vs.

obtained. When the two transistors are not in subthreshold simultaneously, a current-

to-current relationship like that in curve 1 of Fig. 53 is the result. Small changes in

pFET current yield large changes in nFET current. Therefore, restricting the oper-

ation to strictly subthreshold is desirable because it linearizes the current-to-current

ratio.

Two methods are available to ensure that both transistors are simultaneously in

subthreshold. The first requires moving the sources of both transistors. Decreasing

the pFET source (reference to Vwell) and increasing the nFET source (referenced to

Vbulk) reduces the current in each transistor. This moves the threshold voltages to a

point in which it is possible to operate both transistors in subthreshold at the same

time (Fig. 52). Figure 53 relates the pFET-to-nFET current for each set of curves

in Fig. 52. Lowering the crossover point increases the linear range of the current-to-

current ratio.

A linear current-to-current relationship makes predicting the agent current trivial.
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Figure 51: Programming the operational pFET to a target. (Top) Programming when the sources
are at similar potentials. (Bottom) Programming when the operational pFET has a higher source
potential than the programming pFET.

Figure 52: I-V characteristics of an indirectly programmed nFET and its programming pFET.
Curves 1-3 show the I-V relationships with the source of the nFET and the source of the pFET at
three different voltages.

However, any reasonable current-to-current relationship (like curve 2 Fig. 53) allows

accurate programming of the nFET. Fig. 54 shows that the nFET can, indeed, be
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Figure 53: (b) Current-to-current relationships for each of the three curves shown in Fig. 52. As
the current crossover point moves down, the current-to-current relationship becomes more linear,
simplifying the programming process.

programmed to a desired value when only observing the pFET current.

As the sources of the transistors may not always be accessible, the previous method

may not be possible. The second method of ensuring that both transistors are in

subthreshold requires that the programming pFETs be in a well isolated from the

operational circuit and that those wells can be accessed.

The current crossover point is a characteristic of process parameters and the W
L

ratios. Using parameters derived from a commercially available 0.5µm process, sim-

ulations determined that a WP

LP
ratio of the pFET to a 5WN

LN
ratio of the nFET causes

the current crossover point to be in the middle of the VDD rail. To make the crossover

point occur in the subthreshold region for both transistors, the source and well po-

tentials of the pFET are lowered to the threshold voltage of the nFET during the

measurement phase of programming [35]. This has the effect of shifting the pFET

curve to the left in Fig. 5 (a).

The gate voltage of both transistors is limited by Vgate ≤ Vwell, and Vwell ≤ VTn
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Figure 54: Programming the operational nFET to a target.

(the threshold voltage of the nFET), thus ensuring the two transistors will always be

in subthreshold. This makes programming the nFET a simple transform from the

pFET (Fig. 5 (b)). The W
L

ratio does not change the linearity of the curve if the

voltages are restricted to subthreshold voltage levels but simply alters the amount of

current (shifting the curves).
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Figure 55: Simulation data of nFET and pFET I-V curves. The pFETs Vwell is being low-
ered, shifting the curve to the left. When Vwell is low enough, both transistors will operate in the
subthreshold regime simultaneously.
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Figure 56: Simulated current-to-current curves. In each of these cases both transistors are
operating in subthreshold. P ≡ WP

LP

and N ≡ WN

LN

. Changing the W
L

ratio does not change the
linearity but increases the amount of current available.
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CHAPTER VI

THE FIELD PROGRAMMABLE NEURON

ARRAY (FPNA)

Several architectural considerations must be taken into account in the design of the

FPNA IC. This chip will have a large configurable dendritic matrix and many outputs

that require arbitrary routing. As the chip approaches a 30x30 matrix, it will begin

to approach the complexity of a single biological cortical neuron (pyramidal cell).

Due to the flexibility of the design, however, it can not only be configured as a single

complex cortical cell with a large dendritic arborization, but also as many smaller

cells with a smaller arborizations with many connections to each other.

6.1 Architectural Overview

The FPNA IC is composed of two primary operational section as well as some sup-

porting structures. The first operational part is the dendrite matrix. Each node of the

dendrite is connected to its neighbors on the left, right, above, and below through a

floating gate pFET that is indirectly programmable. By controlling the conductance

through this transistor, the different dendritic topologies can be approximated. Each

node in the dendrite contains the simple dendrite structure talked about in Chap-

ter 4, the two active nodes discussed in Chapter 3, one inhibitory synapse, and one

excitatory synapse element (both of which will be discussed in Section 6.2).

The second operation part of the structure is what is termed the output soma

array. The output designation refers to the fact that these nodes must be the last

node of any arbitrary dendritic arbor. They also have a circuit attached to them

called a triangle wave generator (again discussed in Section 6.2). It is the signal from
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Figure 57: General overview of the FPNA architecture. The chip is arranged in both a row
structure, and also logical block (i.e. the Soma Array and the Dendrite Matrix). The Soma Array
consists of one output structure (soma) per row. These somas can selectively be connected to the
closest block from the dendrite matrix. The dendrite matrix is connected as a 2D matrix, and can
be selectively configured to model any arbitrary dendrite topology. Outputs from the individual
somas can be arbitrarily connected to any other node of the dendrite matrix including direct to
other soma units. There are four external inputs which can also be connected to any arbitrary node.
This number can be increased/decreased (for ver. 1 of this chip, four inputs were chosen due to pin
limitations).

the triangle wave generator which gets routed from the output of this cell to the input

synapses at any arbitrary node.
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Generally, hard-wired bus lines route signals around the chip. These bus lines can

be seen in Fig. 57. The vertical bus lines carry both outputs from the output somas

and inputs from off chip. There is exactly one line for each output soma and one for

each off chip input. The horizontal bus lines also carry these same signals internally

to the dendrite matrix, and are hard-wired to the vertical lines. These bus lines carry

the signals, but it is up to the switches to actually connect the bus line to the input

synapse. One bus line can service many input synapses, and similarly, due to the

switching mechanism, each input synapse can be connected to more than one bus

line. It is yet to be determined whether this second case is advantageous or not. This

architecture is simple, and useful for smaller chips. However, there is a tractability

issue as this does not scale well with very large structures. Other architectures are

being evaluated for future versions.

There are three different levels of programmability: channel/synapse dynamics,

dendrite connectivity/conductance, and the switch matrix. Tunneling is used as a

kind of global erase, while injection is actually used to accurately program the various

floating gates. This is due to the fact that injection is much more selective than

tunneling [25]. It was decided to that a true global erase was not desirable since it

is easy to think of a case where one would like to maintain the programmed channel

dynamics while simply changing the input connections. It is therefore desirable to

have a separate pins for erasing the dynamics, dendrites, and switches. However, due

to pin limitations on this first version, the erase for the channel dynamics and the

dendrite were combined, while the switches have their own erase.

6.2 Synapses

The synapses are structures that have been collaboratively developed by a colleague.

They are composed of two separate components. The first takes an action potential

and converts it to a modified triangle wave. This wave actually approximates the
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Figure 58: The triangle wave
generator. The input voltage is
connected to Vmem of the neu-
ron model while the output volt-
age is carried on the bus lines
to various input synapses. This
circuit is essentially a digital in-
verter with two bias transistors
that act as current limiting de-
vices. These devices slow down
the output waveform (as shown
in green) causing the output to be
an inverted triangle. Vn controls
the downward going slope while
Vp controls the up going one.

Vp

Vn

Vdd

Gnd

VoutVin

wave seen traveling down the axon of a neuron. This is due to the fact that the axon

has significantly fewer K+ channels than Na+ channels. The wave that travels down

the axon rises quickly but falls much slower since the K+ channels are not there to

return the membrane to Vrest. The circuit which accomplishes this is shown in Fig. 58.

It is basically an inverter. However, two transistors act as current limiting devices

and slow down the output waveform.

The second component converts the triangle wave into an EPSP/IPSP. From

biological data, it is clear that the EPSP and IPSP both have exponential waveforms.

Since the triangle wave has given a linear wave, connecting this wave to the gate of a

transistor gives rise to the desired exponential EPSP/IPSP. Notice, from Fig. 59, that

both the excitatory and inhibitor synapses are very similar, with only the voltage of

the rail changing. Since ECl is lower than Vmem the current through this transistor

will try to lower Vmem thus inhibiting its ability to fire an action potential, Fig. 59

B. The opposite is true for the excitatory synapse. ECa is a larger voltage than Vmem

and current through that transistor will seek to raise Vmem making it easier to fire an

action potential, Fig. 59 A.

The floating gates of the synapses allows for individual weighting of the effects of

a particular synapse. Not implemented on this chip is the ability of these synapses
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to “learn” and self-adapt to solve particular problems (i.e. no learning rules have

been directly implemented). These synapse circuits can be designed with learning

in place, however, for initial FPNA versions, it was decided that the less complex

synapse circuits would be implemented. Future versions of an FPNA could include

synapses with on-chip learning implemented, but the learning algorithms are beyond

the scope of this particular research work.

Vmem

ECa

Vin EPSP

Vmem

ECl

Vin IPSP

(a) (b)

Figure 59: The two synapse models implemented for this work. The input to both of these
synapses is the triangle wave generated by the circuit in Fig. 58. The output is the exponential
current of the input waveform. The floating gate can be modified (using previously mentioned
techniques) to change the weight of a particular synapse. A The excitatory synapse, and its data
[15]. B The inhibitory synapse, and data from it [15].
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6.3 Switches

Currently two switch technologies are being considered for use. This first version of

the chip uses floating gate switches, but subsequent versions could utilize SRAM/T-

Gate switches or a hybridized mix of the two technologies. Both methods have ad-

vantages and disadvantages.

Floating gate switches have many advantages which was why they were initially

used for this work. They are very small, can have very low resistance, and will re-

tain their state even when the power to the chip is switched off (non-volatile). They

also don’t require a separate memory structure to be designed which uses more real

estate since the memory structure is inherent to the floating gate itself. However,

re-programming a floating gate switch is much slower. In fact, to set the switches

into any new configuration (even if the new configuration only differs from the orig-

inal configuration by one position), the entire switch matrix must be cleared (global

erase due to tunneling non-selectiveness), and every switch to be connected must

be individually re-programmed. While advances in programming technology have

greatly increased this speed, it is still much slower than re-programming a few bits in

a SRAM memory structure.

This particular limitation may become most apparent with outside inputs. The

ability to quickly route an off chip input to some particular node, and then quickly

re-route it to a different place could be extremely useful. With the current all floating

gate scheme, one can have 4 concurrent inputs, but moving where those inputs go

to is laborious and requires the disconnection of all the other switches (essentially

requiring that the functionality of the chip be turned off while the connections are

re-programmed.

Another method using SRAM cells connected to T-Gates can be used. This

method would allow for extremely fast run-time reconfigurability. However, this

method suffers from some significant problems. First, it is a volatile method. When
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power is turned off, the configuration goes away. Next, the resistance of the switches

is limited by the actual geometry of the T-Gates themselves. Where floating gate

switches can be tuned to be a very low or high resistance with a minimum sized

transistor, resistance in a non-floating gate switch is governed by the W
L

ratio (being

inversely proportional to this W
L

ratio). This means that the switches themselves will

have to be larger than the floating gate switches. Lastly, the additional area needed

for the SRAM cells themselves could be prohibitive.

A hybrid version of these two approaches may be useful in the future with out-

side inputs going through SRAM/T-Gate switches and internal connections made by

floating gates. Evaluations of both of these approaches is ongoing.

6.4 Current Layout

To date two chips have been fabricated. The first is composed of 4 rows of 7 cells for

the dendrite matrix, and 4 rows of 1 cell for the output soma array. The layout of

the core of each node can be seen in Fig. 60. Each core cell contains the channels,

dendrite transistors, synapse elements, readout circuitry, and programming circuitry

needed to function. The readout circuits are 4 wide range amplifier (WRA) buffers.

There are only four nodes of the core cell that need to be read out. All of the WRAs

on a single row share a single output. A decoder selects which WRA is actually

output on the line. This same decoder (in conjunction with a column decoder) helps

to select which transistor is to be programmed. Each node is individually tunable.

The second chip is a larger version of the same architecture. It is fabricated

in a 0.35µ process. The die area of the chip is larger, and the feature size of the

components are smaller in this process. As a result, the FPNA is able to be generally

larger. This chip has 16 rows of 15 cells in the dendrite matrix, and 16 rows of 1 cell

for the output soma array. This layout can be seen in Fig. 62.
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Channel

Transistors

Dendrite

Transistors

Synapses

Figure 60: The core of the FPNA. This cell has all of the circuitry needed for the active channels,
the dendrite, the synapses, readout circuitry, and all of the programming. This cell has be designed
to be mirrored both horizontally and vertically to take advantage of area conserving symmetry. The
readout circuitry includes 4 wide range amplifier buffers, each which reads one node of the neuron.
They share an output, and they selected by the row decoder seen in Fig. 61. Programming circuitry
takes a major portion of the cell, but each individual transistor is individually selectable yielding an
matrix with each node being individually tunable. This cell is ≈ 90µ x 90µ in 0.5µ technology and
62µ x 62µ in 0.35µ.

It is plain from the layout shown in Fig. 61 that the support circuitry does not re-

quire the major portion of this chip. The array exists in approximately 560µmx730µm.
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Figure 61: Layout of the FPNA Ver1. There are four rows of dendrite segments and output
somas. The switches in between the rows are responsible for connecting/disconnecting external
inputs and outputs from the soma segments to individual synapses. The row decoder is used both
during run and program operation. During run mode, it selects which output is being looked at on
the readout circuitry. During program mode, it helps select which transistor is being programmed.
The column decoder only operates during program mode to complete the selection of the transistor
to be programmed. This chip is laid out in a 0.5µ process.

Larger chips require significantly more space for switches. For instance, the 0.35µ

process chip illustrated in Fig. 62 uses an area of 2300µ x 980µ for the main struc-

ture. However, only 960µ of the height is used for the core elements, or roughly 42%.

The 0.5µ process chip uses 360µ for the core elements or roughly 64%. As the number

of rows or inputs goes up, the percentage of the area used by the switches will also
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increase. This may become a significant problem as the size of the chips increases,

with more and more area being used for switches instead of the circuitry.

Figure 62: Layout of the FPNA Ver1.1. This is a larger version of the layout shown in Fig. 61.
This chip contains a 16x16 matrix of neuron cells. There are 8 external inputs. Each neuron cell
can take 24 inputs (8 for external inputs, and 16 from output somas) into either an inhibitory or
excitatory synapse. This chip is laid out for a 0.35µ process.

Future versions of the FPNA can explore other architectures, different switching

technologies, and other biasing methods. Also, as technology improves, the feature

sizes of the various transistors can be reduced yielding even more nodes per area of

die.
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CHAPTER VII

CONCLUSION

7.1 Completed Work

Completed work falls into several categories. First is the channel models. The two

models discussed have been designed and well characterized. They have been shown

to work, and they are well understood. Many chips have been designed around these

circuits, varying different aspects of them. Some of these variations have proven to

not be useful, but others have led to questions like what would happen if these circuits

were run faster than biology. An interesting question that certainly could be looked

at in the future.

Next, work was completed on the 2 dimensional dendrite circuit. This circuit has

shown that signals can be propagated within the dendrite structure, and that the

propagation is influenced by the conductance at each node. It also led to a discussion

about what types of computations may be taking place at the dendrite itself. An

early hypothesis lead to a discussion of the connection between dendrite processing

and Hidden Markov Models (HMM), [18].

A significant amount of effort has gone into understanding and characterizing the

process of indirect programming. Direct programming of Floating-Gate transistors

has been characterized before, and the physical processes to modify the charge stored

on the floating node are well understood by many. However, indirect programming

has never really been attempted before. Using one transistor to program another

is a complex process. In order to accurately predict where the current through one

of the transistors is, the voltages on those nodes needs to be able to be probed or

determined by some indirect method.
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Lastly the FPNA has been conceived and preliminarily designed. Although there

were some problems with the particular design shown here, the problem is with the

indirect programming scheme, not the individual parts of the FPNA. From other’s

work, we know that reconfigurable analog systems work, and we showed that each

of the individual pieces of the FPNA work. We also believe that the general con-

cept of this particular FPNA is good. Once more work is completed on the biasing

methodologies, we are fully convinced that this system will be a viable one.

7.2 Work Continuing

Again, there are several areas of research where this work will be continued. First is

that there are many other channel models that could be, and should be, developed.

Biologists have discovered dozens of different channel types, and many of these can be

modeled using variations of the circuits shown here. Others may require completely

new circuits, but each of the different channel types acts to change the dynamics of

the cell in a particular way. It is therefore quite important to be able to model these

dynamic changes if we are to have an extremely accurate model.

Second, there is much research to be done with regard to what kind of computation

the dendrites of a particular cell are performing. If a system is available in which

inputs/connectivity and the topology of the dendrite can be modeled, we can begin

to ask questions about what computation the cell is performing. The system will give

us a way to easily ask these questions, and to probe what the answers may be. Of

course, this begs the point that if we know what the computation is, and how the cell

is performing it, can we then begin to emulate neuromorphic solutions to some of the

complex solutions that were discussed earlier.

There is much work that needs to be done on the basic FPNA. Certainly there

are better architectures which would allow a similar amount of reconfigurability while

still providing better scalability. Mixed mode designs may significantly speed up the
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time to reconfigure the FPNA. Better biasing methods also need to be developed in

order to deal with the large number of biases on the chip.

The FPNA also opens up the door to quickly building systems that emulate bi-

ology. With this, again we can investigate the solutions that biology already has to

problems that we would like to solve. Since the circuit has been designed to operate

within biological voltages and currents, one could also imagine interfacing a design

such as this to an artificial limb to restore mobility to someone who has lost it. The

concepts behind the FPNA also may have a significant impact in the world of neural

networks, and actually designing large hardware based neural networks instead of just

software based ones.
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