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SUMMARY

This work is a first step towards a long-term goal of understanding compu-

tations occurring in the brain and using those principles to make more efficient ma-

chines. The traditional computing paradigm calls for using digital supercomputers to

simulate large scale brain-like neural networks resulting in large power consumption

which limits scalability or model detail. For example, IBM’s digital simulation of a

cat brain with simplistic neurons and synapses consumes power equivalent to that

of a thousand houses! Instead of digital methods, this work uses analog processing

concepts to develop scalable, low-power silicon models of neurons which have been

shown to be around ten thousand times more power efficient. This has been achieved

by modeling the dynamical behavior of Hodgkin-Huxley (H-H) or Morris-Lecar type

equations instead of modeling the exact equations themselves. In particular, the two

silicon neuron designs described exhibit a Hopf and a saddle-node bifurcation. Con-

ditions for the bifurcations allow the identification of correct biasing regimes for the

neurons. Also, since the hardware neurons compute in real time, they can be used

for dynamic clamp protocols in addition to computational experiments.

To empower this analog implementation with the flexibility of a digital simula-

tion, a family of field programmable analog array (FPAA) architectures have been

developed in 0.35 µm CMOS that provide reconfigurability in the network of neu-

rons as well as tunability of individual neuron parameters. This programmability is

obtained using floating-gate (FG) transistors. The neurons are organized in blocks

called computational analog blocks (CAB) which are embedded in a programmable

switch matrix. An unique feature of the architecture is that the switches, being FG
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elements, can be used also for computation leading to more than 50,000 analog pa-

rameters in 9 sq. mm. Several neural systems including central pattern generators

and coincidence detectors are demonstrated. Also, a separate chip that is capable of

implementing signal processing algorithms has been designed by modifying the CAB

elements to include transconductors, multipliers etc. Several systems including an

AM demodulator and a speech processor are presented.

An important contribution of this work is developing an architecture for program-

ming the FG elements over a wide dynamic range of currents. An adaptive logarithmic

transimpedance amplifier is used for this purpose. This design provides a general so-

lution for wide dynamic range current measurement with a low power dissipation and

has been used in imaging chips too.

A new generation of integrated circuits have also been designed that are 25 sq.

mm in area and contain several new features including adaptive synapses and support

for smart sensors. These designs and the previous ones should allow prototyping and

rapid development of several neurally inspired systems and pave the path for the

design of larger and more complex brain like adaptive neural networks.
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CHAPTER I

WHY RECONFIGURABLE SILICON ?

Pioneering work in modeling the dynamics of a biological neuron was done by Hodgkin

and Huxley in the 1950’s. Since then mathematical models of varying complexities

have been proposed and studied, facilitated largely by the rapid growth of digital

computers. However, simulating a large number of these “mathematical” neurons

is still a daunting task, especially when there are multiple time scales involved in

the differential equations (stiff equations). For example, the Hodgkin-Huxley (HH)

equations for dynamics of one sodium and one potassium channel are ‘stiff’ for slow

inactivation and fast activation of sodium conductance. Hence, there is ample reason

to search for dedicated silicon implementations that efficiently perform this compu-

tation. Among the possible silicon implementations, the analog one is preferable over

the digital one for several reasons. Firstly, since the biological system being modeled

is a continuous-time one, an analog implementation is naturally better suited because

it avoids errors due to discretization, and possible convergence issues. Secondly, with

the progress in semiconductor technology, power supply levels have become similar

to biology opening a new possibility of the same silicon model to interface with live

neurons [70] [56]. In this context, the analog implementation has the possibility of

being much smaller, and less power-hungry than the digital, making it also amenable

for implants. Hence, there has been a trend towards implementing the modeling

equations on an analog platform, the earliest instance of which dates back to Richard

Fitzhugh in the 1960’s. However, the true power of a silicon neuron implementation is

not utilized unless arbitrary networks composed of these neurons can be constructed
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at will. This typically requires fabrication of new IC chips that is a costly, time con-

suming and error-prone process. Also, one IC has at most a few possible networks.

The solution to this problem is to fabricate a reconfigurable silicon neural system that

has the capability of creating arbitrary interconnections. Going one step further, it

would be even more useful to have a system that can be programmed on the fly based

on external signals. This would provide an efficient means of implementing feedback

in neural systems based on signals from both the external world and other neurons.

In this research, a framework for generating silicon neuron models with desired

dynamics and their integration into a reconfigurable IC is explored. Silicon channel

models, much more compact and power efficient than earlier ones, are developed by

using bifurcations of the traditional neuron models as a key. A Field Programmable

Analog Array (FPAA) type architecture for exploring neural dynamics of different

networks is also developed. The goal of this research is to develop a dynamical

systems approach for creating silicon neuron models and to architect a system of

neurons where networks of arbitrary connections can be made and modified based on

external or feedback signals.

The impact of this work will be observable at many levels. Firstly, the framework

for reconfigurable systems that is developed can be easily modified for other appli-

cations like analog signal processing or sensor interfacing. Secondly, this framework

allows one to study a number of different aspects of neural systems. While the de-

tailed channel models allow mimicking the real biophysics of nerve cells, one can also

implement simpler neuron models and modify the interconnections to study the im-

portance of the topology of the network. This architecture also allows one to explore

answers to the question “How important is the dynamics of individual cells to the

behavior of the network?” Solving this question in hardware is more useful as the

presence of noise naturally eliminates the solutions that are not robust (theoretically

analyzing the situation needs knowledge of stochastic differential equations, which
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are intractable if the network is anything beyond a few neurons). Also, using floating

gates for real-time adaptation enables realistic time constants on the order of tens of

seconds. This will allow systems to interact with real neurons in a closed loop. Thus,

it is obvious that this work has the potential to open up several avenues for research

and enable scientists to explore many interesting questions.

This thesis is organized into nine sections, six of which have each resulted in at

least one conference publication and at least one journal publication (published or

in review). Sections II and III describe two silicon neurons that exhibit two differ-

ent co-dimension one bifurcations - Hopf and Saddle-node. Conditions for biasing

these circuits in the correct regime are developed and non-linear dynamical analysis

of their properties are presented. This unique methodology of bifurcation-based sil-

icon neuron design has resulted in compact designs with one of the lowest reported

power dissipation. Section IV details a field-programmable analog array (FPAA)

architecture for integrating these neuron designs into a larger network with flexible

topology and programmable interconnection (synaptic) strength. The FPAA archi-

tecture developed is general and can be used for other applications by replacing the

neuron circuits with other elements (transistors, amplifiers etc). Section V describes

some larger neural systems compiled on an FPAA for spiking neural networks while

section VI presents an FPAA for analog signal processing applications. In section

VII, a more detailed description of a floating-gate (FG) device (the circuit element

responsible for this reconfigurability) and an architecture to modify the charge on

its gate is presented. Section VIII details one particular circuit in the FG program-

ming architecture that is essential for measuring the current in the FG device. The

logarithmic current to voltage converter developed in this work utilizes adaptation

to reduce power consumption and has been used in other designs such as imagers.

Finally, some of the ongoing and future work regarding smart sensors and run-time

adaptation in FPAAs is presented in section IX along with conclusions.
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CHAPTER II

A HOPF NEURON

In this chapter, a silicon neuron that exhibits Hodgkin-Huxley type dynamics is mod-

eled. As mentioned earlier, there have been multiple instances of modeling Hodgkin-

Huxley equations in silicon. Almost all of the implementations use the Hodgkin-

Huxley (H-H) formalism, some of them using a set of equations simpler than the

original H-H equations [18] [77] while others have modeled in detail the full set of

equations [69] [95] [2] [40] [96].

The silicon neuron presented here uses a MOSFET to represent a channel [37]

since carrier transport phenomenon are similar in both. Different control amplifiers

are used to control the gate of these “channel” transistors so that the voltage clamp

responses of the individual channels resemble biology. A combination of one sodium

and one potassium channel makes a basic neuron as shown in Fig. 1. While [37]

demonstrated voltage-clamp data similar to biology, we present analytical and exper-

imental bifurcation diagrams with varying input current that matches biology and

the H-H model. Also the analytical framework developed in this chapter allow easy

identification of valid biasing regimes of the circuit. Instead of proving the topo-

logical equivalence to H-H equations, we concentrate on the bifurcations exhibited

by this circuit and use it as a metric to validate the efficacy of this model. An in-

troduction to this approach was presented in [13] where biasing conditions for Hopf

bifurcations were explored. This chapter presents a complete analysis of the center-

manifold reduction, bifurcation diagrams based on continuation, a description of the

designed chip, modifications to the circuit for independent parameter control, and

measurement results from a silicon prototype.
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Figure 1: A Neuron with two channels: A simple neuron with one sodium channel
(MNa) and one potassium channel (MK). The sodium channel transistor is controlled by
an amplifier with bandpass characteristics giving it the fast activation and slow inactivation
dynamics. The potassium channel transistor is controlled by a low-pass amplifier providing
it with slow activation.

The approach of studying bifurcations is useful because it is believed that com-

putational properties of neurons are based on the bifurcations exhibited by these

dynamical systems in response to some changing stimulus [53] [87]. Thus, it is likely

that all models which present the same set of bifurcations should be equally good in

analyzing and modeling neurons. For example, any neuron exhibiting a Hopf bifurca-

tion can easily signal when a stimulus crosses a threshold by initiating a spike-train,

while those exhibiting saddle node bifurcations can encode the strength of a stimulus

in their firing rate. Hence, by showing that this silicon neuron has bifurcations similar

to a certain class of biological neurons, we can claim that the silicon neuron can also

perform similar computations.

A similar approach has been employed in [60] but they do not explore the prop-

erty of excitation block. In fact, we propose an alternate dynamic explanation of the

excitation block property. Contrary to the supercritical Hopf bifurcation that causes

this property in the traditional H-H model, our model shows a subcritical Hopf bifur-

cation and a fold bifurcation with decreasing limit cycle amplitude. Experimentally,
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Figure 2: Relation of parameters to biology: Simulations of voltage clamps of the
numerical model to show relationship of the model parameters to biological properties of
the neuron. In each case, a voltage step of 75 mV was applied for different parameter
values. (a) Effect of increasing Iτn is to make the activation of potassium faster. (b)
Increasing Iτh has the effect of increasing inactivation of sodium current which reduces the
maximum sodium current and increases the speed of inactivation. (c) Increasing β increases
the maximum value of sodium current during an action potential.

it is impossible to distinguish the two mechanisms due to ambient noise which pushes

the solution into the basin of attraction of the decreasing amplitude limit cycle and

thus the bifurcation appears to be a supercritical Hopf. The details of the circuit and

its dynamics are described in the following sections.
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2.1 Circuit Operation and Model

In this section, the operation of the circuit is discussed and a mathematical model for

its analysis is developed. We also mention the relation between the model parameters

and biological quantities. As shown in Fig. 1, the channels consist of a channel

transistor and a control amplifier. The membrane voltage Vmem varies between ENa

and EK (similar to sodium and potassium reversal potentials) which have a difference

of 200mV that is close to biology. The sodium amplifier is bandpass (since both

activation and inactivation are present [37]) with a gain set to approximately −8 by

the ratio of the capacitors CNa and CK . Iamp (current in M2) is responsible for the

activation of the sodium channel and Iτh (current in M3) provides inactivation. M3

acts as a short between the nodes Vout and Vfg at DC and helps set their equilibrium

values. In some sense, it acts as a non-linear resistor in feedback across the amplifier.

The power supply for the sodium amplifier, Vamp along with the bias current Iamp

sets the DC operating point for the node Vout. This in turn fixes a bias current, INa0

through MNa. The potassium channel is controlled by a lowpass amplifier (since it

is only activating) with the filter’s corner frequency being set by Iτn, the current

through M4. M4, like M3 acts as a non-linear resistance. Other non-linear resistors

like an NMOS or a diode connected MOS can also be used and are similar in the

small-signal sense but give rise to different large-signal dynamics. Interestingly, all

those non-linear resistors share the same linearized form and hence the existence of

a Hopf bifurcation, which is only dependent on the Jacobian, is maintained in all

implementations. The only difference is in the type of Hopf bifurcation due to the

higher order terms in the normal form. However, we shall not discuss more about that

in this chapter. The channel currents from MNa and MK are added on the membrane

capacitor, Cmem on the node Vmem. An external stimulus current, Iin is considered as

a bifurcation parameter.

The generation of an action potential consists of the following phases: a small
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positive perturbation on Vmem causes the sodium amplifier to pull down the gate of

MNa if the perturbation was fast enough. This leads to an increase in the sodium

channel current. The perturbation also couples onto the gate of MK through the

capacitor CK and thus the increase in potassium current is limited. Hence the net

positive current increases Vmem more by positive feedback. This is the upstroke of

the action potential leading to depolarization of the membrane. After some time, the

sodium current decreases because of the ohmic effect of MNa, saturation of output

of sodium control amplifier and eventual pull-up by Iτh. Also, the potassium current

increases due to discharge of gate of MK by Iτn. The decrease of sodium and increase

of potassium currents lead to a decrease in Vmem which is again boosted by the positive

feedback of the sodium control. This change also couples onto the gate of MK pushing

it below equilibrium value leading to hyperpolarization of the membrane which is then

eventually pulled up due to recovery by Iτn. We now develop the dynamical equations

for the system by using KCL at the Vmem, Vk, Vfg and Vout nodes respectively. The

variables x, n, h and m are defined as follows:

x =
δVmem

UT
;n =

δVk

UT

h =
δVfg

UT
;m =

δVout

UT
, (1)

where the δV variables represent changes in the voltages from steady state and UT is

thermal voltage. Notice that there are four variables as in the H-H equations which

is natural as both of them model the same system.
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Figure 3: Effect of varying parameters: Condition for a Hopf bifurcation is a pair
of imaginary eigen-values with zero real part. The zero crossings of Γ in eq. 10 provide
necessary conditions for such a case when (a) Iτh is varied (b) Iτn is varied and (c) Iamp is
varied. We want to bias the neuron such that we get at least two such intersections which
could lead to two Hopf bifurcations. From the figures we see that if Iamp is large enough it
does not affect the intersections much. This is what you would expect as the “m” variable
in H-H equations is considered much faster than “n” or “h” in all analysis.

UT ẋ =
INa0

Cmem
e−m{1 − (1 +

IIN

INa0
)ex−4} +

Iin
Cmem

− IK0

Cmem
ex−n

UT ṅ = UT ẋ−
Iτn

CK

f(n)

UT ḣ = UT ẋ+
Iamp

8CZ
{e−h − 1 + e−m−β}

UT ṁ = UT ẋ+
1.125Iamp

CZ
{e−h − 1 + e−m−β} +

Iτh

CZ
g(h,m) (2)

9



where f and g represent the currents through M4 and M3 respectively. This gener-

alization allows for analyzing a general non-linear resistor in that place. Here, the

functions are considered to be f = en − 1 and g = eh − em since one terminal of M4

is at a fixed potential while both terminals of M3 can vary. In this equation, IIN is

the average or DC component of Iin, the total input current. Also, note the term

1 + IIN

INa0
ex−4 in the first equation which models the sodium transistor entering ohmic

region which is one essential term for the excitation block property described later.

To derive this term, we assume that Mk is in saturation to obtain an expression for

Vmem, the deviation of the DC voltage at the membrane from its value Vmem0 when

IIN = 0:

INa0 + IIN = INa0e
Vmem/UT

⇒ Vmem = UT log(1 +
IN

INa0

) (3)

where INa0 is the bias current in the sodium channel corresponding to Vmem0. The

variable x represents changes from this DC level defined by Vmem. Now, assuming for

simplicity that κ, the coupling of the gate onto the channel of the transistor is 1, the

equation for the sodium current may be derived as:

INa = I0e
−

Vout
UT (e

ENa
UT − e

Vd
UT )

= INa0e
−m(1 − e

−ENa+Vmem0+Vmem+δV mem

UT ) (4)

where INa0 is the DC current in the sodium channel ignoring the effect of the drain

of the transistor and Vd is the drain potential of MNa. Now assuming that at Iin = 0,

ENa − Vmem0 = 4UT , and using 3, we get:

INa = INa0e
−m(1 − e

Vmem
UT ex−4)

= INa0e
−m(1 − (1 +

IIN

INa0
)ex−4) (5)

Since we are concerned with only static bifurcations of the equilibrium, we consider

only the case where the input current is DC, i.e. Iin = IIN . Henceforth, only the term
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Iin is used in the chapter. It is also interesting to note that the voltages in this circuit

are normalized to the thermal voltage. This seems very natural given the fact that

the sodium and potassium potentials are also proportional to the thermal voltage

times logarithm of ratio of ionic concentrations. Ohmic effects of MK and M1 are

ignored for this particular case but they are modeled for M2 through the parameter

β. These are important to determine the maximum sodium conductance during an

action potential.

The effect of these mathematical parameters on the biological function of the

neuron can be understood by considering their effects on voltage clamp experiments.

As an example, Fig. 2 shows a simulation of a voltage clamp for a voltage step of

75 mV with different parameter values in eq. 2. The nominal parameter values

for this simulation are Iτh = 8pA, Iτn = 8pA, Iamp = 150pA,Cz = .08pF, Ck =

0.5pF, β = 10, UT = 0.025, IK0 = 5nA, INa0 = 0.05nA. In Fig. 2 (a), Iτn is varied

from 0.5 − 1.1pA (keeping the others at their nominal values) showing an increased

speed of activation of potassium channel. In Fig. 2 (b), Iτh is varied from 0.5 - 1.1 pA

leading to faster inactivation of sodium channels. Finally, 2 (c) shows that increasing

β increases the maximum sodium conductance during an action potential. Among

the other parameters, increasing Iamp increases the speed of sodium activation, while

INa0 and IK0 determine the baseline current levels in the channels at rest.

To reduce the number of parameters, we do another re-normalization as follows:

τ =
tINa

CmemUT

C ′
i =

Ci

Cmem

I ′j =
Ij
INa0

y = n− x, z = h− x, w = m− x, (6)
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Figure 4: Measured I-V characteristic: The I-V characteristic of the neuron shows
monotonic behavior and thus has one fixed point. The equilibrium voltage increases with
increasing Iin.

and then dropping the primes for economy of notation we get:

ẋ = e−(w+x){1 − (1 + Iin)e
x−4} + Iin − IK0e

−y

ẏ = − Iτn

CK
{ey+x − 1}

ż =
Iamp

8CZ
{e−(z+x) − 1 + e−(w+x+β)}

ẇ =
1.125Iamp

CZ

{e−(z+x) − 1 + e−(w+x+β)}+

Iτh

CZ
{ez+x − ew+x} (7)

where IK0 = (1 + Iin)(1 − e−4) includes the effect of input stimulus.

2.1.1 Finding Fixed Points

The first piece of information one desires to know about a dynamical system are its

attractors and invariant sets, the simplest of which are its equilibria or fixed points.

The fixed points of (7) are found by setting the RHS of the equations to zero which

gives the origin as an unique fixed point. An easy way of finding the equilibria is to

exploit the fact that a fixed point corresponds to zero current in all the capacitors.

Thus, we need to sweep Vmem and find the steady state current through the voltage
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Figure 5: Spectrum of the stability matrix: The eigen-values of the stability matrix
are plotted with increasing Iin for Iτh

= Iτn = 0.8, Iamp = 15. The figure on the right shows
a closeup of the complex eigen-values demonstrating two Hopf bifurcations.

source. The number of zero crossings of this I-V curve give the number of equilibria.

Fig 4 shows measured I-V characteristic. The I-V characteristic is monotonic since

at steady state, the voltage at the gates of MNa and MK are constant, reducing it

to the I-V curve of a source follower. It should be noted that the increase of resting

membrane potential with increasing stimulus current that can be seen in Fig. 4 is not

obtained theoretically because of the way we define IK0. Finding the I-V characteristic

is an useful method in general for finding equilibria of an unknown circuit, especially

when there are multiple equilibria (this neuron has multiple equilibria in the limit

Iτh → 0).

2.1.2 Conditions for Hopf Bifurcations

Since Class 2 excitability of neurons is defined by spontaneous firing with large ampli-

tude and non-zero frequency in response to an input current stimulus (that is larger

than a certain critical value), it can be related to subcritical Hopf bifurcations. Hence,

to prove that the silicon neuron possesses similar dynamical properties, we need to

find conditions for the existence of a similar bifurcation. In addition, the limit cycle

amplitude reduces with increasing Iin and the equilibrium regains stability through
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a Hopf bifurcation which may be subcritical or supercritical. This phenomenon is

termed excitation block and observed in layer 5 pyramidal neuron of rat’s visual

cortex [55].

The relevant conditions for Hopf bifurcation in our case may be stated as follows:

(1) Two of the eigen-values of the stability matrix of the equilibrium must be complex

conjugates with zero real part and non-zero imaginary part at the bifurcation.

(2) The derivative of the real part of the complex eigen-values with respect to the

parameter must be non-zero at the bifurcation [44]. In our case, we want the resting

state to be stable before the bifurcation. Hence, the two real eigen-values not involved

in the bifurcation will be negative. Using these conditions, we want to find the

region of parameter space where our circuit can produce two Hopf bifurcations with

increasing Iin.

To use the above conditions, we equate the characteristic polynomial of the sta-

bility matrix of the equilibrium to the desired form with two real and two complex

eigen-values with zero real part at equilibrium:

x4 + a3x
3 + a2x

2 + a1x+ a0 = (x2 + ω2
0)(x

2 + (λ1 + λ2)x+ λ1λ2), (8)

where −λ1 and −λ2 are the real eigen-values.The variables (a0, a1, a2 and a3) can be

solved as follows:

a3 = λ1 + λ2

a2 = λ1λ2 + ω2
0

a1 = ω2
0(λ1 + λ2)

a0 = ω2
0λ1λ2 (9)
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Then the conditions for Hopf bifurcation become:

a3 = λ1 + λ2 > 0

a1

a3
= ω2

0 > 0

Γ = a2 −
a1

a3

+
a0a3

a1

= 0 (10)

These conditions are necessary but not sufficient since the condition for non-zero

derivative of the real part of the complex eigen-values needs to be appended. The

condition on Γ exists as the four variables a0, a1, a2 and a3 are each expressed in terms

of lesser number of parameters (λ1, λ2 and ω0). Fig. 3 shows plots of Γ with varying

Iin for different Iτh, Iτn and Iamp. The zero-crossings of these curves along with the

first two conditions in (10) give possible bifurcation points. In every case, we can see

some sets of parameters do result in two zero crossings of Γ indicating possible valid

biasing regimes. Choosing one such set of parameters (Iτh
= Iτn = 0.8, Iamp = 15),

the eigen-values of the Jacobian were computed for different stimulus current values.

Figure 5 depicts a plot of the eigen-values. The points where the curves cross the

imaginary axis correspond to the two Hopf bifurcations with changing Iin).

2.2 Non-linear dynamics in the Neuron

In the previous section, we analyzed the conditions for Hopf bifurcations to determine

the regions in the parameter space which lead to the possible existence of two Hopf

bifurcations. In this section, the response of the system is studied when it is biased

in such a desired regime.

To observe the bifurcations in the neuron circuit, a slowly increasing ramp of

current was injected into the membrane in a SPICE simulation. It should be noted

here that a slow ramp allows the system to stay in quasi-steady-state thus showing

bifurcations of the equilibrium. On the other hand, pulse or step inputs have different

properties which are discussed later. Fig. 6 shows the result of the SPICE simulation.
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Figure 6: Bifurcation in SPICE simulation: Simulation of the neuron with Iin being
a slowly increasing ramp. We can clearly see the loss of stability of the equilibrium and
spontaneous oscillations at around Iin = 2nA. At around Iin = 120nA the equilibrium
becomes stable again. The closeup picture of the bifurcation around Iin = 120nA shows the
amplitude of oscillations gradually reducing.
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Iin

Figure 8: Bifurcation diagram by Continuation: The bifurcation of the theoretical
model is observed by continuation using AUTO. Both the bifurcations are seen to be sub-
critical Hopf and the limit cycles appear and disappear by fold bifurcations. As the limit
cycle amplitude reduces before the second fold bifurcation, it seems like a supercritical Hopf.
The negative peak of the limit cycle is very large because the ohmic effect of transistor MK

has been neglected in the model equations as they are not essential for the bifurcations.
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Equilibrium

Stable
Limit Cycle

Unstable
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Figure 9: Bifurcation diagram for HH model: The Hopf bifurcation for smaller currents
is subcritical. The limit cycle appears by a fold bifurcation and disappears by a supercritical
Hopf. The reduction in amplitude before the subcritical Hopf is similar to Fig. 8.

The parameters for the simulation were Iτh
= Iτn = 0.8, Iamp = 15. The circuit

exhibits spontaneous large oscillations when Iin is large enough, a classic case of

Class 2 excitability. A zoomed picture near the critical value of Iin shows that right
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after the equilibrium loses stability, large amplitude limit cycle solutions emerge. At a

much larger value of the stimulus the equilibrium becomes stable again. This happens

since the resting potential becomes close to ENa making MNa ohmic. From a small-

signal perspective, the positive feedback loop of the sodium amplifier loses its gain

in comparison to the negative feedback potassium channel and is not able to sustain

oscillations. Thus, the ohmic regime of MNa gives the behavior of the excitation

block. A closeup of the oscillation near the bifurcation at higher currents shows the

amplitude of the limit cycle gradually reducing before it disappears.

To verify that the mathematical model behaves in a similar manner compared to

the circuit, the differential equations were numerically integrated to create a similar

bifurcation diagram as shown in Fig. 7. To generate this diagram, the equilibrium for

different Iin values was perturbed and the maximum and minimum of the resulting

solution is plotted. It should be noted that the two bifurcation diagrams are different

since, in Fig. 6 the limit cycle amplitude reduces before it collapses onto the equilib-

rium, while this is not visible in Fig. 7. From Fig. 7 the Hopf bifurcation at higher

currents seems to be subcritical while it seems to be supercritical from the SPICE

simulation. To rigorously understand the nature of the bifurcation, we project the

system on a suspended center manifold [44] [31] at equilibrium corresponding to the

higher current resulting in the normal form :

ṙ = r(−0.03µ− 0.006µ2 + (0.22 + 0.01µ)r2)

θ̇ = 6.5 + 0.1µ+ (−0.05 − 0.003µ)r2, (11)

where µ = Iin − Iin,b is the deviation of Iin from its critical value. The method

for deriving this form is outlined in the appendix along with its application to the

other Hopf bifurcation at lower currents. The cubic coefficient in the equation for

amplitude is positive at bifurcation which indicates that the r = 0 solution is unstable

at bifurcation and there exists an unstable limit cycle prior to bifurcation. This
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Figure 10: Effect of Current impulses of different size: Three current pulses of
increasing amplitude were used to stimulate the neuron. While in first two cases the neuron
returned to resting state, in the third case it burst into oscillations. This shows co-existence
of a stable equilibrium and limit cycle.

conclusively shows that the bifurcation was indeed a subcritical Hopf.

To understand the reason for the apparent anomaly between the numerical re-

sults and the SPICE simulation, one needs to consider the bifurcations of the limit

cycles separately. We used continuation of solutions in AUTO [35], a freely available

mathematical package that can produce bifurcation curves for equilibria as well as

for periodic orbits, to get the complete bifurcation diagram of the system. Figure 8

shows the resulting bifurcation diagram where solid and dashed lines represent stable

and unstable equilibria respectively while solid and dashed circles denote stable and

unstable limit cycles. It should be noted that the amplitude of the limit cycles are

much larger on the negative side as the ohmic effect of MK was not considered in

the model as it was not found necessary for the bifurcation. It can be seen that the

limit cycles are born initially through a fold bifurcation of cycles. Both the Hopf

bifurcations are subcritical as they involve an unstable limit cycle. The amplitude

of the stable limit cycle keeps on reducing until it coalesces with the unstable limit

cycle in another fold bifurcation. For the ramp experiment in SPICE, the second
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bifurcation we see is actually the fold bifurcation of the limit-cycle. The Hopf bi-

furcation of the equilibrium occurred earlier but was not visible as the solution was

in the basin of attraction of the limit-cycle. The unstable limit cycle acts as the

threshold or basin boundary between the basins of attraction. In fact, this might be

an alternative dynamical mechanism for the excitation block because in experiments,

the subcritical Hopf bifurcation would not be visible since the basin of attraction of

the equilibrium is much smaller than that of the limit cycle. So the fold bifurcation

of the decreasing-amplitude limit cycle appears as supercritical Hopf bifurcation. For

a comparison with HH model, its bifurcation picture is also shown in figure 9. The

origin is made the equilibrium by a change of variable. It can be seen that the limit

cycle is born by a fold bifurcation but terminates in a supercritical Hopf bifurcation.

But the qualitative nature of the plots are similar as the reduction in amplitude of

the limit cycle before its disappearance appears in both pictures.

Another interesting phenomenon because of the subcritical Hopf bifurcation is the

presence of hysteresis-that is the neuron does not stop spiking even if Iin is reduced

below the critical bifurcation value as its state is in the basin of attraction of the limit

cycle. Thus, for a range of parameters, we have co-existence of two stable attractors,

a limit cycle and an equilibrium. The unstable limit cycle acts as the threshold or

basin boundary between their basins of attraction. The presence of the stable limit

cycle is also observable in SPICE simulations. We conduct a simulation where Iin is

a brief pulse of current. This pulse approximates a delta function, whose effect is to

change the initial condition of the system by the area under its curve. Thus, the net

amount of charge in the current pulse produces a change in voltage, ∆Vmem on Cmem.

Fig. 10 shows the effect of different size current impulses on the neuron. Smaller

current pulses do not push the initial condition beyond the basin of attraction of the

stable equilibria, but a large pulse shifts the initial condition beyond the unstable

limit cycle leading to spontaneous oscillations.
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Figure 11: Die photo: A 1.5mm×3mm test chip fabricated in 0.35 µm CMOS. The chip
has one sodium and one potassium channel and peripheral instrumentation to read out
signals.

2.3 Hardware Platform

A test chip having one sodium and one potassium channels was used to test the

bifurcation structure of the system. Figure 11 shows the photograph of the fabricated

IC in TSMC 0.35 µm CMOS process. In the chip, the input current stimulus was

created by varying the gate voltage of a PMOS transistor connected to Vmem. In this

chip, the parameters were set using off-chip DACs. The output voltages were buffered

out of the chip using voltage buffers. Also, there is a provision for configuring the

channels for measuring voltage clamps.

An important aspect of the design was the ability to easily control the parameters

of the equations independent of each other. Independent control is not enabled in the

standard circuit shown earlier in Fig. 1. Fig. 12 shows a partial schematic of the chip

to illustrate the solution to this issue. In the figure, transistors Mj’ are of the same

dimensions as Mj. If Iamp is changed, the equilibrium gate voltage of M1 changes

and hence Itauh changes too. A similar problem occurs for Itaun when Vgk is modified

to change IK0. To circumvent this problem, transistors M1’ and M2’ are used to

recreate the bias voltage at the gate of M1. This voltage is buffered onto the source

of M3’ which now produces a copy of Iτh. Thus, Vτh can now be changed to set the
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Figure 13: Measured ramp experiment: Measured data from an experiment where the
input current is slowly increased in a linear fashion. The negative spike marks the beginning
of the ramp where the current was reset after the last ramp. After a certain critical current
the neuron starts oscillating. At higher currents the amplitude of the limit cycle reduces
and finally the equilibrium becomes stable. This is very similar to Fig. 6.

desired value of Iτh even if Iamp or Vamp are varied. A similar case arises for Iτn. The

multiplexors allow the circuit to be configured for voltage clamp (b0 is set high) or

current clamp (b0 is set low). When configured in the voltage clamp configuration,

the parameters INa0 and IK0 can be measured and set appropriately.
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Figure 13 shows measured data from this chip. The bifurcations were observed

by ramping the input current up in a linear fashion by sweeping the gate of the

PMOS in a logarithmic fashion. The initial negative spike marks the start of the

ramp where the current was reset from the end of the previous ramp. As expected,

we see two bifurcations by which the neuron starts and stops oscillating. As expected,

the first bifurcation is a subcritical Hopf bifurcation. The second bifurcation looks

like a supercritical Hopf bifurcation because noise caused the system to oscillate even

though the equilibrium might have become stable, which was discussed earlier. This

looks slightly different from Fig. 6 as the initial and final currents and the rate of

increase of current were different in measurements and simulations. However, the

important point is the qualitative similarity in the two figures.

2.4 Conclusion

In this chapter, we modeled a silicon neuron and demonstrated that it exhibits

Hodgkin-Huxley type dynamics. There have been multiple instances of modeling

Hodgkin-Huxley equations in silicon. Almost all the implementations use the Hodgkin-

Huxley (H-H) formalism, some of them using a set of equations simpler than the

original H-H equations [18] [77] while others have modeled in detail the full set of

equations [69] [95] [2] [40] [96]. However, the principle of this design is based on sim-

ilarities between voltage clamp experiments on transistor channels and biological ion

channels [37]. We extend the work in [37] that showed single action potentials and

present a detailed non-linear dynamic analysis of the neuron circuit for different bias

regimes. In particular, we show a subcritical Hopf bifurcation which is the trademark

of Class 2 neural excitability (observed for example in brainstem mesencephalic V

neuron [55]). Also, we demonstrate a bifurcation mechanism involving subcritical

Hopf bifurcation and a fold limit cycle bifurcation that models the excitation block
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phenomenon observed in many neurons such as layer 5 pyramidal neuron of rat’s vi-

sual cortex [55]. Hence this chapter strongly validates the method of using transistors

to model channels by showing the qualitative similarity in the dynamical behavior of

this circuit with biology across parameter ranges of interest.

This work enables finding the proper biasing regime for this circuit, a non-trivial

task because of the large dimensionality of the parameter space. Also, this is the first

low-power on-chip implementation of the circuit as [37] mentions using large bias

currents and off-chip capacitors. Now the power of this compact implementation can

be exploited by integrating multiple such channels on a chip together with synapses

and dendrites. Next, a neuron design that exhibits saddle-node bifurcation will be

discussed.
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CHAPTER III

A SADDLE-NODE NEURON AND ITS NULLCLINE

BASED DESIGN

A classification of neural spiking was proposed by Alan Hodgkin [48] where he clas-

sified neurons in three broad categories. The first two were capable of repetitive

spiking. Type I neurons possessed F-I (current-frequency) curves that approached

zero, i.e. the neurons were capable of firing at large as well as arbitrarily low frequen-

cies, while type II neurons transitioned from silence to firing at an arbitrary non-zero

frequency. Subsequent analysis, put forward in [87] and summarized in [55] has shown

that these two mechanisms ubiquitously describe nearly all spiking neuron models.

Furthermore, the type I characteristic is uniquely associated with a saddle-node bifur-

cation at the transition from silence to spiking, and the oscillation (spiking) responds

to depolarizing perturbations with a phase-advance. The type II characteristic is

uniquely associated with a Hopf bifurcation, and the oscillation (spiking) responds to

a depolarizing perturbation by either advancing or delaying the oscillation, depending

on where in the limit cycle the input arrived.

All the current silicon designs typically use a neuron exhibiting class I behavior.

Most of these designs have used the integrate and fire (I&F) model and its variants

because of its simplicity. These phenomenological models however fail to capture

many properties of actual conductance-based neurons like phase response curves. On

the other hand, some designs have faithfully replicated full Hodgkin-Huxley (H-H)

dynamics [89, 95, 115] resulting in large footprints for each neuron.

Our silicon neuron with class I membrane dynamics lies in a space between these
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dx/dt = f(x,y,z,a,b) 
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Figure 14: Silicon neuron design: (a) The methodology for creating silicon neurons that
we use involves designing for certain desired bifurcations. (b) Our concept of silicon neurons
has transistors modeling biological channels (sodium, potassium etc.) with amplifier circuits
sensing the membrane voltage and changing the conductance of the channel transistors
appropriately.
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Figure 15: Transformation from Hopf neuron:(a) Removing the transistor responsible
for inactivation of the sodium current results in a persistent sodium current which can
produce multiple equilibria. A leak channel is added to create the cubic nullcline. Iamp

is increased to allow for approximating sodium activation as instantaneous. The modified
elements are encircled. (b) Nullclines of the new neuron structure shows three equilibria,
two of which are stable and one is unstable. The equilibrium at high membrane potentials is
not found in biology. Here, x and n signify normalized membrane potential and potassium
activation respectively.

two. Figure 14(a) demonstrates the basic philosophy: the differential equations mod-

eling ion-channel dynamics in a neuron exhibit certain bifurcations which are respon-

sible for its computational properties [55]. We make circuits that exhibit similar

bifurcations but do not necessarily model the original differential equations. This

allows us to create more compact and power-efficient designs. Figure 14(b) shows a

schematic of the neuron where a transistor is used to model the biological channel
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while a separate circuit senses the membrane voltage and applies the appropriate volt-

age on the gate of the channel transistor to modulate its conductance. The feedback

circuit can be designed based on the desired bifurcation sequence (which implies a cer-

tain set of associated phenomenon like positive feedback, phase response curve [55])

or on the voltage clamp responses of individual channel modules. The earlier chapter

and associated paper [13] demonstrated class II excitability using a similar approach.

Here, we derive the circuit for class I membrane dynamics starting from the earlier

design in [13, 37] and also develop methods for algorithmically biasing the circuit in

the correct regime based on nullclines (curves along which the vector field is zero

horizontally or vertically) of the reduced two-dimensional model. The circuit we

present for extracting the nullclines coupled with a method for setting local biases

(e.g. floating-gates) in a neuron array shall also allow us to reduce mismatch induced

variations in the neuron array. We describe these features in the following sections.

3.1 Circuit Operation and Model

In this section, we start from the Hopf neuron model presented earlier [13] and follow

a route of reducing this model to one that can exhibit saddle-node bifurcations (we

call it a ‘saddle-node neuron’). We deduce theoretically that changes have to be

made to the K-channel structure to get the desired behavior. The existence of the

oscillations can be understood from studying the nullclines for the model.

3.1.1 Hopf neuron and its modification

The circuit on the left in Fig. 15(a) shows the Hopf neuron that we have presented ear-

lier. We consider these circuits to be composed of individual channels. Each channel

has a channel transistor that supplies the current and a gating amplifier that controls

the gate of this transistor in some non-linear way to produce desired dynamics. This

circuit has only one equilibrium [13] as can be seen from its monotonic I-V curve (the

number of zero crossings of the I-V curve show the number of equilibria). This is
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Figure 16: Saddle neuron:A compact silicon neuron that exhibits saddle-node bifurca-
tions of the equilibrium. The limit cycle might be born by SNIC or a saddle-homoclinic
loop bifurcation. (a) and (b) show the non floating-gate and floating-gate (FG) versions
respectively. To ensure that the n-nullcline can intersect the x-nullcline in the twice in
the middle branch, the gain of the potassium amplifier has to be larger than the sodium
amplifier. Spike frequency adaptation can be obtained by adding another similar potassium
channel with a slower activation time constant set by M3.

because the gating amplifier for the transient sodium channel is bandpass leading to

the sodium channel transistor acting as approximately a constant current source in

steady state. Hence the I-V relation for this neuron is dictated by the monotonic,

exponential I-V relation of the potassium channel transistor.

3.1.1.1 Absence of inactivation

In order to create a saddle-node neuron there must be multiple equilibria, one of

which should be of the saddle type. Thus the neuron must have a non-monotonic I-V

curve with multiple zero-crossings. To create a non-monotonic curve, we must have

a positive feedback channel that creates a negative conductance region (since there

has to be a part of the I-V curve where current increases even though voltage across

the channel decreases). This implies that the positive feedback sodium channel in
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this implementation needs to be a low-pass one instead of a bandpass one so that

it can affect the DC/persistent current of the channel (this model is typically called

‘persistent sodium’ model as compared to the HH model which is a ‘transient sodium’

model). Hence, the feedback transistor providing inactivation current Iτh needs to

be removed as shown in the right half of Fig. 15(a). The fact that the low-pass

amplifier does indeed give saddle-node bifurcation can also be seen from the equations

in [13] by a change of variables and letting Iτh → 0. Essentially, a simple common

source amplifier or any other DC-coupled amplifier may also be used as the low-pass

amplifier.

3.1.1.2 Instantaneous Activation

The typical way to simplify the model further [55] is to assume that the sodium

activation is much faster than the potassium; so it can be assumed instantaneous.

This amounts to assuming Iamp >> Ix where Ix is any other bias current in the

circuit. Thus, we have a 2-dimensional system with the membrane potential and the

voltage at the gate of the potassium channel transistor being the only two variables.

The other major difference from the Hopf neuron is the need for a leak channel as

shown in Fig. 15(a). This is needed to create the negative part of the I-V relation to

ensure zero crossings. Assuming a hyperbolic-tangent (tanh) function to approximate

the amplifier’s characteristic, applying Kirchoff’s current law (KCL) to the neuron in

a way similar to [13] yields:

ẋ = e−mss(x)(1 − ex−8) + i− Ik0e
−n−x(ex − 1)

− Il0(1 − eEl−x)

ṅ = r(1 − en+x)

mss(x) = −α1 tanh(
x− o1

s1

) (12)

where x = δVmem/UT , n = δVk/UT , r = Iτn/Ck, t
′ = t/τ, τ = CmemUT /Ina0 and

the derivatives are taken with respect to t′. All the currents in the equation are
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normalized by Ina0 while capacitors are normalized by Cmem. Also, parameters ‘i’,

‘o1’ and ‘s1’ represent the input current stimulus, the amplifier’s trip-point and gain

respectively. The phase portrait for this system is drawn in Fig. 15(b). The coupling

of a transistor’s gate to the surface potential, κ, has also been assumed to be 1.

The variables x and n signify normalized membrane voltage and potassium channel

activation respectively.

3.1.2 Motivation for changing the Potassium channel amplifier

It can be seen from Fig. 15(b) that the x-nullcline now has three branches (a typical ‘N’

shape). So there is a possibility of multiple intersections with the other nullcline and

hence the existence of multiple equilibria. However, the equation for the n-nullcline

in (12) is linear and can be written as n=-x. Hence, the n-nullcline will intersect

the x-nullcline in all three branches. However, it is well-known [55] that most of the

middle branch of the x-nullcline in this type of a system corresponds to unstable

equilibria, while the other two branches indicate stable equilibria. So, in this case we

will have a stable equilibria at a high value of membrane potential for a large range of

parameter values, something not commonly observed in biology. The existence of this

equilibria might also be understood intuitively. At low membrane potential values,

the sodium current will be balanced by a leak current and the potassium current.

As the membrane potential increases, the sodium current increases a lot but then

starts to decrease when the sodium-channel amplifier saturates at Na amp vss. At

the same time, the potassium channel current is increasing and hence, there should

exist a high value for Vmem where they are equal and perturbations to that state also

die down.

We desire to have a saddle-node on invariant circle (SNIC) or a saddle-homoclinic

loop (SHM) bifurcation with increasing input current. In most neural models, the

limit cycle born from these bifurcations is the only stable attractor [53] [87]. This
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Figure 17: Phase portrait and Bifurcation diagram(a) The phase plane for the system
with slow activation of K-channel. The x-nullcline has three distinct regions. In region
A, x changes from lower than El to larger than it resulting in leak current overpowering
sodium current. In region B, x is close to o1, while in region C, the sodium amplifier has
saturated at Na amp vss. It can be seen that the trajectory starting from the right of the
saddle makes a big loop before returning to the stable equilibrium. (b) The phase plane for
fast potassium activation leading to saddle-homoclinic loop bifurcation. Even before the
saddle-node bifurcation, a limit cycle has been created by a homoclinic bifurcation from the
saddle equilibrium. (c,d) Bifurcation diagram for the case in (a,b)

implies that there should not be any other stable equilibria when the saddle-node

bifurcation which involves the equilibrium at low membrane potential occurs. So

the n-nullcline has to intersect the x-nullcline once in the lowest membrane potential

branch and twice in the middle branch implying that it must have a sharply falling
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part. The sharply falling part of the nullcline can be created needs to be an inverting

amplifier that drives the gate of Mk with the desired characteristic. This leads to a

circuit for the saddle-neuron as shown in Fig. 16 where both the floating-gate (FG)

and non-FG versions are shown. The FG version has the advantage of requiring two

less biases and can be more compact without trading-off transistor threshold voltage

matching. It will be shown in section 3.3 that using only three FG transistors as

depicted in Fig. 16(b) is sufficient to eliminate the sources of mismatch in the circuit.

In this circuit, M1 and M2 form the Na-channel inverting low-pass amplifier while M4

and M5 form the K-channel inverting low-pass amplifier. In the FG version, capacitors

Cz (which can be explicitly drawn capacitors or overlap capacitors associated with

the transistors) set the gain of the gating amplifiers. To ensure that the n-nullcline

can intersect the x-nullcline twice in the middle branch, the gain of the potassium

amplifier has to be larger than the sodium amplifier. Iamp is chosen large enough so

that the activation kinetics of both the amplifiers are faster than other time scales in

the circuit. The slow K-channel time scale is controlled by M3. We could have used

a PMOS or a resistor in its place which would result in slightly different shapes of

the spikes. The equations to model this circuit are as follows:

ẋ = e−mss(x)(1 − ex−8) + i− Ik0e
−n(ex − 1)

− Il0(1 − eEl−x)

ṅ = r(e−n − e−nss(x))

mss(x) = −α1 tanh(
x− o1

s1
)

nss(x) = −α2 tanh(
x− o2

s2
) (13)

with similar interpretation of variables as in equation (12). Parameters o1 and o2 can

be modified by changing Vamp na and Vamp k in the non-FG version or by changing the

charge on the gates of M1 and M4 respectively. α1 and α2 are set by the difference

in the power supply voltages of the amplifiers. Spike frequency adaptation can be
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Table 1: Parameters for Numerical Simulation

Parameter α1 α2 o1 o2 s1 s2

Value 2.3 4 3 3.1 0.25 0.06

Parameter Il0 Ik0 El r(SNIC) r(SHM) i

Value 1 0.01 0.4 0.7 1.3 0-3

obtained in this neuron by adding another similar potassium channel but with slower

activation kinetics compared to the potassium channel responsible for regular spiking.

It should be noted that (13) is similar to the traditional Morris-Lecar model [63]

which is obtained following a similar reduction principle from the Hodgkin-Huxley

model. The equations for this model are:

CV̇ = gCamss(V )(ECa − V ) − gKW (V − EK)

− gL(V −EL) + i

Ẇ = λ(V )(wss(V ) −W )

mss(V ) =
1

2
{1 + tanh

[

V − V1

V2

]

}

wss(V ) =
1

2
{1 + tanh

[

V − V3

V4

]

}

λ(V ) = λ0 cosh

[

V − V3

2V4

]

(14)

The differences between (13) and (14) stem from using transistors with exponential

characteristics in place of channels with linear characteristics.

3.1.3 Phase Portrait and Bifurcation Diagrams

In this subsection, the numerical simulations of (13) are described. Bifurcation

diagrams for varying input current are computed using the continuation software

AUTO [35]. Two different cases are considered based on the speed of the potassium

activation. The parameters for the numerical simulation results shown in Fig. 17 are

presented in table 1.
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Figure 17(a) depicts the phase portrait of the system with a relatively slow potas-

sium activation time constant (smaller Vτn) and a fixed value of input current that

is close to the bifurcation value. The nullclines of the system shown in the figure do

not change with the activation time constant. There are three intersections of the

two nullclines, as desired, leading to two unstable and one stable equilibrium. The

middle equilibrium is a saddle-node and is about to collide with the stable equilib-

rium to create a bifurcation. It can be seen that the trajectory starting from the

right of the saddle makes a big loop before returning to the stable equilibrium. At

the saddle-node bifurcation, this trajectory becomes homoclinic to the saddle, and

after the bifurcation forms a stable limit cycle. As the homoclinic loop is an invariant

manifold homeomorphic to a circle, this is also called saddle-node on invariant circle

(SNIC).

From (13) it can be seen that the n-nullcline is given by nss(x) as shown in Fig.

17(a) or (b). To study the structure of the x-nullcline, one must understand that the

n-axis corresponds to the voltage on the gate of Mk required to make ẋ = 0, i.e. to

balance the rest of the current incident on the membrane capacitor. The nullcline can

be divided into three distinct zones marked A, B and C in Fig. 17(a). For x < El,

there exists a value of n to balance the leak current and the sodium current. But

for x sufficiently larger than El such that the leak current is larger than the sodium

current, no value of n exists since the polarity of the leak current is then similar to

the potassium current. So the x-nullcline shoots up to infinity near the end of zone

A. In zone B, x is close to o1 and the sodium control amplifier is in the high gain

region. The slope of the nullcline in this region is 1−Aκ
κ

where A is the gain of the

sodium amplifier and κ is the coupling strength of the gate to surface potential for

a transistor. Lastly, in zone C, the sodium amplifier has saturated at Na amp vss

implying that n changes to compensate for the change in potassium current due to

the change in membrane potential. So the slope in this region is 1/κ. The nullcline
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Figure 18: Circuits to extract the nullcline: (a) The n-nullcline for the system is a
curve n1(x) such that dn

dt =0 on this curve. This is same as the characteristic of the K-

amplifier. (b) The x-nullcline is a curve n2(x) such that dx
dt =0 on this curve. Finding the

value of n on this curve corresponding to a certain value of x = Vfix (say) is equivalent to
forcing the desired x using an amplifier connected in feedback controlling the gate of Mk.
The desired n value is created at the output of the amplifier. An additional NMOS (Mn)
is used for bi-directional capability to avoid getting attracted to an undesired fixed point.
(c) Modification for integrating these neurons into an array with the selection, biasing and
nullcline measurement circuitry at the periphery.

changes sharply at the ends when Mna or Mk are in the ohmic region.

Figure 17(c) depicts the bifurcation diagram in this case which shows the birth

of a limit cycle coinciding with a saddle-node bifurcation. The limit cycle ends in a

supercritical Hopf bifurcation for larger values of input current.

Figure 17(b) shows the phase portrait for the case where the activation of potas-

sium is relatively fast. As can be seen from the figures 17(b) and (d), even before

the saddle-node bifurcation, a limit cycle has been created by a homoclinic bifurca-

tion from the saddle equilibrium. The main observable difference from SNIC is the

bistability of the system before the saddle-node bifurcation in a certain parameter

range. Intuitively, this is because the potassium current deactivates quickly and does

not allow the membrane potential to undershoot the stable equilibrium voltage. The

limit cycle, in this case, ends in a subcritical Hopf bifurcation at a larger current
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value.

3.2 Nullcline Extraction and Algorithmic Biasing

The last section described the role of nullclines in determining the dynamics of this

circuit. It is of utmost importance to be able to extract the nullclines of the fabricated

system and then vary the parameters to get the right shape and intersections. In this

section, we propose a circuit to do so and also describe an algorithm for biasing the

circuit based on the measured nullclines.

3.2.1 Nullcline Measurement circuit

Figure 18(a) and (b) show methods to measure the n and x-nullcline of this system.

Note from eq. (12) that x and n denote normalized values of the membrane voltage

and potassium channel gating voltage respectively. As mentioned earlier, the n-

nullcline of the system is given by n1(x) = nss(x) since that is the value of n for

which the current charging Ck is 0. This is exactly equal to the characteristic of the

potassium gating amplifier. Hence, we only need to monitor the output voltage of

the potassium amplifier to get this nullcline.

The x-nullcline is a curve n2(x) such that dx
dt

=0 on this curve. Finding the value

of n on this curve corresponding to a certain value of x = Vfix (say) is equivalent to

forcing the desired x using an amplifier connected in feedback controlling the gate of

Mk. The desired ‘n’ value is created at the output of the amplifier. This structure

is similar to a logarithmic amplifier that we have used earlier for measuring low

currents [14].

However, one can see from Fig. 18(b) that there is an extra NMOS, Mn also

connected in feedback across the amplifier together withMk. This structure is actually

useful in measuring bi-directional currents [12]. One may ask ‘Why is it needed ?’.

This is necessary because otherwise the circuit may be attracted to an undesired

fixed point. We can understand the existence of that fixed point if we consider the
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Figure 20: Die Photo and Layout: (a) Die photo of the fabricated FPAA in 0.35 µm

CMOS showing a CAB with low-pass sodium and potassium channels. (b) Layout of the
optimized FG based neuron cell for a custom chip in the same process.

following thought experiment: consider increasing the value of the membrane voltage

from Ek to Ena. At values of Vfix slightly larger than the first equilibrium, the current

through Mk is very small since the sodium current is balanced by the leak and so the

amplifier tries to shut off Mk by pulling its gate high. Beyond this point, the leak

current is larger than the sodium current; hence the current through Mk needs to be

negative to satisfy dx/dt = 0, but the best the amplifier can do is to push the gate

of Mk to Vdd. This results in the feedback loop being broken and the membrane is

no longer clamped to Vfix. Instead it goes to equilibrium at the earlier value based

on just the leak and the sodium channel. This value is lesser than the present value
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of Vfix which means increasing Vfix more only keeps the amplifier railed to Vdd and

Vmem at its earlier equilibrium. Adding the NMOS allows the amplifier to clamp the

membrane while sinking or sourcing currents. It forces the membrane to Vfix always

and does not allow the feedback loop to be broken.

Having introduced the nullcline extraction circuits, a natural question to explore is

the area penalty for including this circuit in an integrated circuit. Since it is desirable

to maximize the number of neurons in a chip, requiring an amplifier in every neuron

would be prohibitive. Fortunately, it is possible to share one nullcline measuring

circuit for an entire array of neurons. Figure 18(c) depicts the modifications needed

to enable this for the ‘i-th’ neuron in an array. A control signal, ncline/ RUN puts

the neuron array in nullcline measuring or normal operational mode. Apart from

the common biasing of the neurons, three other lines are shared among the neurons:

Vmem, Vk and Vkn. Switches controlled by a decoder are introduced in every neuron

so that the membrane potential, the gate of Mk and the output of the potassium

gating amplifier are connected to those three global lines in the nullcline measuring

mode. The amplifier and other selection circuits can now be confined to the nullcline

measurement block at the periphery of the array.

3.2.2 Algorithmic Biasing

Using the circuits described earlier, we can extract the nullcline of the circuit. Now,

we describe a methodical approach to setting the biases for the non-FG circuit based

on the measured nullclines with a goal of obtaining a saddle-node bifurcation with

increasing current. The floating-gate based circuit can be biased in a similar way.

1. In the beginning, Vamp na, Vamp k, Na amp vss, K amp vss and Vτn are set to

Vdd to shut off the gating amplifiers and make M3 act as an ON switch. VL is set to

zero to turn off the leak channel too. The difference between Ena and Ek is a system

level specification, typical values being 200-300 mV. The absolute value of these bias
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voltages are kept close to the middle of the chip’s power supply to allow for sufficient

headroom in setting the gating amplifiers’ power supplies.

2. Set El to the value of Vmem where it is desired for zone A of the x-nullcline to

end.

3. The value of Vamp na is initially set at Vdd. Vτm na is set so that Iamp is large

enough to set a time constant much faster than that of the slow potassium (typical

values are 0.5-1 nA). A good strategy is to set Iamp much higher initially and then

reduce Iamp till the spike shape changes.

4. Na amp vss is then reduced gradually from Vdd. This shifts zone B of the x-

nullcline to progressively lower voltages. Continue till zone B is in the desired range

of membrane potentials.

5. Increase Vl till the x-nullcline has the characteristic of zone A and increase

sharply to a high voltage. Increase Vl by approximately 10-20 mV to ensure a high

enough threshold current. Since Vl sets the threshold current (exponential relation),

its final value can be set after measuring the graph of its dependence.

6. K amp vss is reduced to approximately 50-100 mV below the lowest value of

the measured x-nullcline. Vτm k is now set using a strategy similar to the setting of

Vτm na for a particular Iamp.

7. Vamp k is slowly reduced from Vdd. This shifts the n-nullcline to lower membrane

potentials. Continue till the n-nullcline crosses the x-nullcline in zone B.

To verify that the circuit does have a limit cycle, it can be configured as neuron

and input current applied to check for oscillations. How the different biases affect

parts of the nullcline is shown in Fig. 19.
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Table 2: Parameters for the Fabricated Circuit

Circuit Element Value Bias Voltage

MNa 5/1 Ek 1.5

M1 1/.4 Ena 1.8

M2 10(10/.4) Vamp na 1.7

Mk 10/1 Vτm na 1.17

M4 5(10/6) Na amp vss 1.24

M5 2(10/6) El 1.55

M3 2(10/6) Vl 2.25

Ck 300 fF Vamp k 2.01

Ml 5/2 Vτm k 1.24

K amp vss 0.8

Vτn 1.55

3.3 Measurements

The proposed neuron and related concepts have been verified by fabricating an IC

with the neuron circuit in 0.35 µm CMOS process and is shown in Fig. 20(a). The fab-

ricated IC has an architecture similar to a field programmable analog array (FPAA)

as described in [15] and also detailed in the later chapters of this thesis. The architec-

ture consists of an array of computational analog blocks (CABs) embedded in a sea

of switches that can be configured to be ON or OFF as desired. The elements in the

CABs included operational transconductance amplifiers, synapses and different types

of channels. The switches needed for configuring the neuron into operational mode

or nullcline measurement mode as described in section 3.2 were not explicitly needed

since the reconfigurable switch matrix could perform that task. Since the neuron was

placed in a CAB, it was not optimized for size and included individual biasing cir-

cuits. The resulting area is 2740 µm2 including the extra potassium channel for spike

frequency adaptation. The poly-poly capacitor took up a major share of the area, an

aspect that can be largely improved by using a moscap instead. The transistor sizes
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and bias voltages are tabulated in 2. Note that the channel length of transistors in

the potassium gating amplifier were made much larger than the sodium amplifier to

make it have a larger gain as noted in section 3.1. An optimized layout of the neuron

including an extra potassium channel for spike frequency adaptation has now been

done for a custom chip as shown in Fig. 20(b). This FG based neuron occupies a

much smaller area of 37×51 µm2.

3.3.1 Nullclines, SNIC and SHM bifurcations

Figure 21(a) shows measured n-nullclines from the fabricated chip. As expected,

reducing Vamp k reduces the trip point of the potassium amplifier (or o2) resulting

in the high-gain part of the activation curve moving to lower membrane potentials.

Figure 21(d) depicts the measured x-nullcline for different values of input current.

As mentioned earlier, the sharply rising part at the end of zone A in Fig. 17(a) is

because of the leak current overpowering the sodium current. However, an increase

in the input current can balance the leak as is seen in the figure. This confirms the

existence of the saddle-node when the channels are combined together.

Figure 21(b) and (e) are measured spiking waveforms from the neuron. Figure

21(b) corresponds to a lower value of the input current that is slightly larger than

the bifurcation value. The variability in the inter-spike interval is due to ambient

noise. The shape of the spikes are typical of SNIC bifurcations and type-I membrane

dynamics. In the period right after a spike, there is a hyperpolarization of the mem-

brane followed by a long time when the membrane appears to be at equilibrium. In

this time, the solution is passing through the region of the phase space where the

saddle-node existed earlier. The resulting small vector fields lead to the sluggishness

of the trajectory.

Figure 21(c) shows the relation between the threshold current (Ith) for repeti-

tive spiking and Vl or the parameter setting the leak conductance. The relation is
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approximately exponential suggesting that the bifurcation occurs almost when the

input current balances the leak current. Figure 21(f) shows the measured current-

frequency behavior (f-i curve) of the neuron for a certain value of Ith. It exhibits

a typical sub-linear behavior (theoretically square root in the neighborhood of the

bifurcation).

The existence of the saddle-homoclinic bifurcation leading to bistability was also

explored. Keeping the input current at a value slightly below the bifurcation value,

Vτn was slowly increased to speed up the potassium activation kinetics. Though it

was not possible to obtain a parameter value where the equilibrium was stable and a

perturbation could carry it into the basin of attraction of the limit cycle, intermittent

spiking was observed for certain ranges of Vτn. The resulting waveform is shown in

Fig. 22. We believe that the saddle-homoclinic bifurcation occurs in the circuit for

this range of parameter values but the ambient noise carries the solution back and

forth between the basins of attraction of the equilibrium and the limit cycle. A similar

phenomenon is observed in the mathematical model when Gaussian noise is added

to the input current. The susceptibility of the circuit to noise, random or otherwise

(e.g. 60 Hz, digital switching of USB communication port on the board) increases as

the bias currents and power supply values are reduced.

3.3.2 Spike Frequency Adaptation

A common feature of neurons that has been widely modeled is spike frequency adap-

tation. It was mentioned in section 3.1 that this phenomenon could be observed in

this neuron model by adding a slower potassium channel along with the regular ones.

This channel models a calcium gated potassium channel. The reconfigurability of the

FPAA platform allowed us to verify this concept easily. The biases for this potas-

sium amplifier were kept the same as the regular potassium amplifier. The activation

time constant for this channel was increased by reducing Vτn2 by 250 mV relative to
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the regular potassium channel. The input current to the neuron was stepped from a

value lesser than the bifurcation value to one where the neuron spikes. The resulting

waveform is plotted in Fig. 23. It clearly displays increasing inter-spike interval as

it continues spiking. To decrease power consumption and chip area, the new design

of the neuron shares the potassium amplifier for both the slow and fast potassium

channels.

3.3.3 Power Dissipation

A major motivation in developing this design was to achieve the lowest possible power

dissipation. For the neuron with spike frequency adaptation ,there are three gating

amplifiers each of which was biased at a current of 0.5 nA. The other component of the

power dissipation is the switching power which has been measured for several spike

frequencies. The resulting plot is shown in Fig. 24. As expected, the switching power

increases almost linearly with frequency. It should also be noted that the switching

power is not the dominant factor in the net power dissipation. It may be possible

to reduce the static power even further since the spike shape was not distorted till

this point. With a power consumption of 1.74 nW at a frequency of 100 Hz, this

neuron has the lowest power consumption among all reported designs to the best of

the authors’ knowledge. The new design of the neuron that shares the gating amplifier

for both the potassium channels is expected to reduce power consumption further.

3.3.4 Mismatch and Variability

A major concern in the design of arrays of spiking silicon neurons is mismatch among

the neurons. The two parameters, whose matching we are concerned with in this

design, are the f-i curve and the bifurcation current value corresponding to the birth

of the limit cycle. Since biases are shared across neurons in the array shown in Fig.

18(c), matching of the neuron parameters would require very large sized transistors

increasing the footprint of one neuron. Instead, we plan to use floating-gate (FG)
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Table 3: Performance comparison of silicon neurons

Reference Model
detail

Power
@100Hz

Area Process FOM/1e3 Methodology

This work Bifurcation
based, SFA,
PF, RP1

1.74
nW

2740
µm2 2 or
37×51
µm2 3

0.35 µm 37.3 V-mode nullcline
based design

[67] Conductance
based, SFA,
PF, RP1

3.3
nW(sim)

913 µm2 0.35 µm 40.7 I-mode, Differen-
tial pair integra-
tor instead of log-
domain

[38] Mihalas-
Niebur

7.5
nW(sim)

70×70
µm2

0.15 µm 0.46 Switched Capaci-
tor

[112] Conductance
based inte-
grate and
fire

64.5
nW

40×60
µm2

0.5 µm 0.24 Switched Capaci-
tor

[51] Integrate
and fire,
SFA, PF,
RP1

0.5 µW 83×31
µm2

0.8 µm 0.124 Modified Inte-
grate and fire

[115] Full H-H 0.3
mW1

1.5×1.5
mm26

0.5 µm 3.7e-7 I-mode multiplier
and V-mode dif-
ferential pair

[95] Full H-H 1 mW 0.26
mm2

1.2 µm 5.5e-6 I-mode multiplier
and V-mode dif-
ferential pair

[89] Full H-H - 834×870
µm2

0.35 µm - I-mode

[102,103] Bifurcation
based

- 38 tran-
sistors

discrete - V-mode design
followed by linear
V-I

[5] Leaky inte-
grate and
fire, PF,
RP1, Con-
ductance
based

- 28×36
µm2

0.25 µm - log-domain I-
mode

Digital Izhikevich
model

≈ 1
µW

- TI
TMS320
C5X

- DSP design

Biology Full H-H,
Dendrite,
Adaptation
and more

≈ 20
pW

- - - voltage and lig-
and gated chan-
nels, chemical sig-
nalling

1 SFA: Spike frequency adaptation; PF: Positive feedback; RP: Refractory period
2 FPAA based design
3 Custom chip
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transistors as shown in Fig. 16(b) that decouple the constraint of transistor size

dictating mismatch. Of course, a programming circuit is now needed. But since we

can share one such circuit for the entire chip, it is not prohibitive.

A naive solution would be to replace all the transistors in the circuit with floating-

gates; but this would result in a severe area penalty because of the added selection

circuitry per FG transistor in each cell. Instead, an analysis of this neuron circuit

reveals that using only three FG transistors as shown in Fig. 16(b) allows us to

remove mismatch induced variations in the f-i curve and the current threshold for

repetitive spiking (bifurcation current). Firstly, to control the nullclines, the ability

to tune the half-activation voltages of both the gating amplifiers is needed. Hence,

M1 and M4 need to be floating-gates. This also makes the gain of the amplifiers

relatively insensitive to mismatch as they are now set by capacitor ratios. As shown

in Fig. 21(c), ML sets the threshold current and hence needs to be a FG transistor.

Variations in threshold of MNa only shift the x-nullcline up or down in the region

C, a phenomenon whose effect is nullified by ensuring that the n-nullcline does not

intersect the x-nullcline in that part (by keeping k amp vss low enough).

The remaining two transistors, Mk and M3 and the capacitor Ck affect the slope of

the f-i curve directly. To understand their effect, we need to analyze the components

of a spike interval. The spike itself takes much less time compared to the time for the

membrane to charge from its reset voltage, Vreset to the threshold for a spike Vthresh.

For a simplified analysis, we can consider the time period to be determined by linear

charging of a membrane capacitor by the difference between input and leak currents.

This is of course a simplification as we ignore the ohmic nature of the transistors, but

it does allow us to capture the trend easily. Vthresh is set by the location of zone B,

i.e. the half-activation potential of the sodium channel. Hence, the time period of
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oscillation for a certain input current is given by:

T ≈ Cmem(Vthresh − Vreset)

Iin − IL
(15)

where Vreset is the voltage the membrane is reset to after a spike. Vreset increases for

an increase in Vth,k or a decrease in Vth,3. Figure 25 shows the simulated effect of

a 30 mV increase in Vth,3 compared to the nominal case and the resulting variation

in the f-i curve. From (15) it is obvious that increasing Vthresh appropriately can

correct the slope of the f-i curve. Increasing Vthresh would, however, result in a

change in the bifurcation current or the origin of the f-i curve. The leak current

is then changed to bring the bifurcation current close to the desired value. The

corresponding corrected curves are also plotted in the figure. Another possible method

for eliminating mismatch in the slope of the f-i curve in a network of these neurons is

modifying the synaptic efficacies of FG synapses connected to this neuron. In other

words, synapses connected to different neurons will be of different baseline weights to

produce the same result. The leak current needs to be modified in this case too.

Having shown that the three FG transistors in Fig. 16(b) can eliminate mismatch

if their charge is modified appropriately, we need to estimate the sensitivity of the

neuron’s response to the programmed charge. Hence, the effect of finite resolution in

programming the floating-gate charge is discussed next. We have earlier shown the

ability to program FG currents to a 3-σ accuracy of 0.1% over 3-4 decades of current [8]

or to 1% over 6-7 decades [15]. An accuracy of 1% in currents corresponds to an

accuracy of 0.36 mV assuming subthreshold operation and assuming that threshold

mismatch is dominant among all the sources of variation. To consider an extreme

worst case scenario, we considered a 1 mV standard deviation in threshold voltages

and performed a Monte Carlo analysis on the neuron’s f-i curve. For each value of

input current, 100 runs were performed to obtain mean and variance of the spike

frequency. EKV models were used for the simulation. The results are plotted in Fig.

26. The resulting variation in the f-i curve is acceptable keeping in mind that this is
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a conservative estimate.

3.4 Conclusion

Spurred by an increasing interest in real-time simulation of spiking neural networks,

many researchers have developed integrated circuits modeling neurons over the last

few years. These neurons have varied in detail from full Hodgkin-Huxley (H-H)

[89, 95] to simple integrate and fire [51] models. The full H-H implementations have

mostly suffered from excessive power dissipation and area penalties while integrate

and fire models often do not possess many important dynamics (e.g. realistic phase

response curves leading to synchronization). This has led researchers to develop

hybrid models which strike a compromise and mimic certain properties that are most

desirable to the user in their application. Spike frequency adaptation, refractory

period, positive feedback and conductance based models are common examples of such

properties [5, 38, 67]. Common implementation methodologies for these neurons are

based on switched capacitors or current-mode design. While switched capacitor based

methods offer good matching, they suffer from large area and limited programmability.

Current-mode designs on the other hand are limited by mismatch and are difficult

to bias. A comparison of several representative designs are presented in Table 3.

The power consumption for a biological neuron is an approximate number obtained

from [91] assuming that the 20 W of power dissipated in the brain is divided equally

among its thousand billion neurons.The figure of merit (FOM) quoted in the table is

a metric describing the complexity of the model, its power dissipation and normalized

area. It is given by the following equation:

FOM =
L2

min.D

A.Pdiss

(16)

where Lmin is the minimum channel length in the VLSI process used, A is the area of

the neuron, Pdiss is the power dissipation for a spike rate of 100 Hz and D is a measure

of the model detail. For different applications, some of these metrics (e.g. power)
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may be more important than others; then that factor may be weighed more to arrive

at a desired FOM. ‘D’ can be chosen in different ways depending on the application.

In this case we wanted to use this to represent the variety of dynamical behaviors

exhibited by the model. Hence we chose it to be a fraction which is determined

by the number of features out of the twenty listed in [54] that is exhibited by that

particular model. It should be noted that the detailed physics of an ion-channel or

biologically realistic spike shape might be extremely important in some applications

(e.g. dynamic clamps); this feature has not been taken as a metric here.

We have presented a bifurcation based silicon neuron that consumes the lowest

power among all designs reported till date. Since it is based on a bifurcation, it pos-

sesses all the phenomenon/properties associated with the bifurcation. The proposed

design mimics the dynamics of a type-I membrane and exhibits refractory period,

positive feedback, and spike frequency adaptation. We also propose a circuit to ex-

tract the nullclines for the system which leads to an algorithm for correctly biasing

the circuit. Combined with the ability of floating-gate transistors to set bias voltages

locally, this method should reduce variation in silicon neurons while not incurring a

significant area penalty.

To fully exploit the capabilities of this neuron in modeling biology, it has to be

part of a network which should be specified by the user. The user should also have

the freedom of choosing the parameters of the neuron. Realistic models of synapses

and dendrites should also be available in large numbers in the system. For allowing

large scale reconfigurability in a modular fashion, the structure of a FPAA described

in [108] seems to be a logical step. We shall next describe how such a structure is

adopted for our purpose and the features that have been added in the new version of

the chip that I have developed.
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Figure 21: Measured results:(a) Variation of the n-nullcline with decreasing Vamp k shows
a decrease in o2. (d) Increasing the input current stimulus resulting in variation of the x-
nullcline. The existence of a saddle-node bifurcation can be inferred from the disappearance
of the sharply rising part of the nullcline at the end of zone A in Fig. 17(a). (b,e) Measured
spiking waveforms from the neuron for two different input current values. Absolute voltages
are not shown. (c) The threshold current for repetitive spiking (bifurcation value) can be
directly controlled using VL. The resulting variation is exponential. (f) Measured f-I curve
for the neuron. 49
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Figure 22: Saddle Homoclinic bifurcation: Keeping the input current lesser than the
saddle-node bifurcation value and increasing Vτn results in a saddle homoclinic bifurca-
tion. The ambient noise switches the solution between the equilibrium and the limit cycle.
Absolute voltages are not shown.
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Figure 23: Spike frequency adaptation: Adding an extra potassium channel that has
slower kinetics than the one responsible for regular spiking results in spike frequency adap-
tation. The measured waveform is the neuron’s response to a current step.
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Figure 24: Power dissipation: Measured power dissipation of the neuron with spike
frequency adaptation as a function of spike frequency. Its power consumption of 1.74 nW
at a spike frequency of 100 Hz is the lowest reported till date.
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Figure 25: Mismatch correction: Threshold voltage variation of 30 mV in M3 causes a
large change in the f-i curve. The slope can be corrected by changing the either the voltage
threshold or the synaptic efficacy. The current threshold for repetitive spiking is modified
by changing the leak current.
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Figure 26: Monte-carlo analysis: A monte-carlo analysis is performed on the neuron cir-
cuit assuming a standard deviation of 1 mV for the transistor threshold voltages (assuming
FG transistors are used to correct for the large threshold variations). The resulting f-i curve
is plotted. EKV models were used for the simulation.
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CHAPTER IV

FROM NEURONS TO NETWORKS: FIELD

PROGRAMMABLE ANALOG ARRAY

In making the transition from single point neuron models to networks with compli-

cated dynamics, the two important requirements are flexibility in defining the network

topology and neuron parameters and incorporating high density of connections. A

field-programmable analog array (FPAA) is suitable for this purpose. In fact, its

architecture is suitable for a more general flexible analog processing paradigm since

different applications can be targeted by modifying circuit blocks onle while keeping

the general infrastructure intact. In this chapter, generic details of such a system are

described while two specific examples are presented in the following chapters.

We present an FPAA with over fifty thousand floating-gate (FG) elements allowing

it to operate as a reconfigurable analog processor. The FG devices serve as switches

for reconfiguration and also endow the sub-circuits with tunable parameters. Using

FG devices as switches eliminates the need for extra memory to store the configuration

of the switches. Essentially, these devices perform ‘computation in memory’ leading

to high computational area efficiency. This is one of the first large scale FPAA devices

reported that is capable of versatile computations, making it a viable platform for

prototyping and implementing varied processing tasks.

In the recent past, FPAAs have been gaining popularity because of their ability

to allow rapid prototyping, flexibility in testing and reducing the design cycle time,

reasons that led to the growth of the FPGA market. However, most of the FPAAs

reported in literature or available commercially have a small number of computa-

tional analog blocks (CABs) with high performance components. The few designs
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Figure 27: Architecture: The chip is organized into an array of 4X8 CABs with multi-
level interconnect matrix in between. The circuitry for selection and programming of FG
elements is at the periphery of the array.

that have a large number of CABS [16, 76] are specifically designed for constructing

programmable analog filters. The chips we present has a a wide assortment of com-

ponents in the CABs within one chip and have a different class of CAB components

in different chips to better suit a separate application. This offers the user more flex-

ibility in creating circuits. This also permits the usage of the chip in teaching analog

circuits in a class, a task that has been performed multiple times.

An aspect of FPAAs that has attracted considerable attention is the parasitic

effects and under-utilization of the switch matrix. A method for overcoming this

problem is to use the switch matrix devices as valid circuit elements [16, 66]. In our

chip too, since the voltage on the gate of the FG devices can be programmed in

a continuum, we have used these devices as circuit elements in various cases. To

reduce the parasitic capacitance due to the OFF switches in a crossbar type network,

routing lines of varying sizes are present so that the length of the line chosen can

depend on the number of components to be connected. Here, we present complete

characterization of the architecture of the system in the following sections and also

detail the software interface for configuring the chip.
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Figure 28: Switch matrix: The different categories of routing lines interconnecting the
CABs is shown. Global, nearest-neighbor and local routing options are available on this
chip allowing one to optimally route their circuit.

4.1 Architecture

The architecture of the chip is depicted in Fig. 27 and a die photo of one FPAA chip

is shown in Fig. 28. It consists of a set of 32 CABs arranged in a 4X8 matrix. An

interconnect matrix comprising FG elements allows for arbitrary connectivity between

components. For the neural network chip, different neuron models have be placed in

the CABs while the high-density components (e.g. synapses) have been implemented

on the switch matrix. The selection and programming circuits for setting the desired

charge on the FG devices are placed at the periphery of the array. The chip has 56

pins available for routing signals. More details about each part are presented in the

following subsections.
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Figure 29: Switch Performance: (a) Architecture of the indirectly programmed switch
and associated selection circuits is shown. (b) Switch resistance is plotted as a function of
temperature. Its value at room temperature is around 12 kΩ.

4.1.1 Routing

The routing architecture of the IC shown in Fig. 28(a) demonstrates the different

types of interconnections-local vertical (loc), local horizontal (rows), nearest neighbor

vertical and horizontal (nnv and nnh), global vertical (glob) and global horizontal

(gh). The glob/gh lines span the entire length of the chip vertically/horizontally.

There are 4 gh/10 glob lines per row/column of CABs. The local lines span the

length/width of one CAB only. There are 41 rows and 4 loc lines. The nnv lines

(6 for each neighbor) connect to vertically neighboring CABs while the nnh lines

(4 for each neighbor) connect two horizontally neighboring ones. This granularity

allows for high speed interconnects to be routed on low-capacitance lines like local

or nearest neighbors while global connections are used only for I/O after the internal

processing is complete. Bandwidth of a signal passing through four switches and two

nnv lines has been found to be greater than 30 Mhz, the limit in that case being

the signal generator. The other feature of the routing scheme is bridge transistors

that allow loc/nnv/nnh lines to be bridged between CABs facilitating variable length

connections without incurring the capacitance penalty of global lines.
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The parasitic capacitance associated with the routing lines have also been esti-

mated. A wide input linear range operational transconductance amplifier (OTA) was

biased for a certain transconductance and step responses were measured with differ-

ent routing lines as its load capacitor. A voltage buffer is used to isolate the pad

capacitance from the Gm-C element. The resulting extracted capacitances are 1.6 pF

for glob, 1.5 pF for gh, 552 fF for nnh, 458 fF for nnv lines and 220 fF for a loc line.

Thus routing between CABs can be accomplished with relatively lower parasitic as

compared to the earlier version. In addition, this characterization allows one to use

the routing as extra capacitance that can be used in circuits.

4.1.2 Switch Isolation and Programming

The programmable switch matrix used in the earlier FPAA [108] used the application

of high gate voltage or high drain voltage as the method of isolation while the selected

device had a low voltage at both the gate and drain terminals. However this method

has a number of disadvantages, the primary one being over-injection of devices beyond

the isolation point [109]. This IC employs the superior source-side selection [109]

coupled with indirect programming [42] to achieve impressive isolation while not

sacrificing the quality of an ON switch. Figure 29(a) shows the architecture of one

switch element that occupies 13×6 µm2. The rsel signal provides source side selection

by cutting off the current in the switches not being programmed. Vgate and Vd are

the voltages provided by two on-chip DACs for programming the FG device. The

pull-up transistors ensure that the direct FG device has its terminals at Vdd during

‘program’ mode so that it presents a similar capacitance as the indirect device would

in ‘run’ or operational mode. This results in better matching between the two device

currents. A similar architecture is used for the bias FG elements. For more precise

matching between the direct and indirect transistors, an array of coefficients for VT

mismatch of each direct-indirect pair of transistors needs to be stored for predistortion
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of the programmed currents.

The ‘disconnect’ switch serves to cut off the rows from the CAB based on a control

signal. Each of these transmission gates have been found to provide 400 fF of capaci-

tance when turned ON. This factor combined with maximum accurately programmed

currents of 20 µA provides a severe limitation on the maximum achievable frequency

on this FPAA and will be rectified in the next version.

Figure 29(b) shows the variation of the resistance of an ON switch with temper-

ature. It increases with temperature due to decrease in mobility. It has a value of

around 9 kΩ at room temperature. The OFF switches have a resistance that is more

than 10 GΩ. The ON switch resistance can be reduced further if the gate voltage

(currently at mid rail) can be lowered to ground. This option is also being included

in the next version of the chip.

4.1.3 On-chip Programming

Arguably, the most significant feature of this FPAA compared to earlier versions is

its ability to program the FG currents over a wide dynamic range starting from very

low currents. For biological applications, the time constants needed are very long (≈

100 msec - 1 sec). To attain these time constants without placing large capacitors

on the chip, accurate programming of low currents is a necessity. The problem of

measuring a wide dynamic range of currents is quite generic and hence we devote a

couple of chapters in this thesis to discuss these issues. Hence, I just mention a few

salient points about the FG programming infrastructure in this section and postpone

a detailed analysis for later chapters.

The huge improvement in measuring accuracy, speed and dynamic range is ob-

tained by using a logarithmic trans-impedance amplifier (TIA) described in [14]. SNR

is improved by using source degeneration on the feedback PMOS. The TIA is kept
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stable over a wide range of currents by adaptively biasing it based on the input cur-

rent. In this implementation two such logarithmic current measurements are used,

one for higher currents and the other for lower ones. This structure has allowed us

to measure currents as low as 100 fA while earlier off-chip measurements saturated

at around 100 pA due to ESD leakage and noise.

Another important improvement in programming is introduction of row-parallel

programming for switches. The rows of the floating-gate array are selected by a

decoder but the columns are selected using a shift register which enables selecting

multiple columns per row. This leads to switch programming time given by Nrows×

1 msec.

4.1.4 I/O pad and Scanner Shift Register

Special bidirectional I/O pads have been incorporated into this IC which have buffer

amplifiers capable of driving high capacitive loads when enabled. Their bandwidth is

determined by a programmable floating gate device. For a total bias current of 2.1

mA (including biasing circuits), the corresponding amplifier (designed following [32])

achieves an unity gain bandwidth of 48 Mhz, a DC gain of 103 dB and a phase margin

of 70◦ while driving a capacitive load of 15 pF in SPICE simulations. Also an analog

16 bit shift register is available to scan through and observe different lines allowing

the user an option to debug their circuit almost in a SPICE-like fashion.

4.2 Software Interface

Configuring the FPAA to implement a particular circuit requires turning ON a cer-

tain set of switches and accurately programming some FG elements for biases. A

software tool chain has been developed to enable this task. Figure 30 shows a graph-

ical description of the software flow. A library containing different circuits (neuron,

dendrite, transconductor, multiplier etc) is used to create a larger system in Simulink,
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Figure 30: Simulink: Flow of the software infrastructure is shown. A simulink level
description is first translated to a Spice netlist and then converted to a list of switches on
the FPAA. The tool for mapping a netlist to the FPAA also provides information on routing
parasitics that may be used to manually tune the parameters.

a software product by The Mathworks. The circuits in the library correspond to pre-

constructed SPICE sub-circuits whose parameters can be set through the Simulink

interface. A first code (sim2SPICE [82]) converts the Simulink description to a Spice

netlist, while a second one (GRASPER [10]) compiles the netlist to switch addresses

on the chip. A Spice file can also be a direct input to GRASPER. The conversion

of netlist to FPAA switches involves two parts - placement and routing (similar to a

digital VLSI flow). The algorithm for placement tries to maximize the possibility of

local wire usage while the routing algorithm is based on a maze routing approach [64]

based on Djikstra’s shortest path algorithm. GRASPER also provides a parasitic

annotated post-routing netlist that can be used to re-tune the circuit parameters for

desired performance. This feedback is currently manual but its automation is being

implemented.

Figure 31(a) shows an example of a Simulink level circuit description while Fig.

31(b) shows the schematic of the circuit. The vector matrix multiplier (VMM) [24]

enables multiplying a vector of input signals with a matrix of fixed coefficients/weights

and will be described in detail later in the thesis. The schematic shows a 2-input 1-

output VMM with the output given by:

Iout = w1Iin1 + w2Iin2 (17)
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Figure 31: Simulink example: (a) Block diagram description of a vector matrix multiplier
(VMM) followed by a TIA. (b) Circuit schematic of the single ended VMM followed by a
TIA where a wide linear range transconductor is used as a resistor. (c) Measured data from
the FPAA showing the input multiplied by different weights.

where w1 and w2 are set by difference in charge on the gates of the Mi and Mo

transistors. This is the simple case where the weight matrix is just a vector and the

output is the projection of the input vector on the weight vector. The output currents

are converted to a voltage using a transimpedance amplifier (TIA) where the resistor

is implemented using an floating-gate OTA (FGOTA) resulting in R = 1/Gm. The

input currents are also created using FGOTA circuits. Figure 31(c) shows the output

of the TIA plotted against the input voltages applied to the FGOTA elements to

create Iin1 and Iin2. The two different slopes representing w1 and w2 are obtained by

sweeping only one input. Sweeping both the inputs results in a slope that is nominally

equal to w1 + w2. The offset in the curves results from FGOTA offsets which can be

corrected (shown later).

Figure 32(a) shows the circuit of a second-order low-pass filter based on a resonator

topology. FGOTA elements are used here to increase linear range. This circuit is used

to demonstrate the parasitic capacitance prediction feature. The transfer function of
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Figure 32: Gm-C filter: (a) Circuit diagram for a second order low-pass filter based on a
resonator topology. (b) Measured corner frequency from the FPAA matches well with theory
simulation obtained after including the effect of parasitic capacitances and Gm mismatch.

this circuit is given by:

H(s) =
Vout(s)

Vin(s)
=

Gm,in/Gm,τ

1 +
sC2Gm,Q

G2
m,τ

+ s2C1C2

G2
m,τ

f0 =
Gm,τ

2π
√
C1C2

, Q =
√

C1/C2
Gm,τ

Gm,Q
(18)

In this implementation, both Gm,τ = Gm,Q = 15.5 nS while C1 = C2 = 0.5 pF

resulting in Q = 1 and f0 = 4.95 kHz. Figure 32(b) plots the theoretical frequency

response of the circuit for these nominal values. However, the measured frequency

response has a smaller f0 = 850 Hz because of parasitic capacitances. The measured

Q is 1.05 which is close to the expected value. Using the back-annotated parasitic

values obtained from GRASPER, the theoretical value becomes f0 = 480 Hz, which

is close to the measured value. Thus, using these parasitic capacitance values the Gm

values can now be modified to get the desired frequency response. It should be noted

that the Q-mismatch is because of a mismatch in the measured Gm values due to the

mismatch between the indirect programming transistor and the direct transistor [42]

in the circuit. This can be corrected iteratively or by characterizing and storing this

mismatch for every FG device on the chip.

In the following sections, two different chips are described that I have designed

for spiking neural networks and analog signal processing. In all the experiments, the
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FPAA

Figure 33: Printed circuit board: Test setup for the chip includes a microprocessor,
voltage regulators and data converters on the same board. USB is used for communication
with the PC and also for the board’s power supply.

power supply of the chip is maintained at 2.4 V. A printed circuit board, shown in

Fig. 33 has been designed for testing and demonstration. It has a microprocessor for

programming and control, regulators for power supply and data converters in addition

to the FPAA itself. USB connection serves as the communication link with the host

PC and also provides power to the board. This makes the entire setup portable. In

the next chapter we describe the chip designed for spiking neural network simulations.
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CHAPTER V

RECONFIGURABLE ANALOG NEURAL NETWORK

The massive parallelism offered by VLSI architectures naturally suits the neural com-

putational paradigm of arrays of simple elements computing in tandem. We present

a neuromorphic chip with 84 bandpass positive feedback (e.g. transient sodium)

and 56 low-pass negative feedback (e.g. potassium) ion-channels whose parameters

are stored locally in floating-gate (FG) transistors. Hence, fewer but detailed multi-

channel models of single cells or a larger number (maximum of 84) of simpler spiking

cells can be implemented. Other components in the CABs also allow building inte-

grate and fire neurons, winner-take-all circuits and dendritic cables making this chip

a perfect platform for computational neuroscience experiments. Moreover, since this

chip produces real-time analog outputs it can be used in a variety of applications

ranging from neural simulations to dynamic clamps and neural interfaces as shown

in Fig. 34.

Several systems have been reported earlier where a number of neurons were inte-

grated on a chip with a dense synaptic interconnection matrix. Though these chips

definitely accomplished the tasks they were intended for, large scale hardware systems

modeling detailed neuron dynamics (e.g. Hodgkin-Huxley, Morris-Lecar etc) seem to

be lacking. One attempt at solving this problem is presented in [89]. However, the

implemented chip had only 10 ionic channels and 16 synapses, with a large part of

the chip area devoted to analog memory for storing parameter values. Another ap-

proach reported in [115] had 4 neurons and 12 synapses with sixty percent of the

chip area being occupied by digital-analog converters for creating the various analog

parameters.
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Figure 34: Versatility: Our neuromorphic chip can be used not only for simulating
neuron populations but also for interfacing with live neurons in a dynamic clamp setup or
for neural prostheses.

In the following sections, we describe the components in the CAB. Then we present

measured data showing the operation of channels, dendrites and synapses. Finally,

we show some larger systems mimicking central pattern generators or cortical neu-

rons and conclude in the final section with some remarks about the computational

efficiency, accuracy and scaling of this approach.

5.1 System Overview

5.1.1 Chip Architecture

Figure 35(a) shows the block level view of the chip shown in the earlier chapter. The

first row of CABS has bias generators which can produce bias voltages that can be

routed along columns for all the computational CABs. It should be noted that the

regular architecture allows for tiling multiple chips on a single board to make larger

modules. Figure 35(b) is a layout photo of the fabricated chip while Fig. 34 shows a

die photo.

Figure 35(c) shows the components in the CAB. The components 1 and 2 in the
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Figure 35: Chip Architecture: (a) The chip is organized into an array of 4x8 blocks that
can be interconnected using floating-gate (FG) switches. The beauty of this architecture is
the FG switches can be used not only for routing but also to set synaptic weights. (b) Layout
of the chip fabricated in 0.35 µ CMOS. (c) CAB components that are used for computation
along with the switch matrix elements. The tunneling junctions and programming selection
circuitry for the floating gates are not shown for simplicity. The arrows on the components
denote nodes that can be connected to other nodes through routing.

dashed square are in CAB1. In both the cases, the floating gates are programmed

to a desired level and the output voltage is buffered using a folded-cascode opera-

tional transconductance amplifier(OTA). The bias current of the OTA can also be

programmed allowing the amplifiers to be biased according to the application, thus

saving power. As mentioned earlier, the CABs in the first row are of this type.

In CAB2, components 3 and 5 are the positive feedback and negative feedback

channels respectively. In the context of Hodgkin-Huxley neurons, they are the sodium

and potassium channels respectively. However from the viewpoint of dynamics, these

blocks could represent any positive feedback (or amplifying [55])inward current and

negative feedback (or resonant) outward current. Circuit 11 is a programmable bias
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OTA which is included because of its versatility and omnipresence in analog process-

ing. Circuit 4 is a 100 fF capacitance that is used to emulate membrane capacitance.

Different magnitudes of capacitance are also available from the metal routing lines

and OFF switches. One input of a current mode winner-take-all block is formed by

10. A synapse following the implementation in [41] can be formed out of components

6, 7, 8 and 9 and will be detailed later. The reason for choosing such a granularity is

primarily component reuse. For example, component 8 can also be used as a variable

current sink/source or a diode connected FET while component 6 can be used as a

leak channel. We next describe how to combine different CAB components to make

neurally inspired circuits.

5.2 Spiking Neuron Models

5.2.1 Hopf Neuron

Figure 36(a) shows the circuit for a Hodgkin-Huxley type neuron consisting of a

sodium and a potassium channel. For certain biasing regimes, the neuron has a stable

limit cycle that is born from a Hopf bifurcation, the details of which are available

in [13]. In this case, we have biased the potassium channel such that its dynamics

is much faster than the sodium (M3 acts as an ON switch). Hence, the potassium

channel acts like a leak channel. The whole system now becomes a two-dimensional

set of differential equations since the dynamics of Vmem follow that of the sodium

channel. The parameters of the sodium channel are set based on voltage clamp

experiments on it (not shown here).

It is important to understand that these neurons have different computational

properties when compared with integrate and fire neurons. For example, the frequency

of spikes does not reduce to zero as the bifurcation value is reached, a classical property

of type II neurons [55]. Also, synchronization properties and phase-response curves

of these neurons are significantly different from integrate and fire neurons. Hence,
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Figure 36: Spiking Neuron: (a) Neuron model where spiking is initiated by a Hopf
bifurcation. (b) Measured noise induced spikes when the neuron in (a) is biased at the
threshold of firing. (c) Integrate and fire neuron with the hysteresis obtained using M4 and
M5. Here, the circled transistor, M5 is a switch element. (d) Measured noise induced spikes
when the neuron in (c) is biased at the threshold of firing.

it is an indispensable component of a library of neuronal components. Figure 36(b)

shows measured noise induced spikes from a Hopf neuron biased at the threshold of

firing. Note that the magnitude of the action potentials are similar to biology, thus

opening the possibility of using the chip for interfacing with live neurons.

5.2.2 Integrate and Fire Neuron

Figure 36(c) shows the circuit used for an integrate and fire neuron. The circuit has

a hysteresis loop based relaxation oscillation when the input current is large enough.

The inverter exhibits hysteresis because of the feedback from M4 and M5. M4 and

M5 act as a current source, Ihyst, when Vout is low, while it is turned OFF when Vout

is high. M5 is a routing element that sets the value of Ihyst while M4 acts as a switch.
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Figure 37: Synapse architecture: (a) The architecture of the chip places the synapse
dynamics block for both excitatory or inhibitory synapses in the CAB along with the model
of the soma. The synapse weight is set by the interconnect network. (b) The test setup
for the experiment has an excitable neuron with a synaptic connection to a leak channel
biased by a current source. A pulse is applied to the neuron and the corresponding PSP
is measured. Compiling the circuit from the SIMULINK GUI is as easy as drawing this
cartoon.

The trip-point of the inverter depends on the condition of Vout leading to hysteresis.

The time period of the relaxation oscillations is given by:

T =
Vhyst

Iin
+

Vhyst

Iin − Ireset
, (19)

where Vhyst is the magnitude of the hysteresis loop in terms of the membrane voltage

and Ireset is the reset current controlled by M2 and M3. It can be seen that the

frequency of oscillations in this case does reduce to zero as Iin reduces to zero, akin

to a type I neuron. This system can also be modeled by a differential equation with

two state variables. Figure 36(d) shows output of this circuit due to noise when it is

biased at the threshold of firing.

5.3 Synapse

In this section, we describe three possible methods of implementing synaptic dynamics

in the chip. The overall architecture is depicted in Fig. 37(a). Every CAB has a

spiking neuron and a circuit to generate the dynamics of a post-synaptic potential

(PSP). This node can now be routed to other CABs having other neurons. The FG

switch that forms this connection is however not programmed to be fully ON. Rather
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Figure 38: Synapse: Three possible chemical synapse circuits. The circled transistor
represents a switch element. PSP for three different weight values are shown. (a) The sim-
plest excitatory synapse where reversing the positive and negative terminals of the amplifier
changes it to an inhibitory synapse. (b) The amplifier acts as a threshold and switches a
current source ON/OFF. The value of Vsyn relative to the membrane potential makes it
inhibitory or excitatory. (c) Similar to (b) with better control on the shape of the PSP
waveform because of the current starved inverter governing the charging and discharging
rates independently.

the amount of charge programmed onto its gate sets the weight of this particular

connection that is accurate to 9 bits. Hence, all the switch matrix transistors act as

synaptic weights leading to all to all connectivity in the chip.

Figure 37(b) shows the setup for measuring the dynamics of the chemical synapse

circuit. A neuron is biased such that it elicits an action potential when a depolarising

current input is applied to it. This neuron has a synaptic connection to a passive
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Figure 39: Rall’s alpha function: Rall’s alpha function is fit to one of the EPSP plots
from the earlier experiment with a resulting error less than 10 %.

membrane with a leak conductance where the PSP is measured. Out of the many pos-

sible synaptic circuits possible, we show three versions here. All these circuits have the

dynamics of a one-dimensional differential equation. Unlike these chemical synapses,

electrical synapses are almost instantaneous and can be modeled by a floating-gate

PMOS. We have also measured such circuits and their effects in synchronization of

spiking neurons but do not discuss them here.

Figure 38(a) depicts the simplest type of excitatory synaptic circuit. The am-

plifier creates a threshold at Vref and charges or discharges the node VS when the

input voltage crosses the threshold. Depending on the charge on the floating-gate

switch element (circled transistor), a certain amount of current is then incident on

the post-synaptic neuron. The synapse becomes inhibitory if the input is applied to

the negative terminal of the amplifier. We show measured data for both cases for

three different synaptic weights.

Figure 38(b) shows the second circuit for a chemical synapse and measured results

for the same. Here, the amplifier creates a digital pulse from the action potential.

This switches the floating-gate PMOS current source ON which charges the node VS

while the second FG routing element sets the weight of the connection. The synapse

is excitatory when Vsyn is larger than the resting membrane potential and inhibitory
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otherwise.

Figure 38(c) shows the circuit which replicates the synaptic dynamics most ac-

curately [41]. After the amplifier thresholds the incoming action potential, the cur-

rent starved inverter creates an asymmetric triangle waveform (controlled by the FG

PMOS and NMOS) at its output. The discharge rate is set faster than the charging

rate leading to post synaptic potentials that decay very slowly. Again, we show EPSP

and IPSP waveforms for three weights of the synapse. The waveforms shown are close

to the ones recorded for actual neurons [59]. A common method for modeling PSP is

using Rall’s alpha function as follows:

VPSP (t) = Vmaxαte
(1−αt) (20)

Figure 39 shows a curve fit of such an alpha function to a measured EPSP waveform

with an error that is less than 10%.

It should be noted that when using these synapses with integrate and fire neurons,

the amplifier used for thresholding is not needed as it is part of the neuron circuit.

5.4 Dendrite

The circuit model of a dendrite that we use is based on the diffuser circuit described

in [45]. This is one of the circuits built entirely on the routing fabric and exploits

fully the analog nature of the switches. Figure 40(a) shows the circuit while Fig.

40(b) shows a modified version used to measure the different branch currents. The

horizontal transistors connecting the nodes Vx allow diffusion of currents while the

vertical transistors leak current to a fixed potential from every node. The dynamics of

an n-tap diffuser circuit is represented by a set of n-dimensional differential equations

which approximate a partial differential equation. The steady state solution of the

equation is exponentially decaying node currents as the distance of the node from the

input node increases.
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Figure 40: Dendrite model: (a) Model of a passive dendrite based on a diffuser circuit.
(b) Experimental setup for measuring transient response of a dendrite cable. The current
through the desired node is converted to a voltage using the diode connected NMOS. (c)
Steady state currents in a 7-tap diffuser. (d) Step responses at nodes 1,4 and 6 of a 7-tap
diffuser showing progressively more delay.

Figure 40(c) plots the steady state current through the compartments of a 7-tap

diffuser. Figure 40(d) shows step responses of a seven tap diffuser. Voltages at the

first, fourth and sixth nodes are plotted here. The delayed response of the distant

nodes is typical of dendritic structures. The effect of the changing diameter in den-

drites can also be modeled in these circuits by progressively changing the programmed

charge on the horizontal devices along the diffuser chain.

We can put together all the previous circuit elements by creating a spiking neuron

that has a synapse connecting it to the dendritic tree of another neuron. Figure

41(a) shows a picture depicting such an experimental setup, the results of which are

presented in Fig. 41(b). We can see that initially the post-synaptic neuron does not

respond to the input spikes. However, increasing the dendritic diffusion results in

visible post-synaptic potentials. Increasing the diffusion even more allows the post-

synaptic neuron to fire in synchrony with the pre-synaptic one.
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5.5 Larger Systems

Spiking neurons coupled with synapses have been the object of considerable study over

several years. While there are theories showing the existence of associative oscillatory

memory [52] in networks of coupled spiking neurons, a lot of work has been devoted

to looking at the simplest case of two coupled neurons and its role in generating

rhythms for locomotion control [113]. The most popular circuit in this regard is the

half-center oscillator where the neurons are coupled with inhibitory synapses. Here,

we look at both cases, i.e. when the connections are inhibitory or excitatory as shown

in Fig. 42(a). Intuitively, when the connections are excitatory both the neurons will

try to fire at the same time, leading to in-phase spikes. On the other hand, when

the connection is inhibitory, the spiking of one neuron suppresses that of the other

giving rise to spikes out of phase. This phenomenon and its relation to synaptic

strength can be studied better by transforming the differential equation into a phase

variable. We can transform the equations using the moving orthonormal co-ordinate

frame theory [27] and keep the first order approximation of a perturbation analysis

to get:

φ̇i = αi + ε
∑

j 6=i

Hij(φi − φj), φǫS
1 (21)

where ε is the synaptic strength and αi are frequency deviations from a nominal

oscillator. For two oscillators, it can be seen that for a given frequency deviation

there is a fixed point only if ε is larger than a certain minimum value. In practice, no

two spiking neurons have same frequency of oscillation even at same biasing because

of mismatch. So, in experiments, we slowly increased the synaptic strength till the

oscillators synchronized. Figure 42(b) and (c) show the measured spiking waveforms

obtained from integrate and fire neurons and Hopf neurons respectively. We can see

that in one case the neurons are spiking in-phase while they are anti-phase in the

other. All these measurements were done with synapses of the first kind discussed
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Figure 41: Full Neuron: (a) A spiking neuron is connected to another neuron through
an excitatory synapse. The post synaptic neuron in this case has a dendritic tree. (b) The
diffusion length of the dendrite is slowly increased in the experiment. Though the post
synaptic neuron did not respond initially, increasing the diffusion resulted in visible EPSP
waveforms and eventual spiking. Absolute voltages are not shown in this figure.

earlier. They can be done with different synaptic dynamics to analyze the effect of

synaptic delay on synchronization properties of type I and type II neurons. Detailed

dynamics of escape and release phenomenon [97] can also be observed.

Figure 43(a) shows the schematic for a central pattern generator for controlling

bipedal locomotion [113] or locomotion in worm like robots [4]. It consists of a chain of

spiking neurons with inhibitory nearest neighbor connections. We implemented this

system on our chip with Hopf neurons connected with the simple synapses described

earlier. The resulting waveforms are displayed in Fig. 43(b). The current consumption

of the neuron in this case is around 180 nA and the synapse dynamics block consumes

30nA of current leading to a total power dissipation of around 0.74 µW (excluding

power for biasing circuits and buffers to drive off-chip capacitances). The low power

consumption of the computational circuits and biological voltage scales makes this

chip amenable for implants.

The second system we present is a spiking neuron with four dendritic branches

that acts as a spike sequence detector. Figure 44(a) shows the schematic for this

experiment. In this experiment, the dendrites were chosen to be of equal length and
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Figure 42: Coupled Oscillators: (a) Two neurons coupled by excitatory and inhibitory
connections. (b) Measured output from integrate and fire neurons coupled with excitatory
(top) and inhibitory (bottom) synapses. (c) Measured output from Hopf neurons coupled
with excitatory (top) and inhibitory (bottom) synapses. Absolute voltage values not shown.

the neuron was biased so that input from any one dendrite did not evoke an action

potential. Since the neuron is of the Hopf type, it has a resonant frequency, the

inverse of which we can call a resonant time period. Input signals that arrive at the

soma at time intervals separated by the resonant time period and its multiples have

higher chances of evoking action potentials since their effects add in phase.

Figure 44(b) shows the pattern of inputs applied. Cases 1 to 3 shows three in-

stances of input pulses with increasing time difference, td, between them. We show

the case when the three pulses are on the same dendrite but the same experiment

has been done with input pulses on different dendrites too. Figure 44(c) plots the

resulting membrane potential for different values of td. For case 1, the small value

of td leads to aggregation of the EPSP signals making the neuron fire an action po-

tential. This behavior is similar to a coincidence detector. When td is very large as
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Figure 43: Central Pattern Generator: (a) A set of four neurons coupled to its nearest
neighbors with inhibitory connections. This models the central pattern generator in many
organisms [4, 113]. (b) Measured waveforms of the four Hopf neurons showing different
phases of oscillations. Absolute voltages are not shown.

in case 3, the EPSP signals are almost independent of each other and do not result

in a spike. However, at an intermediate value of the time difference, we do observe

multiple spikes because of in-phase addition of the EPSP (case 2). The reason for this

behavior is the value of td in this case is close to the resonant time of the Hopf neuron

as mentioned earlier. The lengths of the dendrite segments can be modified such that

the neuron spikes only when the inputs on the different branches are separated by

specific time delays. This serves as one example of possible dendritic computation.

5.6 Discussions

Having described several circuits and systems that can be implemented on the chip in

earlier sections, we now discuss a few aspects relating to the computational efficiency,

accuracy and scaling of this reconfigurable approach. We also talk about obtaining

parameters for the Hopf neurons from Hodgkin-Huxley type parameters.
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5.6.1 Computational Efficiency

The efficacy of the analog implementation can be appreciated by considering the

effective number of computations it is performing. Let us consider the case of the

central pattern generator presented in the last section. In this case, we can model the

whole system by a set of differential equations and compute the number of multiply-

accumulate (MAC) operations needed to perform the same computation on a com-

puter. We consider an RK 4th order integrator (neglecting possible numerical prob-

lems because of multiple time scales) with a time step of 20 µsec (since the spiking

activity is on a scale of msec). There are 5 function evaluations per integration step

with around 40 MAC needed for every function evaluation (cosh, exp etc). There are

at least 12 state variables in this system (2 per neuron and 1 per synapse dynamics

block) leading to a computational complexity of 120 MMAC/s. Power consumption

for this computation on a 16 bit TI DSP is around 30 mW (excluding power dissipa-

tion for memory access) [75]. Our analog implementation consumes 0.74 µW resulting

in a performance of 162 GOPS/mW. The area needed for this system was .024 mm2

in addition to routing. However, using silicon area as a metric is misleading since

in this case a lot of the area is traded for achieving reconfigurability. Compared to

a DSP, single instruction multiple data (SIMD) paradigm based cellular non-linear

network (CNN) systems [36, 39, 62, 75] report performances that are closer to this

chip. Though these systems do not replicate biological behavior at the level of ion-

channels like our chip, their designs are nevertheless based on abstractions of neural

systems. The reported performance for some of these chips are 1.56 GOPS/mW [39]

and 0.08 GOPS/mW [75], significantly less than our chip. There are, of course, other

functionalities that these chips can do better than ours. It should also be noted, that

the DSP performs 16 bit computations, while the analog one is less accurate. These

inaccuracies are described next.
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Figure 44: Coincidence detector: (a) Schematic of a neuron with four different inputs
incident on four dendritic branches. (b) This figure is indicative of the timing relationships
between the input pulses (voltages are shifted for better viewing). ts indicates the time
when the first pulse was applied. (c) When the time delay between inputs is small, we see
the classical aggregation of EPSP leading to a spike in case 1 while there is no spike in case
3 because of the large time delay between input pulses. Case 2 shows multiple spikes since
the Hopf neuron is most excitable when the inter-pulse interval is close to the resonant time
of the neuron. Absolute voltage are not shown here.

5.6.2 Sources of Error

The most obvious source of error is finite resolution in setting the circuit parameters

and synaptic weights. This relates to FG programming accuracy, which, in our case is

limited by the resolution of the ADC for measurements. Our measurement approach

creates a floating-point ADC [11] with an effective resolution of around 9.5 bits.

The next source of error stems from mimicking a biological phenomenon by silicon

circuits. Some of the approaches we presented are based on qualitative similarities

between the silicon circuit and its biological counterpart. For example, Fig. 39 depicts

the mismatch between a synaptic EPSP and a biological one is around 10% corre-

sponding to around 3.5 bits. In general, this error is difficult to analyze and depends

on the desired computation.

Finally, thermal noise presents a fundamental limit to the computational accuracy.

The low-current, low-capacitance designs we presented save on power in exchange for

thermal noise. This is actually close to the computational paradigm employed by
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biology and hence is not necessarily a problem.

5.6.3 Scaling

To expand these silicon systems to mimic actual biology, multiple chips need to be

interconnected. The modular architecture of our chip does allow tiling of several

chips. In that case, however, all-to-all connectivity has to be sacrificed due to the

limited number of routing lines. This is also not unlike biology where local intercon-

nects are more dense than global connections. To allow more flexibility in inter-chip

connections, the next generation of these chips are being designed with address-event

(AER) support [19].

5.6.4 Parameter Conversion

To use this analog chip in place of digital simulations, there needs to be a method

to bias the analog neurons to perform computations similar to the digital simulation.

We will show parameter conversion for a H-H type potassium channel and transient

sodium channel [47] to silicon channel models as described in [37]. An obvious ques-

tion that arises is ”Should we model the biological channel or should we model a set

of equations that model biology ?” However, since many neuroscientists already use

the H-H model, this kind of an automated conversion was deemed useful for porting

their already existing designs. In spirit, this seems similar to extracting EKV model

parameters from BSIM parameters, both of which model a transistor’s operation, but

the EKV is closer to the physics of the device while the BSIM model is more of a

curve fit.

The model put forward by Hodgkin and Huxley described ion channels as time-

variant non-linear conductances controlled by activation or inactivation of certain

gating molecules. In the silicon implementation, transistors operating in subthreshold

regime with gating amplifiers are used instead to model channel behavior. Without

going into a debate over which model is more biologically accurate, we shall try to find
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Figure 45: Potassium channel: A silicon implementation of a potassium channel as
described in [37].

parameters for both representations such that their behaviors are similar in a small

range of membrane potentials. The operation of the model near resting potential is

probably the most important to determine the spike timing and hence we equate the

behavior of both models close to rest. Our approach mainly consists of equating DC

operating points and small signal transconductances of both models.

We shall begin by discussing how to choose parameters for the potassium channel.

5.6.4.1 Potassium Channel

Figure 45 shows the schematic for a silicon potassium channel.

The equation for the potassium channel population described in Hodgkin-Huxley’s

original paper [47] is:

Ik = gk × n4 × (Vmem − Ek)

dn

dt
=
nss(Vmem) − n

τn

nss(Vmem) =
1

1 + e
Vn,half−Vmem

nk

(22)

where Ik is the potassium channel current, gk is the conductance of the channel pop-

ulation for a certain cross sectional area, Vmem is the membrane potential, Ek is the

reversal potential for potassium ions, n is the activation variable describing the frac-

tion of potassium channels that are open at a particular instant, nss describes the
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Figure 46: Potassium channel voltage clamp: Voltage clamp responses for H-H chan-
nels (blue) and silicon implementation (red) are plotted for increasing steps of 1.67 mV
each. The three plots depict voltage clamp data for three different slopes (nk) of the H-H
activation function with the values being 15, 70 and 250 mV −1 respectively.

steady state value of the potassium activation which has a sigmoidal dependence on

the membrane potential and τn is the time constant for the activation of potassium.

Typically, H-H models have a voltage dependent time constant. But for our anal-

ysis, we shall ignore the voltage dependence and consider an average value of the

time constant for membrane voltages in the vicinity of the resting potential. The
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corresponding equation for the silicon version of the potassium channel is:

Ik = Ik0e
−

κvk
UT (e

Vmem−Ek
UT − 1)

vk = Vk − Vgk

dvk

dt
= −Iτn

Ck
(e

vk
UT − 1) (23)

where Ik0 = I0e
−

Ek−κVgk
UT , Iτn = I0e

Vgk−κVτn

UT , κ is the coupling from the transistor’s gate

to channel and UT is the thermal voltage. The two voltage biases to be chosen for the

silicon channel are Vgk and Vτn. These two biases are represented in the mathematical

model by the parameters Ik0 and Iτn respectively. Iτn can be obtained by equating

τn with the linearized time constant for 23 to get:

Iτn =
CkUT

τn
(24)

Ik0 can be obtained by equating the steady state currents from both the channels

at some particular voltage. A possible choice of this voltage might be the resting

potential, Vrest. Using that choice, we get:

Ik0 =
gk × n4

ss(Vrest) × (Vrest −Ek)

e
Vrest−Ek

UT − 1
(25)

With these approximations, we can plot the current resulting from both the H-

H and the silicon channel for voltage clamps. Figure 46 plots the resulting voltage

clamp from both channel models for different values of nk, the slope of the activation

function. Results from the H-H model are plotted in blue while the currents from

the silicon implementation are plotted in red. The voltage clamp steps start from 15

mV above Ek and increase in values of 1.67 mV. It can be seen that there is a good

agreement for the currents for nk = 70 while the quality of the fit degrades for other

values. The reason for this can be attributed to the absence of any gating amplifier

controlling the gate of Mk, the potassium channel transistor. Hence, a better fit may

be obtained by modifying this silicon channel.
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Figure 47: Sodium channel: A silicon implementation of a sodium channel as described
in [37].

5.6.4.2 Sodium Channel

Figure 47 shows the schematic for a silicon sodium channel.

The transient sodium channel in the Hodgkin Huxley model is more complicated

than the potassium since it also has an inactivation variable along with the activation

variable. The equation for it is given by:

Ina = gna ×m3h× (Vmem − Ena)

dm

dt
=
mss(Vmem) −m

τm
dh

dt
=
hss(Vmem) − h

τh

mss(Vmem) =
1

1 + e
Vm,half−Vmem

mk

hss(Vmem) =
1

1 + e
Vh,half−Vmem

hk

(26)

where m is the activation variable describing the fraction of sodium channels that are

open at a particular instant, h is the inactivation variable describing the fraction of

activated gates that are inactivating, mss and hss describe the steady state value of

the sodium activation and inactivation, τm and τh are the time constants for activation

and inactivation of sodium and all other parameters are sodium channel equivalents

for similarly named potassium channel parameters. Similar to the potassium channel,

we again accurately model the behavior of the channel close to the resting potential
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Figure 48: Sodium channel voltage clamp: Voltage clamp responses for H-H channels
(blue) and silicon implementation (red) are plotted for increasing steps of 1.67 mV each.
The four plots depict voltage clamp data for four different slopes (mk) of the H-H activation
function with the values being 8, 10, 12 and 15 mV −1 respectively.

due to the importance of the subthreshold dynamics in determining spike timing.

For the silicon implementation, a bandpass amplifier is used to mimic the effect

of fast activation followed by slow inactivation. The corresponding equations are:

Ina = Ina0e
−

κ∆Vout
UT

∆ ˙Vfg =
Iamp

Cna
e
−

κ∆Vfg
UT − Iamp

Cna
(1 − e

−βUT−∆Vout
UT )

∆ ˙Vout = (1 + 1/ǫ)∆ ˙Vfg +
Iτh

Cnaǫ
(e

∆Vfg
UT − e

∆Vout
UT ) (27)
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where Ina0 is the steady state current in the sodium channel, ǫ = Cz/Cna, Vout0 −

Na amp vss = βUT where Vout0 is the steady state value of Vout and ∆V represents

deviations of a voltage variable from its steady state value. Ina0 can be obtained by

equating the rest currents to get:

Ina0 = gna ×m3
ss(Vrest) × hss(Vrest) × (Vrest −Ena) (28)

where the ohmic nature of Mna has been neglected since Vrest is typically lesser than

Ena by more than 4UT .

The mid frequency voltage gain of the bandpass sodium amplifier is approximately

1/ǫ, the ratio of Cna and Cz. This gain is determined by the transconductance gain of

the sodium channel, one factor in determining which is the slope, mk of its activation

curve mss. Let us elaborate this point a bit more. Since the sodium channel creates

transient currents, the gain of the channel can be estimated by measuring the peak

current values during a voltage clamp experiment. Then the transconductance gain

of the channel can be defined as the ratio of the peak current value to the magnitude

of the small step applied. To estimate the peak current we take advantage of the

separation of time scales of activation and inactivation and assume that the channel

achieves its peak current when the activation variable reaches its steady state. In

other words, we assume that by the time the activation variable reaches its steady

state, the inactivation variable has not changed appreciably from its initial value

before the step. With these approximations, the transconductance gain, G of a H-H

type transient channel can be derived as:

Ix = gx ×mα(V ) × h(V ) × (V − Ex)

Ghh,x = gx ×mα
ss(Vrest) × hss(Vrest) +

gxα

xk
×mα

ss(Vrest) × (1 −mss(Vrest)) × hss(Vrest)

×(Vrest − Ex) (29)

where parameters have similar definitions to the ones described for the sodium channel
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which had subscripts of ‘na’ instead. Now, the parameter ǫ can be estimated as:

ǫ =
Gm,Mna

Ghh,na

=
κIna0

UTGhh,na

(30)

where Gm,Mna is the small signal transconductance of the sodium channel transistor.

The voltage biases Vτm and Vτh that set the bias currents Iamp and Iτh can be

obtained by equating the linearized activation and inactivation time constants from

27 with the H-H time constants to get:

Iamp =
CnaUT

κτm

Iτh =
ǫCnaUT

τh
(31)

Finally, the value of β can be estimated by calculating the maximum possible current

in the sodium channel. This value can be roughly approximated as follows:

Ina,max = gna ×mss(Vmax)
3 × hss(Vrest)(Vmax − Ena)

β =
ln

(

Ina,max

Ina0

)

κ
(32)

where Vmax is that value of membrane voltage for which the expression of Ina,max

attains its maximum. This value can be found iteratively with a good starting guess

being a value V0 such that mss(V0) > 0.9.

Estimating the parameters for the silicon channel in this way, let us compare the

voltage clamp responses for both the models. Figure 48 plots the voltage clamps of

both channels with the voltage steps being same as the potassium channel experiment.

Like the earlier case, results from the H-H model are plotted in blue while the currents

from the silicon implementation are plotted in red. Again, four different cases are

plotted for different values of the sodium activation slope, mk. Unlike the earlier

case, the gain of the sodium amplifier is modified for these different cases leading to

a good approximation of the peak current values. However, it should be noted that

in a silicon implementation, the option of changing capacitor ratios is not available.
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Hence, in a real implementation, the equivalence will be good for a certain value of mk

and degrade otherwise. Also, it should be noted that the final steady state currents

from the silicon channel do not match the H-H channel values. The reason for this

is the silicon model of the sodium channel assumes almost complete inactivation at

the end of the step. But for the parameters of hss chosen in this simulation, hss is

not small enough when V is close to the value for Vrest. Hence, the final values of the

currents for the H-H channel simulation do not reduce to be close to the rest current.

5.7 Conclusion

We presented a reconfigurable integrated circuit for accurately describing neural dy-

namics and computations. There have been several earlier implementations of silicon

neural networks with a dense synaptic interconnect matrix. But all of them suffer

from one or more of the following problems: fixed connectivity of the synaptic ma-

trix [26], inability to independently control the neuron parameters since they are set

globally [51,112] and excessively simple transfer-function based neuron models [107].

In the chip we present, both the topology of the networks as well as the parame-

ters of the individual blocks can be modified using floating-gate transistors. Neuron

models of complexity varying from integrate and fire to Hodgkin-Huxley can be im-

plemented. Computational area efficiency is considerably improved by implementing

synaptic weight on the analog switch matrix resulting in all to all connectivity of

neurons. We demonstrate dynamics of integrate and fire neurons, Hopf neurons of

Hodgkin-Huxley type, inhibitory and excitatory synapses, dendritic cables and cen-

tral pattern generators. In the next section, I describe a different chip employing the

same architecture but with different CAB components suited for signal processing.

This serves as an example for the generality of the architecture and underlines the

possibility of using the FPAA platform for different applications.
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CHAPTER VI

RECONFIGURABLE ANALOG SIGNAL PROCESSOR

This chapter describes another FPAA chip employing the same architecture described

in 4. The difference of this chip compared to the one presented in the last chapter

is that the CAB components are suited for analog signal processing tasks. These

components are also programmable, with this flexibility being provided by floating-

gate elements. In the following sections, we first describe the CAB components in

this chip and then present several small circuits demonstrating the operation of the

CAB elements.

6.1 CAB Elements: Characterization and Simple Circuits

6.1.1 Cab Elements

The CABs are of two major types as shown in Fig. 49(a). Figure 49(b) depicts the

components in the two CABs. The first one has three operational transconductance

amplifiers(OTA), three floating capacitors (500 fF each), two multi-input floating

gates which can be used for constructing translinear circuits using MITE architec-

tures, a voltage buffer, a transmission-gate with dummy switch for switched-capacitor

applications, and NMOS/PMOS transistor arrays with two common terminal for eas-

ily constructing source-follower or current-mirror topologies. All the OTAs are biased

using floating-gate transistors giving the user the option to tradeoff bandwidth, noise

and power. Cascode biasing circuits based on [72] are included as well. Two of the

OTAs have floating-gate differential pairs (FGOTA) which enable programming the

offset of the amplifier as well as provide wide input linear-range that is essential to

reduce distortion in Gm-C filters and oscillators. The second type of CAB has two

folded Gilbert multipliers and a floating-gate current mirror in addition to a wide
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linear range OTA. The multiplier also has floating-gate differential pairs to reduce

distortion. The FG current mirror can be used to convert the differential output

currents of the multiplier into a single ended voltage output. These CAB components

can be connected using the switch-matrix consisting of floating-gate switches, which

unlike other digital switch implementations, can also be used for analog computations.
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Figure 49: Switch matrix: (a) The architecture of the chip shows two different CABs.
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Figure 50: Variable offset comparator: (a) Schematic of a floating-gate input OTA
whose input offset can be programmed using the FG inputs. It is used as a comparator in
this experiment. (b) Different values of programmed charge difference on the differential
inputs leads to different measured trip points for the comparator. (c) Relation between the
comparator trip points and the programmed charge difference shows an average deviation
of 5.8 % from linearity.

6.1.2 Floating-gate input Operational Transconductance Amplifier (FGOTA)

One of the most versatile circuit elements on the chip is the FGOTA [23]. The circuit

is shown in Fig. 50(a). It consists of a differential amplifier followed by a push-pull

output stage. The bias current of the amplifier can be programmed using an FG

device (M1). The differential pair transistors (M2 and M3) are also floating gates

which allows the user to program a desired input offset voltage. The input is applied

to the differential pair through a capacitive divider that has a 1:9 ratio. This allows
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Figure 51: Wide input linear range: A capacitive divider is placed before the input of
a traditional differential pair to provide an effectively wider linear range. This circuit has
a measured linear range of 673 mV for 5 % degradation in transconductance.

a wider input linear range by effectively degenerating the transconductance. The

advantage of this method over other degeneration schemes is that the capacitors add

virtually no noise. Mismatch in the series capacitors (of nominal value C), however,

directly degrades the CMRR. In future versions, cascode transistors will be used in

the output stage to improve the output impedance and DC gain.

Since arbitrary input offsets (limited by the precision of programming charge) can

be stored in the input differential pair, the FGOTA can be used as a comparator

for a flash ADC and eliminates the need for a resistor ladder. Figure 50(b) shows

a case where 9 different offset values are set by programming the charge difference.

Figure 50(c) shows the relation between the programmed difference in floating-gate

voltage (as extrapolated from the current measurements during programming) and

the measured trip-point of the comparator. The average deviation from linearity is

5.8 % and can be attributed to errors in programming, extrapolating the floating-

gate potential and measuring the trip point from the high gain curve. The power

dissipation of the circuit is 9.6 µW and can be reduced if smaller bandwidth is needed.

Since there are sixty FGOTAs in the chip, a 5 bit flash ADC (without the thermometer

decoder) can be compiled.

The widening of the input linear range is depicted in Fig. 51 by plotting the

transconductance of the block with respect to input differential voltage. Assuming
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Figure 52: AC Summing circuit: (a) Schematic of a capacitive summing circuit. (b) The
summed output when a square wave and a sinusoid are applied to the inputs. (c) The circuit
has a bandpass response with the lower and higher poles being set by the conductance of
Mf and the transconductance of the OTA. Measured corner frequencies are 20 Hz and 20
kHz.

subthreshold operation, the I-V relation is:

Iout = Ibias tanh(
κα(Vin+ − Vin−)

2UT
) (33)

where α is the attenuation factor due to the divider, Ibias is the bias current of the

stage, κ is the coupling of the gate to the channel of a subthreshold MOSFET and UT

is the thermal voltage. Figure 51 plots the transconductance for three bias currents.

The linear range is 673 mV differential for 5 % degradation in Gm.
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Figure 53: Squaring circuit: (a) Circuit schematic for a MITE based implementation of
a squaring circuit. (b) Measured data shows an exponent of 1.95 with the deviation being
probably due to mismatch between the MITE transistors and the capacitors.

6.1.3 Capacitive Summer

Figure 52(a) shows the circuit for summing the two signals Vin1 and Vin2. C1, C2 and

Cf are capacitors of value 500 fF each. The transconductance amplifier is similar

to the FGOTA described in the earlier subsection but without a floating-gate input

differential pair. Mf is a FG device from the switch matrix (operating in subthreshold)

that acts like a small conductance, gf , with its value given by:

gf =
I0e

Vref−κVfg
UT

UT
(34)

where Vfg is the potential of the floating node, I0 is the pre-exponential factor in the

current equation of a subthreshold PMOS and κ was mentioned earlier in (33). This

circuit has a bandpass response [79] with the lower and higher poles, p1 and p2 given

by:

p1 =
gf

Cf

p2 =
Gm

Ceff
(35)

where Gm is the transconductance of the OTA and Ceff = (CoCT − C2
f )/Cf , Co =

CL + Cf and CT = C1 + C2 + Cf + Cw. Cw and CL are parasitic capacitances at the
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inverting input and output of the OTA respectively and are not shown in the figure.

In the pass-band the output voltage is given by:

Vout = −C1

Cf

Vin1 −
C2

Cf

Vin2 (36)

which is a weighted summation of the two inputs. Figure 52(b) shows the output

summed voltage when the inputs are a square wave and a sinusoid. Figure 52(c)

shows the measured frequency response of the circuit when the same sinusoid is

applied to both inputs. Gm and gf were programmed to get lower and higher cut-off

frequencies at 20 Hz and 20 kHz respectively. The nominal pass-band gain is 6 dB

with a maximum error of 0.021 dB.

6.1.4 Current-mode Translinear circuits

Translinear circuits introduced by Gilbert are very popular for their versatility in

implementing signal processing functions. In particular, multi-input translinear el-

ements (MITE) [73] have been shown to successfully synthesize various static and

dynamic functions. This FPAA chip has a couple of two input MITE elements in ev-

ery CAB of type 1. Figure 53(a) shows the schematic of a simple circuit to implement

the static function of squaring the input. All the capacitors are nominally equal to

110 fF. The output current is measured using an off-chip pico-ammeter. The output

current is given by:

Iout = Iref2

(

Iin
Iref1

)1+a/b

a = −κ2(C21 + C22)

CT2UT

+
κ1(C11 + Cgd1)

CT1UT

b = −κ1(C11 + Cgd1)

CT1UT

CTj = Cj1 + Cj2 + Cgj, j = 1, 2 (37)

where quantities with subscripts 1 or 2 refer to parameters for M1 or M2. Iref1/Iref2

are constants associated with M1/M2 and are controlled by their respective floating-

gate charges. Iref1 is also controlled by Vc. For nominally matched parameters of
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Figure 54: FGOTA buffer: (a) Circuit schematic of the floating-gate input buffer. (b)
Offset voltage reduction leads to a reduction in 2nd harmonic at the output of the buffer.
Measurements show an improvement of 19 dB.(c) The programmable input offset voltage
leads to a level shift in the output. This can be used as a reference voltage generator
with Vin connected to Vdd. Measured reference voltage is linearly related to programmed
offset. (d) Since the floating-gate charge does not change appreciably with temperature,
the reference has a low TC. Measured TC is equal to 24.6 ppm.

both devices and ignoring Cgd1, ‘a’ and ‘b’ are equal leading to a squaring circuit.

Figure 53(b) plots the output current against the input current for several values

of Vc. The average slope of the plots is 1.95 with the error resulting from mismatch.

Many other static and dynamic functions can be synthesized limited only to the

number of MITE devices in the chip.
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6.1.5 Programmable Offset Buffer

An FGOTA circuit configured as a voltage buffer has been placed in the CAB due

to its frequent need. The circuit is shown in Fig. 54(a). The ratio of C2 and C1 is 8

as mentioned earlier. Since an offset can be programmed by setting a desired charge

difference on the floating nodes, this can serve as a level-shifting buffer with the level

shift being approximately 9 times the programmed offset voltage. The offset can also

be reduced to zero (within programming precision) which leads to a reduction in the

second harmonic signal at the output. Figure 54(b) plots the output spectrum of the

buffer with a 10 kHz sinusoid at its input. The output is plotted without and with

offset correction. The spurious free dynamic range (SFDR) is 65.2 dB after correction,

19 dB better than earlier.

Because of the level shifting properties mentioned earlier, the output voltage can

be set to an arbitrary value within a range even if the input is fixed to Vdd. This

method is used to create a reference voltage generator. The capacitive divider ensures

that generating a wide range of reference voltages does not need a wide input common

mode range (ICMR) for the amplifier. Figure 54(c) plots the output reference voltage

against the programmed offset voltage (predicted from current measurements of the

floating-gates). In this experiment Q1 was fixed to a value while Q2 was varied. The

curve saturates near the power rails possibly due to output swing limitations. Within

the range of 0.3 V to 1.99 V, the average deviation from linearity is 1.6 %. The power

dissipation in this case is 9.6 µW and can be reduced by reducing the bias current.

Since the floating-gate charge does not vary appreciably with temperature [101],

this voltage reference also exhibits good temperature stability. Figure 54(d) plots

the measured temperature behavior for a particular reference voltage over a range of

-50 ◦C to 60 ◦C. The measured temperature coefficient (TC) over this range is 24.6

ppm. Assuming perfect matching between the capacitors and no charge loss from the
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Figure 55: Gilbert multiplier: (a) Circuit schematic for a folded Gilbert multiplier. M14
and M15 forms an FG current mirror that can be optionally added to convert the output
currents to a single ended voltage. (b) Measured output voltage for sweeping the differential
input Vin1 for different values of Vin2. The measured linear range is 2 V differential for a
maximum error of 1.5 %.

floating node, the TC of the reference can be shown to be:

TCV ref =
1

V ref

dV ref

dT
= − 1

C1

dC1

dT
= −TCC1

(38)

In practice the temperature performance may degrade further because of the variation

of the DAC voltage that supplies the voltage at the end of the capacitor C2 (shown

as a small signal ground in Fig. 54(a)) and due to variation of the amplifier’s gain.

It is shown in [1] that a dual FG design can obtain cancellation of the capacitor TCs

because poly-poly capacitors have a voltage dependent TC. Hence, for some values of

the reference voltage and floating-gate voltage the TC may be smaller. This option

has not yet been explored in our chip.

6.1.6 Folded Gilbert Multiplier

The Gilbert multiplier is a widely used analog component useful for mixers, variable

gain amplifiers (VGA), automatic gain control (AGC) and many more applications.

However, the stacking of multiple differential pairs leads to voltage headroom issues

in a traditional Gilbert cell. This has been solved by folding the signal currents

[6,94]. We employ a similar approach as shown in Fig. 55(a). The cascode biases are

generated following [72]. In the figure, Ib refers to the current in the bias generation
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Figure 56: AGC: (a) Circuit schematic for an AGC system. (b) Measured transient re-
sponse of the AGC to large variations of input amplitude. The attack and release times
are approximately 11 msec. (c) Measured gain compression curves showing a maximum
compression of 28 dB.

circuits. V1 and V2 are the two differential inputs to the multiplier. The multiplier

block produces differential output currents which can be converted to a single ended

voltage using a FG current mirror (M14 and M15). The low output impedance of M15

(due to Cgd) prevents the output from saturating. Figure 55(b) plots the measured

output voltage against differential input voltage Vin1 for several fixed values of Vin2.

For this case, Ib = 1 nA leading to a power dissipation of 230 nW. The maximum

deviation from linearity over a differential range of 2 V is 1.5 %.

Next we show an AGC circuit as an example application of the multiplier. The

schematic of the AGC is shown in Fig. 56(a). The multiplier is used as a VGA with

the gain controlling input being set by feedback. The feedback loop comprises a

peak detector, a low pass filter and a high gain amplifier. The desired amplitude

of the output is indicated by the signal Vamp. Figure 56(b) shows measured output
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Figure 57: Vector Matrix Multiplier: (a) Differential circuit for 1x1 VMM to multiply
an input current with a fixed weight is shown. (b) Measured data from the circuit for two
different weight values.

waveforms when the input is an amplitude modulated sinusoid. The output amplitude

at steady state is relatively constant. The time constants for recovery are around 11

msec. The whole circuit consumes approximately 3.76 µW of static power excluding

the power consumed in buffering the signal off-chip. Figure 56(c) shows the measured

gain compression characteristics. A fixed high gain and a fixed low gain characteristic

is also shown for comparison. The AGC achieves 28 dB of compression for the largest

input. The total variation of output amplitude is approximately 10 mV over the

whole range.

6.1.7 Vector Matrix Multiplier

Unlike a Gilbert multiplier that computes the product of two time-varying signals,

many applications require computing the dot product (or projection) of a time varying

input vector with a fixed coefficient matrix. Prime examples of this computation are

transforms (DCT, DFT) in signal processing. A fully differential circuit [24] to achieve

this is shown in Fig. 57(a). The OTAs are biased at 2 µA of current. The FG devices

in the circuit are routing elements, a classic example of a powerful computation

being performed on the switch matrix. This circuit implements a 1X1 VMM, i.e. it
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multiplies a differential input current signal with a differential weight to produce a

differential output current. The core of the circuit is a floating-gate based current

mirror (e.g. M+
i and M++

o ). The relation between input and output currents is given

by:

Iout = Iine
∆Vfg

UT (39)

where ∆Vfg is the difference in the floating-gate charge between the two transistors.

To obtain four-quadrant multiplication, four such single-ended multiplications are

done. The resulting differential output is given by:

Iout+ − Iout− = (w+ − w−)(Iin+ − Iin−)

w± = w0 ± ∆w,

Iin± = Iin0 ± ∆Iin (40)

where Iin0 and w0 are nominal or bias values. Since the output is a current, summing

many such outputs to compute the projection of an input vector on a weight vector

can be achieved by KCL.

Figure 57(b) plots measured output currents from this circuit for four different

weight values, two of which are of opposite signs but same magnitude. The average

deviation from linearity is 7 % with the major source of error being the overlap

capacitors coupling onto the floating-gate.

6.2 Larger Systems

6.2.1 AM Receiver

A receiver for an amplitude modulated signal has been implemented on the FPAA.

Figure 58(a) depicts the circuit diagram for the receiver. A synchronous demodu-

lation scheme is used to extract the modulating signal. The Gilbert multiplier is

used to down-convert the modulated signal. The carrier signal is extracted from the

received signal itself by using two comparators to threshold the received signal. The
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Figure 58: AM baseband: (a) Circuit for demodulation of an amplitude modulated signal
and subsequent filtering and conversion to a digital bit stream. (b) Measured transient data
for the whole system when the input is a 3 KHz triangle waveform modulating a 500 kHz
carrier.

comparators are connected in reverse polarity to generate a pseudo differential signal.

The resulting square wave signals are used to demodulate the received signal. Since a

square wave at the carrier frequency is used to demodulate, a low pass filter is needed

to sufficiently suppress the higher harmonic signals in the demodulated message. This

is not a problem provided the modulating and modulated signals are sufficiently sep-

arated in frequency. The output of the low-pass filter is digitized using a second-order

continuous-time delta-sigma modulator. The integrations of the input signal are per-

formed using two Gm-C integrators composed of FGOTA devices. Finally the output

of the second integrator is digitized by a comparator that acts like a 1 bit quantizer.

This signal is used to add a reset current to the first integration node. The output

digital signal is buffered using another comparator. Thus there are no clocks in this

system, and the delta-sigma modulator acts as a continuous time system. The bit

stream can be clocked and stored externally if desired. The dominant sources of error

are the finite output impedances of the transconductors and the current sources.

Figure 58(c) shows the output of the full system when the input is a 500 kHz

carrier modulated by a 3 kHz triangle wave. The demodulated and filtered waveform
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shows the triangle waveform while the output of the delta-sigma modulator is a pulse-

width modulated signal based on input amplitude. The static power dissipation of

this circuit is around 28 µW excluding analog and digital buffers.

6.2.2 Analog Speech Processor

The components in this FPAA are suited for a variety of speech processing algorithms.

Here we show an example of an algorithm for enhancing the SNR of a noisy speech

signal. Figure 59(a) plots the schematic of the system along with details about one

sub-band of the system. The algorithm is inspired by the physiological basis of hearing

and is detailed in [21, 86]. Here we only mention the salient points of the algorithm

for completeness.

An acoustic signal can be represented as

s(t) =
∑

n

en(t)vn(t) (41)

where en(t) is the slowly varying envelope of speech and vn(t) is the rapidly varying

speech excitation component in the nth channel. The de-noising algorithm suggested

by [86] requires non-linear processing of the envelope in each channel. The output of

the non-linear block is related to the input as follows:

ên(t) = βeα
n(t) (42)

Table 4: Table of Parameters

Process 0.35µm

Die Size 3mm× 3mm

Power Supply 2.4V

Injection Vdd 5.6V

Number of CABs 32

Switch programming time Nrows× 1 ms

Bias programming time 50 ms/element

Programming accuracy and range 9.5 bits over 6 pA to 20 µA
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Figure 59: Speech processor: (a) Circuit for processing one sub-band of a noisy speech
signal. (b) Programmability of the bandpass filter. (c) Gain controlling voltage input to
the Gilbert multiplier for a range of Vref values. (d) Output SNR for the circuits is around
7.5 dB better than input SNR.
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Methods for estimating α and β are given in [86]. Intuitively, the non-linear gain

applied to the original sub-band signal is like a 1 + tanh(x − x0) function with x0

depending on the input noise level. For larger noise, the algorithm chooses a larger

x0 such that the noise is maximally suppressed while the signal still has a gain.

In our implementation, the combination of an OTA and the rectifying action of a

MITE based current mirror is used to create one half of a tanh function while Vref

sets the parameter x0. The saturating characteristic of the other half of the tanh is

approximated by a current mode square root circuit. We are currently modifying this

circuit to allow for automatic generation of Vref .

We present measured data for one sub-band of the proposed system. Figure 59(b)

shows measured frequency responses from the tunable bandpass filter based on [43].

This shows that the results from this sub-band can be easily obtained for other sub-

bands too. The total current consumption for the four cases are 1.5, 6, 24 and 96

nA. Figure 59(c) shows the input differential voltage on the gain controlling input of

the Gilbert multiplier for different Vref values. The non-linear processing results in

almost zero gain for small signals while larger signals get larger gain. Figure 59(d)

shows the output SNR improvement of around 7.5 dB over the input SNR. Also, for

different input SNR values, the optimum point is reached for different Vref values as

expected. The static power consumption of this circuit is around 34.5 µW with 28.8

µW being dissipated in the peak detector and the TIA. Optimizations for reducing

the bias current of these elements are being done currently. The equivalent digital

computation for one sub-band in this case is approximately 500 kMAC leading to

a computational efficiency of 14.5 kMAC/µW which is orders of magnitude better

compared to an efficiency of around 2 MMAC/mW for digital signal processors [75].
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Table 5: Performance Comparison of FPAA Designs

Ref. Process Area Num.
of
CABs

CAB elements Num.
of
params.

Features

This
work

0.35 µm 9 mm2 32 Prog. offset and bias
OTA and multiplier,
prog. bias MITE, MOS-
FET, Capacitor, T-gate

≈ 50k1 Floating-gate

[30] 0.25 µm 1 cm2 16 Integrator, multiplier,
logarithm, exponent

416 log-domain
current-mode

[16] 0.13 µm 1 mm2 7 7 digitally tuned
transconductors

55 Hexagonal lay-
out

[76] 2 µm >18.75
mm2

102 Digital and analog
tuned Gm and capaci-
tors

80 Automatic
tuning

[3] - - 4 Switched capacitor fil-
ter, differential amp.,
SAR, Reference genera-
tor

16 Switched
capacitor

[68] 2.4 µm 20
mm2

4 Programmable gain, in-
tegrator/ comparator

16 Buffers for
switches

[85] 1.2 µm 21.62
mm2

5 Programmable bias in-
tegrator, amplifier, at-
tenuator

5 Current mode

1 All switches can be programmed in an analog way leading to around 50000 parameters.
The CABs have 460 parameters.

2 Minimum complexity of CAB considered to be 4 programmable transconductors sim-
ilar to this work.
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6.3 Conclusion

FPAA devices have come a long way since the introduction of the first few proto-

types [65]. The RASP 2.8 generation of FPAA devices provide a powerful platform

for prototyping and implementing large-scale signal processing applications. Table 4

presents the parameters for this chip. The programmable switch matrix composed of

floating-gate devices shows excellent isolation and can be readily utilized in compu-

tation. Different levels of routing allow implementation of high performance circuits

while allowing for fast turn-around times. A comparison with other FPAA chips is

presented in table 5. To the authors’ knowledge, there is still no concrete performance

metrics to compare different FPAA designs. One method that may be used in the

future is to have a number of benchmark applications (filters, vector-matrix multi-

plication etc.) for which power per unit computation or speed may be compared. In

that case a possible figure of merit is:

FOM =
(Number of parameters)(MMAC/µW )(fmax/fT )(SNR)

(Area/L2
min)

=
(Number of parameters)

Area

fmaxL
2
min

fT
(MMAC/µW )(SNR) (43)

where fmax, SNR andMMAC/µW are the maximum bandwidth, signal to noise ratio

and power efficiency obtained for the benchmark applications while fT and Lmin are

features of the VLSI process used. The chip we present is the largest design reported

with around fifty thousand programmable analog parameters and has significantly

more variety in CAB components compared to others. We hope to use this chip

for prototyping and implementing systems for a variety of applications ranging from

speech processing to sensor interfacing.

One of the most important improvements of this chip over its predecessor FPAA

designs is the on-chip integration and improved performance of the FG programming

circuitry. The on-chip programming interface allows current measurements from 6 pA

to 20 µA . The fully digital interface allows easy integration with a microprocessor.
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Programming times are around 50 ms for accurate biases and 1 msec per row of

switches. In the next couple of chapters I shall describe the circuits that enable this.
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CHAPTER VII

THE MAGIC ELEMENT: FLOATING-GATES AND

PROGRAMMING THEM

Floating-gate transistors have been used in many large scale VLSI systems as multi-

level digital memories, neural-network synapses or reconfigurable switches in field

programmable arrays. We present a generic architecture for programming floating-

gates over a wide range of currents at moderate accuracy and speeds. Moreover,

the fully digital interface allows easy integration of the floating-gate chips in a larger

embedded system. This system allowed programming floating-gates to currents in

the sub pA range which is essential for achieving the long time constants needed for

modeling biology.

The basic architecture for programming is similar to the one described in [93]

with selection circuitry on the periphery of the array and measurement circuits for

the currents placed along rows or columns. The speedup compared to [93] is achieved

primarily by reducing the time needed to measure currents which is generally the

bottleneck. The large measurement range is achieved by using a logarithmic trans-

impedance amplifier as compared to a fixed transimpedance gain as in earlier ver-

sions [8]. The output voltage of this topology provides a temperature independent

measurement of the floating-gate potential. Also, digital-analog and analog-digital

converters have been included on the chip making the entire interface digital and eas-

ily controllable by a microprocessor. This chapter provides complete measurement

results of the programming system from 0.5 µm and 0.35 µm CMOS and describes

final accuracy and dynamic range achieved in programming floating-gates by this

method.
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Figure 60: Floating gate programming system: (a)A single Floating gate(FGMOS).
(b) An array of floating gates. Only selected FGMOS has a low value of gate and drain
voltages enabling injection while others have either of the voltages turned to Vdd. (c) Data
flow diagram for the whole system comprising the IC and the digital control on the FPGA
or microprocessor.

7.1 Overview of Programming Floating gates: First Prin-

ciples

Floating-gates can be programmed by both Fowler-Nordheim tunneling and hot-

electron injection processes. Using tunneling as the method of charge movement

significantly increases programming time with higher desired precision because of the

logarithmic behavior of the mechanism [58]. Hence tunneling is used as a global erase

while hot-electron injection is employed for fast, accurate programming of these ele-

ments. Figure 60(a) depicts a floating gate with its terminals marked. The process of

accurately programming an FG-transistor consists of two distinct phases: ‘measure’

when the current through the devices in the array are measured and ‘inject’ when

the devices are injected to reach their desired targets. To inject a device, all the ter-

minal voltages, i.e. Vdd, Vd, Vg and Vtun are raised to a value higher than the normal

operational value but their relative values are kept same. This process is referred to
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as ramp-up. In the current generation of chips, this high voltage is generated using

an on-board DC-DC converter but will be replaced by an on-chip charge pump in the

future. The high electric field necessary for injection is produced by pulsing the drain

to a lower voltage for a certain time(tpulse).

Figure 60(b) shows an array of these elements. To select a device, an enabling

voltage is applied to its gate and drain terminals. All other elements have either of the

gate or drain voltages set to Vdd thus prohibiting injection. This condition is a direct

application of the fact that ample source current and large drain-channel potential

are both necessary for hot-electrons to inject onto the gate. In the chip fabricated

in 0.35 µm, the source current is cut off in the non-selected devices by an explicit

switch. Figure 60(c) shows the data flow in the automated programming system.

The digital word corresponding to the present current (obtained during a ‘measure

cycle’) of the selected floating gate is used to index into a Look-up table(LUT) on

the FPGA, PC or microprocessor(µP ). This LUT has values of next drain voltage or

tpulse based on the algorithm used to program the floating gate. This value is used

for the next programming cycle (‘inject cycle’) and the process is iterated till desired

accuracy or some other stopping condition is reached. Instead of a LUT, coefficients

of a polynomial fit to the injection characteristics may also be used [8]. The controller

for sequencing these operations and selecting desired gates is also implemented on the

FPGA/PC/µP .

Before concluding this section, we provide a brief description of one possible pro-

gramming algorithm, details of which are available in [8]. This algorithm modulates

the drain-source potential while maintaining a fixed pulse width. It is shown in [8]

that the change in FG current due to injection can be modelled as:

log(∆I) = m(Iinit)Vds + f(Iinit) (44)

where Iinit is the current in the FG device prior to injection, ∆I is the change in the

FG current after injection and m, f are polynomials (typically quadratic). Initially,
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a random set of FG devices in the chip are subjected to hot-electron injection for

different Vds values to obtain a mean characteristic. This function can now be inverted

to obtain a desired Vds for a certain value of Itarget and Iinit. This continuous function

can also be discretized using a desired grid-size to generate a LUT indexed by Iinit

and ∆I. Thus ideally, we would need to access the LUT only once. However, because

of mismatch, the injection parameters vary across FG elements. To ensure that the

FG current does not exceed Itarget, at every step either Vds or tpulse is reduced from the

computed one by a factor determined by mismatch. This leads to a tradeoff between

programming time and accuracy/mismatch. A similar algorithm may be formulated

for pulse width modulation.

7.2 On-chip Programming: Architecture and Timing

In this section we discuss the architecture of the on-chip programming system. The

system has been tested as a separate chip and also as part of a larger FPAA IC.

The architecture is general and can be employed to program floating-gates in other

systems as well.

Figure 61(a) shows the generic architecture of a system to program an array

of floating-gates. The floating-gate(s) to be currently programmed are selected by

applying a digital word to the selection circuitry on the periphery of the array. The

selection may be done one at a time or a row at a time or in any other parallel fashion

as desired. As the programming process involves ramping up the terminal voltages

of the floating-gates, the control signals must also be referenced to the present Vdd of

the chip. Hence, level shifters are included which convert the 3.3 V digital signals to

the level of the programming Vdd. The selection circuit passes the desired gate and

drain voltages to the selected FG device, while the gate and drain terminals of all

the rest are set to Vdd. The source of all floating-gate transistors are tied to Vdd and

do not have any selection mechanism. The tunneling voltage connection that goes to
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Figure 61: System Architecture and Timing: (a)Architecture of the programming
system showing decoding and multiplexing logic to select desired floating gates from an
array as well as the data converters for interfacing with the FPGA/µP. (b) Timing diagram
of the chip showing sequence of signaling for programming ‘N’ floating-gates accurately (
the time durations are not to scale).

all FG devices is not shown in this figure. The gate and the drain DACs supply the

desired voltages to the gate and drain of the FG elements and are controlled digitally

through an SPI interface. While the drain DAC is used only during injection, the

gate DAC is used in both programming and operational mode.

The measurement of the charge on the gate is accomplished by measuring the

current through the device using a logarithmic transimpedance amplifier(TIA). The

logarithmic compression allows the TIA to measure currents varying over several
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decades in magnitude. The amplifier maintains stability without dissipating excessive

power by employing an adaptive biasing scheme that will be described later. The

output of the amplifier is low-pass filtered and then digitized using a ramp ADC. The

ramp topology is chosen because of its linearity, ease of implementation and because

the long conversion time of the ADC is not the bottleneck in determining speed. The

bottleneck in this case is the settling time of the TIA for low-current inputs. The

combination of the logarithmic TIA and the linear ADC form a floating-point ADC

as will be explained later.

The four major control signals determining the operation of the architecture are

described now:

1) PROG: This signal being high indicates that the FG elements in the chip are being

programmed to the desired value. When it is low, the chip is in operational or RUN

mode.

2) MEASURE: This signal defines a sub-mode for PROG mode. MEASURE being

high indicates that the system is in ‘measure’ mode, i.e. currents of the programmed

gates are being measured using the floating point ADC. On the other hand, MEA-

SURE being low signifies that the system is in ‘inject’ mode, i.e. gates are being

injected to reach the desired target values.

3) PULSE: This signal is high when the floating gates are being injected. The pulse-

width of this signal determines the time, tpulse for which the selected gate is injected

in the current cycle.

4) SWC: This signal is asserted high when the chosen floating gate needs to be pro-

grammed as an ON switch, i.e. it needs to be programmed to an arbitrary low floating

gate voltage.

Fig 61 (b) shows the system timing diagram for programming ‘N’ FG element

accurately. After PROG is asserted high (signaling the beginning of programming

mode), a tunneling pulse is used to globally erase all the array elements. SWC is then
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asserted low indicating accurate injection mode followed by selection of the desired

element or row of elements. The ‘measure’ phase begins first where the charge on

all the floating gates are measured. The MEASURE signal needs to toggle for every

element as it marks the beginning of the ADC conversion cycle. After the ‘measure’

phase, the chip is ramped up followed by ‘N’ short pulses on the signal PULSE. If

pulse-width modulation is used to program the elements, then the duration of each of

these pulses are as computed by the algorithm for reaching targets. If drain voltage

modulation is being used, the drain DAC sets the drains to desired voltages before

every pulse and width of the pulses on the PULSE line are fixed. This is followed by

ramping down the chip followed by another ‘measure’ cycle and so on.

For programming the switches, the control sequence is simpler as measurements

are not needed. In that case, SWC is asserted high to indicate switch programming

mode and MEASURE is kept low throughout the process. The rest of the signaling

is as described earlier.

7.3 On-chip Programming: Components

In the last section, the architecture and global signaling scheme was detailed. In this

section, the major components of the system, i.e. the drain selection block, the drain

and gate DACs, the logarithmic TIA and the ADC are discussed along with measured

results from 0.5 µm and 0.35 µm chips.

7.3.1 Drain Selection

The drain selection circuitry as shown in Fig. 62 acts as a second selection level after

the desired floating-gate drain terminal has been selected by multiplexors. This block

switches the selected drain to injection or measurement sub-circuits depending on

the programming mode. If the system is in measure mode, the drain is connected to

the transimpedance amplifier. In inject mode, if PULSE is low, the selected drain

is tied to Vdd thus prohibiting injection. When PULSE is high, the selected drain is
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Figure 62: Drain Selection: The drain selection circuit connects the drain of the selected
FG device to the DAC, Vdd or ground in inject mode and to the measurement circuitry in
measure mode.

switched to the drain DAC or to ground depending on the polarity of the signal SWC.

This is because for switch programming, it is always desirable to have the maximum

Vds across a selected device, while in accurate programming, the Vds is modulated

depending on difference from target current.

7.3.2 Gate and Drain DAC

The gate and the drain DACs share a binary current scaled architecture as shown

in Fig. 63(a). The reason for this choice was the low required resolution of 7 bits

for either DAC. We do not need very high resolution for the drain DAC since we

can trade-off the time needed for injection with the number of possible drain voltage

levels. The gate DAC’s resolution can also be low, since, it is used to set the operating

regime of the FG transistor being injected within a range of subthreshold currents

that correspond to high injection efficiency. The current sources are cascoded PFETs

biased by a proportional to absolute temperature(PTAT) bootstrap current source

while the cascode transistors are biased by the structure described in [72]. The sizing

of the current source array was done following [110] and the references therein. To

guarantee operation, the devices were chosen large enough to satisfy 8-bit matching.

Dummy devices were employed to eliminate systematic mismatch. The resulting area

of the DACs is around 50 % of the entire area of the programming infrastructure. A
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Figure 63: GATE and DRAIN DAC circuit and measurements: (a) Both the DACs
have a binary current scaled architecture and have a resolution of 7 bits. The output
currents are converted to voltage using resistors giving a maximum swing of 1V in the
drain DAC and 2V in the gate DAC. The gate DAC needs to provide voltages close to the
programming Vdd and hence the current is mirrored to create a voltage referenced to Vdd.
(b) Measured DNL and INL of the DACs from a 0.35 µm chip. Both the DACs exhibited
better than 7 bits of matching as expected.

differential pair is used to switch the currents to increase switching speed. A latch is

used to convert the 3.3 V digital signals to smaller voltage swings with a low crossing

point [110] so that the ON transistor of the differential pair is in saturation.

The drain DAC needs to provide voltages close to ground and hence the currents

are directly passed into a resistor. The voltage drop across the resistor does cause

early voltage induced errors, but since monotonicity was the most important criterion

in this application, it was not found feasible to include an amplifier to fix the output

node. The gate DAC, on the other hand, needs to provide voltages close to the

programming Vdd while it is powered from a separate 3.3V supply that is common to

the programming circuit. So the current was mirrored using a cascoded NFET mirror

and passed into a resistor referenced to the programming Vdd. The digital words for

the DACs are loaded into a shift register from the digital controller through a SPI

interface.

Figure 63(b) shows the measured DNL and INL from the DAC structures fabri-

cated in a 0.35 µm chip. The matching of the transistors was better than 7 bits as

expected
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7.3.3 Adaptive Logarithmic Transimpedance Amplifier

The logarithmic amplifier is the most critical element in this programming architec-

ture. In fact, it provides a solution to the general problem of wide dynamic range

current measurement with low power dissipation and will be detailed separately in

the next chapter. Here, I shall just briefly mention a few salient points of the circuit.

Figure 64(a) shows the transimpedance structure that has a variable resistance

in the feedback path across an amplifier. The amplifier tries to hold the input node

constant, forcing the current to flow through the feedback transistors M1 and M2 and

reducing the current through the capacitance at the input node(CIN).

To measure a wide dynamic range of currents spanning several orders of mag-

nitude, a fixed feedback resistance should have a very small value, which poses an

SNR issue at low currents. On the other hand, a MOS transistor changes its resis-

tance depending on the current flowing through it. To increase the sensitivity of the

conversion, M2 is used as a source degeneration for M1.

To maintain stability, the amplifier’s output pole should be at a frequency that is

sufficiently higher than the pole at the input due to CIN and any parasitic/explicit

feedback capacitor CF . To achieve this, most approaches burn excessive power be-

cause the amplifier is biased with currents that are much higher than the highest

input current to guarantee stability in the entire operating range of currents. In our

implementation, M3 and M4 replicate the input current, while M5 mirrors the current

into the amplifier’s bias with a gain. Thus, we burn less power in the amplifier when

the input current is low. The same reference voltage is used for the amplifier and the

adaptation circuit.

An advantage of this topology is that when the TIA is measuring currents from

a floating gate, its output voltage is effectively measuring the floating-gate potential

(because the current is exponentially related to floating-gate potential). This leads
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Figure 64: Logarithmic TIA circuit and measurements: (a) The logarithmic TIA
employs PMOS transistors, M1 and M2 in feedback across an amplifier. The exponential
I-V relation of a MOS in subthreshold allows the logarithmic relation. The adaptation
block in the shaded area modifies the amplifier’s bias current according to input and helps
maintain its stability over a wide range of inputs. M6 and M7 form an open-loop I-V
converter that is used for very high currents which make the other structure unstable. (b-I)
Measured data from a 0.5 µm chip showing the input current and the output voltage of the
TIA. The current was created by sweeping the gate voltage of the PMOS implementing the
current source Ichar in Fig. 64. The deviation from logarithmic behavior at high currents
is due to transistors entering above threshold regime and at low currents due to the pico-
ammeter losing accuracy. (b-II) The same data as (b-I) plotted against the gate voltage
of the PFET, Vchar that produces Ichar. Here the plot is linear even at very low currents
(high gate voltages) confirming the fact that the on-chip logamp is more accurate than the
off-chip pico-ammeter for very low currents. (b-III) Measured data from 0.35 µm chip again
showing improved accuracy of the logarithmic amplifier over off-chip instrumentation.

to the following expression for the output voltage of the TIA:

Vout =
Vref

κ2
− Vdd − κVfg

κeff

− UT

κeff

ln(M) (45)

where Vfg is the floating-gate potential and the FGMOS has an aspect ratio that is

M-times the aspect ratio of the feedback transistors. Thus by appropriately sizing

the feedback transistor, the output of the TIA can be made temperature insensitive

to a first order since the charge on the floating-gate does not change appreciably with

temperature [92].

The difference in the structure here as compared to the stand-alone one described
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in [14] is the added multiplexors and diode connected PFETs M6 and M7. These were

added based on system considerations since the feedback circuit described earlier loses

stability at very high currents. So, M6 and M7 is kept as a coarse I-V converter for

high currents. The output of the two converters are multiplexed based on the signal

SWC as only transistors programmed as switches might produce such high currents.

The current source Ichar, implemented by a PMOS, is kept to bias the circuit when

it is not measuring currents. The source or gate of the PFET is controlled by a DAC

on the board and is also used for characterizing the performance of the TIA.

Figure 64(b) shows measured characterization data from both 0.5µm and 0.35 µm

IC designs. Figure 64(b-I) shows the I-V relation for a logarithmic amplifier fabricated

in a 0.5µm process. The input current was created by sweeping the gate voltage of the

PMOS used to create Ichar in Fig. 64(a). The deviation from logarithmic relation at

high currents is due to transistors entering above threshold region of operation. At low

currents, the off-chip pico-ammeter (Keithley 6485) loses accuracy. Figure 64 (b-II)

shows the same data but plotted against the gate voltage of the PFET used to create

Ichar on the X-axis. The logarithmic relation is now maintained for very low currents

too (high gate voltage). This conclusively shows that the logarithmic TIA is more

accurate than the off-chip pico-ammeter for lower currents. Figure 64 (b-III) shows

similar data from a 0.35 µm FPAA chip. Here, the measured data between currents of

1 to 10 nA is used to fit a polynomial to the logamp characteristic. Using this curve-

fit, the output voltage of the logamp is used to infer measured currents and compared

with the pico-ammeter measurements. While the off-chip measurements saturate at

around 100 pA due to noise and leakage from ESD diodes, the on-chip measurement

can go down to sub-pA levels proving its utility. Conformance to logarithmic behavior

can be measured by fitting a line to the characteristic. The average error is 3.1 %

(considering currents less than 1 µA) because of the feedback transistors entering the

above threshold regime at high currents. However, using a second-order fit, the error
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Figure 65: ADC Schematic: (a) Simplified schematic of the ramp ADC. The signal M
represents MEASURE. The output of the counter is passed to the controller through a SPI
interface. (b) The comparator is a nine transistor OTA. For higher gain, cascode transistors
are being used in the output stage in future versions. (c) The timing diagram of the ADC
showing that after the desired floating gate is selected, MEASURE starts the conversion
process. Once FREEZE, the output of the comparator goes high, the output of the counter
is serialized and sent to the digital side through an SPI interface. (d) Measured input-
output relation of the ADC in 0.35 µm CMOS. The input of the ADC was set by passing
a certain current through the TIA. (e) Measured resolution of the TIA-ADC combination
is plotted against varying ramp current, Iramp. For very fast ramp, the quantization noise
dominates the performance while for very slow rates the finite counter bit-length dominates.
In between the two regimes is the thermal noise limited part.

reduces below 1 % for the same range. Using a high order fit for the I-V conversion is

not a problem since this can be done on a PC before sending the target voltages/codes

to the on-board µP .

7.3.4 Ramp ADC

The ADC in this system acts as the interface between the TIA and the digital con-

troller. As the settling time of the TIA for sub-pA currents is of the order of a few

msec, the conversion time requirement for the ADC is also relaxed. This led to the
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Figure 66: ADC linearity: The measured INL of the ramp converter is plotted with
respect to the LSB of a 9-bit ADC. To improve the linearity, the range of codes is divided
into four ranges and separate gain and offset correction factors are stored for each range.

choice of a ramp ADC architecture as shown in Fig. 65(a) because of its simple struc-

ture. In the figure, M denotes the control signal MEASURE starting the conversion

and Vstart is the starting voltage for the ramp. The comparator trips after the ramp

generated by the current source, Iramp, crosses the input voltage freezing the counter.

When the conversion starts, there is a shift in the start voltage of the ramp due to

charge injection from the switch. But this is signal independent and hence can be

treated as an offset. It can be taken care of by either offsetting Vstart (analog trim) or

by subtracting the digital word corresponding to the offset (digital trim). The accu-

racy of the ramp is limited by the early effect of the cascode current source used. The

biasing of the cascode is done following [72] while the current source is biased using

a bootstrap current source chosen because of ease of implementation and relatively

low temperature dependance (PTAT in subthreshold operation). It can be replaced

by a lower TC current source in the future. The comparator in Fig. 65(b) is a simple

high-gain amplifier comprising a differential pair followed by a push-pull output stage.

The gain of the comparator will be increased in future versions by employing cascode

transistors in the output stage.

Figure 65(c) shows the details of the timing of the digital interface for the ADC.
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Once the output of the comparator, FREEZE goes high, the counter has the valid

digital word at its output. The chip-select signal, ADC CS N is then asserted low

and the serialized data is read out from ADC SDO. Once the SPI data transfer is

completed, MEASURE is asserted low and the ADC is ready for the next input. In

this implementation, a 14-bit counter has been used. The FREEZE output is also

buffered out allowing it to be used to control off-chip counters on the µP which can

be 32 bits long.

The effective resolution for the TIA-ADC combination, N, can be found by relating

it to the dynamic range. Let the logarithmic amplifier’s characteristic be given by

V=Offset+K×log(I) and δV be the voltage noise level at the output of the logamp.

Then denoting the input referred noise current to be δI when the DC input current

is I, δV can be related to the SNR of the input as:

δV = K
dI

I
=

K

SNR
(46)

Then, using (46), dynamic range(DRADC) of the ADC is given by:

DRADC = 2N =
Vmax − Vmin

δV

=
Klog( Imax

Imin
)

δV

=
I

dI
log(

Imax

Imin
)

= SNR× log(DR), (47)

where DR is the dynamic range of input currents. This equation explicitly shows the

floating point nature of the system as the SNR sets the mantissa bits while log(DR)

sets the exponent. The number of exponent bits are around 3-4 for 5-7 decades of

current. The clock frequency can be decided considering the worst case conversion

time to be 2N × Tclk, where N is the number of bits and Tclk is the clock period. The

maximum frequency of the clock available from the µP was around 20 Mhz, leading

to Tclk = 50 ns. For N equal to 14, the worst case conversion time is around 1 ms and
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Figure 67: Die photo: Die photo and layout of the 0.35 µm chip showing the different
sub-blocks of the programming infrastructure.

average conversion time is around 512 µs. The value of the current source can then

be chosen using the following equation:

VLSB =
I × Tclk

C
, (48)

where VLSB is decided by the noise at the output of the I-to-V and C is 5 pF.

Figure 65(d) shows measured transfer characteristic of the ADC with a 32 bit

counter implemented on the µP . This was done to examine the effect of finite register

length on the ADC output shown in 65(e) and explained later. The input voltage of

the ADC is swept by varying the current through the TIA. In this chip, the digital

trim option was preferred and Vstart was set to ground to avoid using an extra pin.

Thus, a part of the counter’s range was sacrificed in the process as the output of the

TIA does not start from ground. This is evident from the count not starting from zero

in the figure. It has been found that even though the TIA can measure currents down

to sub-pA levels (found by monitoring the voltage output), the ADC cannot convert

inputs lower than 6 pA reliably. This is traced back to the fact that the digital signal

starting the conversion also starts the measurement phase for the TIA. For very low

currents, the TIA output does not settle in time. This has been rectified in future
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version by having separate digital controls and employing a bidirectional logamp for

faster settling.

The effect of reducing the quantization noise by slowing the ramp has also been

studied. Figure 65(e) shows the measured resolution corresponding to different ramp

currents, Iramp. In this experiment, the current through the TIA is set to a fixed

value producing a fixed voltage at the input of the ADC along with some noise. For a

particular Iramp, this input is digitized multiple times and the ratio of the mean of the

codes and their standard deviation is considered as SNR for computing the effective

resolution. It is seen for very large Iramp, the LSB voltage step of the ADC is too

large leading to a quantization noise dominated performance. On the other hand, for

very slow ramps, the number of bits in the counter, CNT, is the limiting factor giving

poor dynamic ranges. In between these two regimes, performance is limited by the

noise of the system contributed primarily by the noise in the log-amplifier’s output

and in the current source generating Iramp. 9.5 bits of performance corresponds to

a rms noise of around 1.5 mV at the output of the TIA and around 80 µV on the

floating-gate. Performance can be improved up to 11 bits by averaging a number of

readings. This is done in FG programming when the measured current is close to the

desired current.

Figure 66 plots the INL of the ramp converter with respect to the LSB of a 9 bit

ADC. The finite output resistance of the current source leads to nonlinearity in the

slope of the converter. To ensure that the error in linearity of the ramp is less than

0.5 LSB, digital correction is used. The entire range of codes is divided into four

sections and a separate gain and offset correction factor for each section is stored in

the µP . To predict the correct input voltage for a certain code, one of these four

gain and offset factors are used based on the range in which the code falls. Dividing

the range into more subsections can improve INL performance even more, but is not

needed since noise dominates the ADC performance in that case.
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Figure 68: Floating-gate injection: Measurements from a 0.5µm chip change in floating-
gate current with 100µsec injection pulses of Vds equal to 6.5V. (a) plots ammeter mea-
surement and (b) plots the output of the logarithmic TIA.
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Figure 69: Measuring injection accurately: 100µsec wide pulses of Vds, 6V in mag-
nitude, were applied to a floating-gate in 0.5 µm and the current was recorded using
(a)picoammeter and (b)TIA. Clearly the on-chip TIA is able to detect the injection while
the ammeter is not. The left axis on the plot is the change in voltage from the starting
point, 2.085V. The right axes shows the equivalent number of electrons moved on the gate.

7.4 Floating-gate Measurements

In this section, we describe system test results showing measured change in floating-

gate charge and using that information to program a desired amount of charge. Figure

67 shows a die photo of the 3×3 mm2 chip fabricated in 0.35 µm CMOS with the

programming infrastructure occupying 1050×250 µm2. A close up of the layout of the
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programming circuits is also shown. Figure 68 shows measured results of floating-gate

injection. In this experiment, a floating-gate was subject to 100 µsec pulses of Vds

equal to 6.5 V. After every pulse, the current from the FG device was measured using

the TIA and an ammeter (Keithley 6485). This figure plots the ammeter reading

in (a) and the output of the TIA in (b) with number of pulses showing injection

increasing the current. Figure 69 shows data from another experiment where the

FG device was subjected to 6V Vds pulses of pulse width equal to 100 µsec. The

current was monitored after every pulse using both the on-chip TIA and the off-chip

ammeter. From the measurements, it is obvious that while the TIA can distinguish

very fine amount of hot-electron injection, the ammeter cannot. The left axes shows

change in voltage from starting point while the right axes of the plot shows number

of injected electrons based on a gate capacitor of value 750 fF.

Next we show programming floating-gates to specific target currents that span a

wide range in magnitude. A set of forty floating-gates are programmed to currents

ranging from approximately 6 pA to 20 µA using a version of the algorithm shown

in [8]. The experiment was run fifteen times choosing a random set of devices from

a pool of over thousand devices. The average of the absolute error in achieving the

current targets is plotted in Fig. 70 (a). The average error is 2.14 % for this range

of currents and reduces to below 1 % if currents higher than 100 pA are considered.

There could be several reasons for this error; first, there is an error associated in

modeling the injection process over different source currents and Vds values by a

polynomial. This error is magnified particularly when the dynamic range is large.

Second, there is a spread of the parameter values for injection across a large number

of devices. Both these errors can be handled by slowing down the rate at which the

target is approached and averaging the measurements to reduce noise. The increased

error at low currents is primarily due to more noise, a property associated with

logarithmic amplifiers followed by a fixed-bandwidth low-pass filter [14]. This issue
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Figure 70: Error in programming: (a) The result of programming a set of floating-gates
to currents varying from 6 pA to 20 µA is shown. The results are averaged over fifteen
iterations of the same experiment but choosing a random set of devices for every iteration.
The average error is less than 1 % in the range of around 100 pA to 20 µA. (b) The resulting
error for a set of thirty different devices programmed to 100 nA. (c) The resulting error
when a single device was erased and programmed twenty times to a target of 100 nA.

can also be addressed by averaging the measurements and trading speed for accuracy.

Figure 70(b) shows the error when a set of thirty different devices were programmed

to a current of 100 nA while Fig. 70(c) depicts the resulting error when a single

device is tunneled and programmed for twenty times to achieve a target of 100 nA

every time. The source of this error is also the noise in the current being measured

added to the noise in the measurement.

7.5 Discussion

7.5.1 Long-term Storage

The data retention capability of floating-gate transistors have been reported in mul-

tiple publications [1, 100, 101] and exhibits insignificant charge loss in tens of years.

Both short-term and long-term drift of charge in our floating-gate devices have been

shown to be less than 0.2 percent over sixteen days [99]. Moreover, the charge drift

has been observed to reduce after an initial bake in the oven at elevated tempera-

tures [101]. Finally, the effect of charge drift on circuit performance depends on the

topology of the circuit and might be reduced if differential measurements are taken.
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Table 6: Performance Comparison of FG programming

Ref. Method Range Prog. Ac-
curacy

Prog.
Time

Level of
integra-
tion

Array
Program-
ming

This work Discrete pulses,
CHE injection

6 pA - 20 µA
(∆Vfg ≈ 0.63
V)

9.5 bits
(floating
point)

50 ms Fully on-
chip

Enabled

[8] Discrete pulses,
CHE injection

500 pA - 1 µA
(∆Vfg ≈ 0.3
V)

9 bits - Only I-V
on-chip

Enabled

[114] Discrete pulses,
CHE injection,
Differential only

∆Vfg = 2 V 10 bits 50 ms Off-chip No

[22] Continuous
time, CHE
injection

10-640 pA
(∆Vfg ≈ 0.13
V)

< 8 bits - Off-chip Enabled

[58] Pulse-width
modulation,
Tunneling

∆Vfg = 1 V 6.5 bits 75 µs Fully on-
chip

No

7.5.2 Temperature Dependence

The output voltage of the logarithmic TIA represents the floating-gate voltage and

hence is relatively temperature independent even if the floating-gate current varies.

Intuitively, the temperature behavior of the logarithmic amplifier is opposite of that

of the FGMOS and exactly cancels the change in floating-gate currents. In practice,

there is a minor temperature variation due to mismatch in sizes of the actual FGMOS

and the feedback transistor in the logamp. In large systems using floating-gates, a

floating-gate current reference, such as the one in [101] can be used to bias the array

for temperature insensitive currents. The reference itself can be programmed based on

floating-gate voltage measurements, which as we mentioned is relatively temperature

insensitive.

7.5.3 Programming Time

The time needed to program an FGMOS device comprises the time needed to ramp

the voltages (tramp), injection pulse time (tpulse), measurement time (tmeas) and time

129



to transfer digital bits through SPI (tSPI), all of which gets multiplied by the number

of pulses needed to achieve the target (Npulses). So, we can write:

Tprog = (tramp + tpulse + tmeas + tSPI) ×Npulses (49)

For the present implementation, average values of tramp + tSPI is limited to 0.8 msec.

The ramp process is done in small steps to allow the bulk to stabilize and to prevent

any chances of latchup. For programming large arrays, the time for ramping voltages

up and down would be common to the whole array and its effect on total programming

time shall be reduced. The SPI speed is limited by the clock speed of the particular µP

used and can be increased by using a different processor. Average values of tpulse and

tmeas are 0.1 and 0.5 msec respectively. The ADC conversion time can be reduced by

employing larger ramp currents and higher clock speeds, the current limitation being

set by the 20 MHz processor used. However, the bottleneck for measurement time

is not the ADC conversion time but is the settling-time of the log-TIA for smaller

currents. The average measurement time, though, can be reduced by using larger

ramp currents while measuring larger target currents since the settling time of the

log-TIA is reduced in those cases and is no longer the bottleneck. The average value

for Npulses is around 35 for the simple programming scheme used. Hence, the average

programming speed achievable is around 20 devices/second. It should be noted that

the value for Npulses depends on the algorithm used and tmeas depends on the accuracy

desired (averaging might be necessary). We expect Npulses to reduce to around 25

with a better algorithm.

7.5.4 Future Improvements

In the current implementation, a large fraction of Npulses is needed to come within

range of the desired target current. This might be improved dramatically by using a

method similar to the one described in [22] for coarse programming. Moreover, we

only store one set of injection parameters for the whole array in the LUT. Hence, to
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account for mismatch in the parameters, at every step the applied pulse width and

Vds value are reduced to a fraction of the actual one needed to achieve the target

current. This leads to an increase in the number of required pulses. This can be

avoided if characterization parameters are stored for each device in the array, a task

that is not prohibitive given the easy availability of digital memory.

The other consideration in using an architecture like this might be the area over-

head for the programming infrastructure. If only a few floating-gates are being used,

using this whole infrastructure might be prohibitive. In that case, a simpler method

might be using off-chip control and measurements. For a production environment,

the tester time cost has to be compared with the cost for chip area to make a decision

regarding this.

7.6 Conclusions

Though initially the floating-gate device was used as a digital storage, in the recent

past, there have been numerous instances of its usage in traditional analog appli-

cations such as data converters [20, 50], imagers [7, 29], analog memory [105], offset

cancellation in amplifiers [100], low TC current references [92] and many more. This

trend requires the accuracy and speed of programming the charge on the gate to

increase drastically. A fully integrated architecture for programming floating-gate
Table 7: Table of Parameters

Process 0.35 µm 0.5 µm

Area 250 µm× 1.05 mm 600 µm× 350 µm

Power Supply 3.3V 5V

Injection Vdd 4.8 − 5.6V 5.5 − 6.6V

Resolution of DAC 7bit 7bit

Switch programming Nrows × 100µsec Nrows × 100µsec

Bias programming 1 ms/measurement 1 ms/measurement

Dynamic Range 6 pA to 20 µA NA
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based systems with high accuracy, moderate speed and low-power is described in this

chapter. It achieves better dynamic range by utilizing a floating-point ADC that has

a logarithmic transimpedance amplifier as a first stage followed by a linear ADC. The

salient features of the system are presented in Table 7.

Table 6 presents a comparison of this work with other reported implementations.

In the table, ‘CHE injection’ refers to channel hot-electron injection. It should be

noted that the accuracy of this implementation increases to around 11 bits with

averaging. The errors in modelling injection can be reduced if the dynamic range of

operation is restricted to sub-/above-threshold regions, a fact validated by the results

in [8]. This implies our implementation can be scaled to 12-13 floating point bits with

around 9 bits of mantissa. Programming FGMOS using U-V as described in [17] is

not included in the table since it cannot be used to program a wide range of accurate

currents.

The most critical piece of this programming architecture is the logarithmic ampli-

fier for measuring a high dynamic range of currents. It was not discussed in details

in this chapter since it provides a generic solution to current measurement in sensory

or imaging systems and is not limited only to FG programming. I shall discuss this

circuit in details in the next chapter.
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CHAPTER VIII

MEASURING HIGH DYNAMIC RANGE CURRENTS:

ADAPTIVE LOGARITHMIC TRANSIMPEDANCE

AMPLIFIER

Transimpedance amplifiers (TIA) are used in a wide variety of applications ranging

from microsystem sensors [104] to optical preamplifiers [25, 46, 49, 57, 83, 111]. Chal-

lenging work on transimpedance amplifiers involving applications where high speed

is required with very low currents has been done in [33, 61]. Optical stimulus lo-

calization and centroid computation systems [9, 98] also require sensing low currents

spanning several decades. Highly integrated systems demanding low power consump-

tion pose especially difficult challenges. Further complicating the problem is the

need for wide dynamic ranges, particularly in sensing systems and reprogrammable

systems. Sensing systems interface the physical world which is inherently highly dy-

namic and reprogrammable systems must cater to a wide variety of applications and

specifications. We have fabricated such integrated systems, which serve as the basis

for this work. The amplifier topologies presented in this chapter have been used in

a floating-gate programming system described in the earlier chapter and also in an

imaging system.

Logarithmic compression of the current using a MOSFET in subthreshold has

been explored to solve the issue of obtaining a wide dynamic range [33, 61]. For

proper phase margin, all of these approaches assume that the poles of the amplifier

are far away from the dominant pole set by the feedback element. However, satisfying

this assumption entails dissipating considerable power in the amplifier to push the

pole away from the maximum input pole set by the highest input current. This simple
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Figure 71: Topologies of logarithmic TIA(a) Common-drain logarithmic TIA. (b)
Common-gate logarithmic TIA. (c) Simplified version of (a) for small-signal analysis (d)
Simplified version of (b) for small-signal analysis

approach is particularly wasteful if it is known that most of the time the input current

will be much lower than the maximum value. A solution where the bias current of the

amplifier is adjusted has been proposed in [34]. However, the adaptation loop requires

a large off-chip capacitor for stability and also degrades the SNR of the system.

The adaptive logarithmic circuit described in this chapter is part of a chip designed

for programming floating gates. We analyze in detail the trade-offs involved in a power

efficient design of such a system and propose two adaptive strategies to accomplish

the same. The two adaptation methods described are very general and can be used

in a wide variety of applications depending on specified bandwidth and dynamic

range. We show that adapting bias currents is the most power optimal solution for

this application. The problem of temperature compensation in these logarithmic

amplifiers has been discussed extensively [74] and are not discussed here.
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8.1 Overview of Logarithmic Amplifier Design: Problem

statement

The fundamental function of a logarithmic transimpedance amplifier is the generation

of an output voltage proportional to the log of an input current. The traditional

implementation of this logarithmic I-V conversion is done by a passing the current

into a diode, a BJT, or a MOSFET operating in its subthreshold, exponential region

of operation. In the BJT and subthreshold MOSFET, the current may be passed

into a terminal with large exponential conductance (emitter or source), or a node

performing a diode connected configuration. The problem with these elements is that

the small signal bandwidth at low currents is limited, since the Gm of these elements

is set by the input current, Gm = Iin/UT, where UT is the thermal voltage equal to

kT/q. The approach then becomes one of using an amplifier in a feedback loop, as in

Fig. 71, to alter the effective conductance to be AGm, thus increasing the bandwidth

by the amplifier gain, A from Gm/C to AGm/C. The primary design parameters and

corresponding notations that are used in the remaining chapter are listed in Table 8

for convenience.

The final parameter, Iin,max or DR, is relevant because the design is a multiple

pole, feedback system, which implies another design specification of stability. The

functions to be optimized can be power consumption, noise, and area. In this work we

optimize the power consumption. The analysis will show the the basic design of such

a structure assuming sub-threshold operation yields an amplifier current consumption

given by

Iref > U2
T

CINCL(BW 2)(DR)

Iin,min
. (50)

So, the challenges include coping with a power requirement that increases linearly

with the required dynamic range and quadratically with bandwidth. It will be shown

how adaptive approaches can effectively reduce the power consumption’s relation to
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Table 8: List of Symbols

BW Desired bandwidth.

A Amplifier gain.

Iref Bias current in the amplifier.

CIN Capacitance at the input node of the amplifier.

CF Capacitance in feedback across the amplifier.

CL Capacitance at the output of the amplifier.

Iin,min Minimum Input Current.

Iin,max Maximum Input Current.

DR Dynamic range =
Iin,max

Iin,min
.

dynamic range. This is critical in the systems where the desired dynamic range is

several orders in magnitude and the reduction is significant.

8.2 Logarithmic Transimpedance Amplifier: Topologies

In this section, we introduce two topologies which operate as wide dynamic range

transimpedance amplifiers by log-compressing the input current using the exponen-

tial characteristics of MOS transistors in the sub-threshold regime. The small-signal

transfer function is derived first, followed by a discussion on minimum power dissipa-

tion to meet bandwidth and dynamic range specifications. In the remaining sections

of the chapter, it is assumed the desired specifications of the TIA conform with the

floating-gate programming application.
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8.2.1 Common-drain topology

Fig. 71(a) depicts the structure of a common-drain logarithmic transimpedance ampli-

fier. It should be noted that in our convention we name the transimpedance amplifier

by the type of feedback stage employed and not the type of amplifier used. Hence

a common-drain logarithmic amplifier has a common-drain or a source-follower feed-

back stage as in 71(a). Transistors M1 - M4, form a basic differential amplifier with

M7 as the current source. M5 and M6 form the feedback element. The operation of

the circuit is as follows: the amplifier tries to hold the input node fixed at Vref , thus

forcing Iin to flow through M5 and M6 and not the capacitor. M5 and M6 form an

equivalent transistor with an effective κ, κeff lower than that of a single transistor,

where κ is the inverse of the subthreshold slope factor [106]. The logarithmic conver-

sion of current to voltage is obtained naturally by the exponential I-V relation of a

MOS transistor in sub-threshold. The DC output voltage can be expressed as:

Vout =
Vref + (κ+ 1)UT ln

(

Iin
In

)

κ2

=
Vref

κ2
+

UT

κeff

ln

(

Iin
In

)

, (51)

where UT is the thermal voltage and In is the pre-exponential factor in the I-V relation

of a sub-threshold NMOS.

A version of this circuit was created in 0.5µm CMOS. Fig. 72 shows the measured

and simulated current voltage relation with both curves showing good correlation.

The slope of the curve changes at high currents because the transistor transitions

from below threshold operation to above threshold operation and thus the voltage at

the gate increases in proportion to the square root of current instead of the logarithm.

A second order curve fit to this plot for currents ranging from 200fA to 2µA gives

a linear slope of 0.55, which translates to κeff=0.47. The ratio of the second order

term to the first order term is -45dB.
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Figure 72: Current-Voltage characteristics: Measured and simulated current to voltage
curves at DC. At higher currents, the slope becomes steeper because of the MOSFET
entering above threshold region from sub-threshold.

8.2.1.1 Small-signal Analysis

To generate a small signal transfer function for the structure, Fig. 71(c) can be used.

It is to be noted that Mb in 71(c) represents the amplifier while Ma in 71(c) represents

M5 and M6 in Fig. 71(a) and has an effective degenerate Gma given by κGm5/(κ+1)

which actually encodes the effect of κeff . This simplification ignores the effect of the

current-mirror pole at the gates of M3-M4 as it occurs at much higher frequencies

compared with the dominant pole of the amplifier at its output. Also a zero at exactly

twice the frequency of the pole is created due to the two paths to the output reducing

its effect even more. However, it should be noted that this simplified model is used

only for analysis, while simulations are performed on the actual circuit. Analyzing

Fig. 71(c), we get:
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Vout(s)

Iin(s)
≈ A

Gma(1 + A)

1 − sCF

Gmb

1 + as+ bs2
; (52)

a =
CLGma + CFGmb + CINGob

GmaGmb

;

b =
CF(CIN + CL) + CINCL

GmaGmb
,

where CF is the sum of Cgdb, Cgsa and any explicit compensation capacitor placed

across Mb, Gob is the output conductance of the amplifier and A is the gain of the

amplifier equalling Gmb/Gob. It should be noted that Cgsa in the above equation is

the equivalent capacitance due to the series combination of Cgs5 and Cgs6 in Fig. 71(a)

and is thus equal to half the value of any of them (assuming M5 and M6 are similarly

sized). The poles of the circuit are calculated considering two particular cases of

interest.

CASE I : CIN >> CF

This is the most frequently encountered scenario when the input capacitance dom-

inates the frequency response. Using the dominant pole approximation and noting

that Gmb >> Gma, the poles are given by:

p1 ≈ −AGma

CIN

; p2 ≈ − Gob

CF + CL

. (53)

CASE II : CF >> CIN

In this case, the input capacitance is so small that generally an explicit CF is

needed to robustly design the input pole. In this case:

p1 ≈ −Gma

CF
; p2 ≈ − Gmb

CIN + CL
. (54)

The value of p1 can be intuitively computed by noting that the total capacitor at

input, Ctot and the input impedance, Zin are given by:

Ctot = CIN + ACF = A× Ceff ; Zin ≈ 1

AGma
, (55)
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where A is the gain of the amplifier. Thus the amplifier effectively reduces any input

capacitance by the magnitude of its gain. Also, it is important to realize that adding

the degeneration transistor does not hamper the bandwidth much since the increase

of Zin is almost compensated by the decrease in CF.

From the above analysis we see that p1 depends on the input current and thus

moves to higher frequencies as the input current increases.

8.2.1.2 Power Dissipation Limits

In this text, minimizing power dissipation is used synonymously with minimizing Iref ,

the bias current of the amplifier. It is assumed that Iref flows through Mb in Fig. 71

(c) and (d). κ is assumed 1 for simplicity. It is also assumed that typically CIN >> CF

unless otherwise mentioned.

The conditions constraining Iref are bandwidth>BW and phase margin>45◦ for all

currents. Since the minimum bandwidth occurs when the input current is minimum,

it is sufficient to ensure that the bandwidth at minimum input current is larger than

BW. Thus, we need:

AIin,min

CINUT

> BW, (56)

where it is assumed that CF < CIN/A. (56) defines the minimum gain needed to meet

the bandwidth specification and enables the designer to choose the number of stages.

Here we assume that a one-stage structure is sufficient. The second equation comes

from the phase margin specification:

p2,OPENLOOP > BWmax =
AIin,max

CINUT
. (57)

This second pole of the system is actually the first pole of the amplifier. Thus the

power dissipation of the amplifier can be found by considering it to be proportional

to the gain-bandwidth product :

Iref >
U2

TCLCIN(BW )2DR

Iin,min
. (58)
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Figure 73: Power requirement of non-adaptive log-TIA: Plot showing dependance
of power dissipation on dynamic range is linear and on bandwidth is quadratic. Also the
required power increases for lower values of Iin,min showing dependance of power on speedup.

(58) is a very important equation since it shows the dependance of the power dissipa-

tion on the design parameters. The power can be seen to be proportional to dynamic

range, input and output capacitances and the square of the bandwidth. The term

Iin,min in the denominator shows that the power is actually a function of the desired

speedup or BWUT CIN

Iin,min
. It should be noted that the term

Iin,min

UT CIN
represents the natural

bandwidth of the system. Fig. 73 demonstrates the dependance of the power dissi-

pation on bandwidth and dynamic range. This strong dependance can be nullified to

a great extent by using adaptation as will be shown later.

8.2.2 Common-gate Topology

Fig. 71(b) depicts the structure of a common-gate logarithmic transimpedance am-

plifier. Again, a common-gate transimpedance amplifier refers to an amplifier with a

common-gate stage in feedback. The amplifier structure is kept similar to the previ-

ous case. Only one transistor, M5, is shown as the feedback element, though source

degeneration like the earlier case may be used here as well. The operating principle is

similar to what has been previously discussed. The logarithmic conversion is obtained

from the subthreshold exponential current relationship between current through M5

141



Vout

V
+

V
-

Vbias

Vbias

≡

Iin

Vref

CL

CIN

CF

Iin

CL

CIN

Vref

Cf
Vp

(a) (b)

Vref

Ibias

Iref

M5

M6

M5

M6

M3 M4

M1 M2

M7

M10

M9

Vbias

Vbias

M10

M8
M8

Iref

Figure 74: Topologies of Adaptation: (a) Circuit for adaptation of amplifier bias current
based on input current. The output voltage is taken as a representation of the input current
and used to produce Iadapt. (b) Second scheme using a PMOS in the adaptive network to
reduce the output resistance and hence gain of the amplifier when the input current is large.
Thus loop stability is maintained over the current range.

and the source voltage of M5. Thus the logarithmic relationship is limited to the

subthreshold region of operation for M5.

I = Ipe
(κ(V dd−V g)−(V dd−V out))/UT

Vout = ln

(

I

Ip

)

UT + κVg + (1 − κ)V dd, (59)

where UT is the thermal voltage, Ip is the pre-exponential factor in the I-V relation

of a sub-threshold PMOS and Vg is the bias gate voltage.

8.2.2.1 Small-signal Analysis

Fig. 71(d) can be used to generate a small signal transfer function for the common-

gate structure. Here again, Mb represents the amplifier while Ma represents the
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feedback element. Analyzing Fig. 71(d), we get:

Vout(s)

Iin(s)
≈ 1

Gsa

1 − sCF

Gmb

1 + as+ bs2
; (60)

a = CIN/Gmb + CF/Gsa + (CIN + CF)/AGsa;

b =
CINCF + CLCIN + CLCF

GsaGmb
,

where Gsa is the source conductance of Ma and other symbols are as described previ-

ously. Here, CF is the sum of the Cgd of Mb and any explicit compensation capacitor,

with no contribution from Ma as in the common-drain topology. Most amplifiers

beyond a single transistor amplifier would make the CF term insignificant. Here

we consider only the case CIN >> CF as that is representative of the scenario is

which this structure is used. Using the dominant pole approximation and noting that

Gmb >> Gma, the poles are given by:

p1 ≈ −AGsa

CIN

; p2 ≈ − Gob

(CL + CF)
. (61)

So, the dominant pole is set by the input node which includes the conductance of the

feedback transistor. Again, it is clear that as the input current increases, p1 increases

proportionally.

8.2.2.2 Power Dissipation Limits

The power dissipation constraints on the common-gate structure based on small-signal

parameters exactly follows that of its common-drain counterpart. The small signal

analysis sets a minimum requirement on Ib, the current flowing through the amplifier

transistor Mb. However, since the input current is sourced from the same current

supply as the amplifier, Iref must be larger than the maximum possible input current

Iin,max, i.e.:

Iref = Iin,max + Ib,max. (62)

Hence, the common-drain is always more power-efficient than the common-gate,

though this may not be significant if the requirements of the system dictate that
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Ib,max need be much larger than Iin,max. However, the common-gate topology avoids

a fundamental limit of the common-drain configuration. In the common-drain con-

figuration, the CGS of Ma is the minimum value of CF, which gets Miller-multiplied

by the gain of the amplifier. This inherently sets a limit on the maximum bandwidth

attainable (ft) at a particular input current. So if the desired bandwidth is larger

than this, the only option is the common-gate topology. With these points in mind

we shall focus on the common-drain topology in the remainder of the chapter.

8.3 Adaptation in the Logarithmic Amplifier

In the last section, it was shown that the small-signal poles of the circuit move

depending on input current. Two possible ways of designing this circuit to be stable

over a wide range of input currents are:

1) For maximum bandwidth at lowest input currents, bias the amplifier by a large

current to move p2 sufficiently higher than the largest possible value of p1. But this

solution obviously entails large power dissipation.

2) For minimum power dissipation, fix a particular bias current and then suitably

choose CF such that largest p1 is sufficiently smaller than p2. This clearly sacrifices

bandwidth.

In this section, we explore two solutions which elegantly trade-off bandwidth and

power to meet the specifications. The properties of each adaptation method are

discussed first followed by a derivation of its power requirements.

8.3.1 Configuration I: Adaptation of Amplifier Bias Current

The first method senses the input current magnitude and uses it to set the amplifier’s

bias current. This method is particularly useful for wide dynamic-range systems as

will be shown.
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8.3.1.1 Operation

Fig. 74(a) depicts the schematic of the bias current adaptation method. Transistors

M8 and M9 replicate Iin to produce the adaptive current Iadapt. M9 acts as a follower

to hold the source of M8 constant. In a small-signal sense, the source of M8 sees an

impedance of 1/Gm9. Since the difference between Vout and Vref encodes the value

of Iin, Vref is applied to the gate of M9 to make Iadapt directly dependant on Iin.

Vref sets the voltage across the current source being measured and hence varies with

application. The current through M10 is mirrored with a typical gain of K ≈ 10. To

find an expression for Iadapt, we equate the currents through M8 and M9 to obtain:

I8 = Ine
(κVout−VS)/UT ; I9 = Ipe

(κVS−V ref)/UT

Iadapt = KIine
((1−κ)Vref−α)/((1+κ)UT), (63)

where VS is the voltage at the source of M8, α is given by UTln(In/Ip) and other

symbols are as previously described. The adaptation circuitry moves p2 by increasing

the tail current of the differential amplifier but does not modify Vout due to the

high Common Mode Rejection Ratio (CMRR) of the amplifier. A current source is

added parallel to M8 to ensure that a minimum bias current always flows through

the differential pair ensuring a minimum amplifier speed. This helps particularly in

step-responses for low currents. The Loop Gain of this adaptation loop is very low

due to the high CMRR of the amplifier and thus there is no possibility of instability.

Another attractive property of this adaptation is that any noise contributed by the

transistors M8 - M11 is rejected by the CMRR. The bandwidth of the adaptation

loop is set by the sum of Iin and the fixed bias current. In this implementation, p1 is

always the dominant pole. Consequently bandwidth always scales linearly with Gm5.

Gm5 varies linearly with Iin when M5 is in sub-threshold and as the square root of Iin

when M5 is above threshold.
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Figure 75: Loop gain of bias adaptation technique: (a) Without adaptation the
bandwidth does not increase uniformly with current indicating that the output pole becomes
dominant for large input currents. (b) With adaptation the loop bandwidth increases with
input current indicating that the output pole moves to higher frequencies with increasing
input current.

The bandwidth of the circuit can be improved slightly by including cascode tran-

sistors in the differential amplifier as it would remove the contribution of Cgd1 to CF.

This scheme of adapting the bias current can be applied to other amplifier structures

like a folded cascode amplifier or a standard nine transistor OTA. The simulated plots

of the Open Loop gain of the TIA biased at a baseline value of Iref=128nA are shown

in Fig. 75. Fig. 75(a) shows that without adaptation loop bandwidth stops increasing

with input current when the input current crosses the value of ≈ 70nA indicating

that the dominant pole switched from input to output. Fig. 75(b) shows the loop

bandwidth increasing uniformly with input current indicating that the input pole is

always dominant. Fig. 76 shows the measured bandwidth of this configuration with

increasing input currents. The slope becomes smaller at higher currents because the

feedback transistor moves into above threshold region. From this plot, the value of

Ceff is extracted to be 22fF.

Fig. 77 demonstrates measured adaptation of the bias current of the amplifier.

The total current drawn from the power supply is initially dominated by the baseline
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Figure 76: Variation of bandwidth: Measured small signal bandwidth based on step
responses of configuration I. From this plot, we extract the value of Ceff to be 22fF.

value of Iref=128nA when the adaptation current is much smaller than that, but after

a certain value of Iin the adaptation current dominates the total current. From this

curve, the average (geometric mean) power consumed from the 3.3V power supply is

3.45µW. In the next sub-section we discuss the power dissipation limit for this type

of adaptation.

8.3.1.2 Power Dissipation

The first constraint based on bandwidth requirement is the same as (56). For the

second constraint, we know that Iref in this case is variable (as it is adapting) and

relate it to the value of Iin:

p2,OPENLOOP ≥ AIin
CINUT

, (64)

where the symbols used were introduced in the last section on power dissipation.

Similar to previous sections, the power is found by considering it to be proportional

to gain-bandwidth:

Iref >
U2

TCLCIN(BW )2Iin
I2
in,min

. (65)
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Figure 77: Bias current adaptation: Measured current drawn from the power supply
demonstrating adaptation of the amplifier bias. The curve is flat initially when the adap-
tation current is smaller than the baseline value of Iref set at 128nA.

In order to find the average power dissipation it should be noted that due to the

nature of the data (varying over decades), the geometric mean is the proper measure

of average. Therefore,

Iref(avg) =
U2

TCLCIN(BW )2
√
DR

Iin,min
. (66)

Thus, comparing (58) and (66) we see that adaptation improves the power dissipation

by a factor of the square root of the dynamic range which can be as large as one

thousand for a system operating over six decades of current.

8.3.2 Configuration II: Adapting output resistance of the amplifier

The second method reduces the gain of the amplifier at higher input currents when

the speedup requirement is typically much lower. It achieves this gain reduction by

lowering the impedance at the amplifier’s high gain node, which pushes the amplifier’s

dominant pole to higher frequencies.

8.3.2.1 Operation

The second adaptation method is depicted in Fig. 74 (c). The current in transistor

M8 approximately replicates the variations in Iin. As Iin increases so does Vout. Being
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the source voltage of M8, an increase in Vout increases the current through M8. As

its conductance comes in parallel to the amplifier’s output conductance, it starts

resistively loading the output of the amplifier at high enough Iin values. This gain

reduction at higher current values allows the feedback loop to be stable even when

p1 approaches p2. Since the loading depends on the value of Vp with respect to Vout,

Vp is chosen from simulations based on the other parameter values. In practice,

it is advisable to allow for trimming Vp to account for variation in the estimated

capacitances which might affect the phase margin at some currents. This method of

adaptation assumes that the desired bandwidth does not scale with input current as

the lowering of the loop gain means Ceff increases at higher currents. The design has

to be such that the increase in Iin and Ceff allow the system to maintain a minimum

bandwidth over the entire range of currents. However, this method requires that

the amplifier supply the input current directly thus necessitating the amplifier bias

current to be larger than the maximum input current. In this sense it is quite similar

to the common-gate topology of logarithmic amplifiers and hence dissipates more

power for wide dynamic range inputs. The significance of this limitation depends

on whether the amplifier already required currents larger than Iin,max to satisfy the

BW requirements at Iin,min. Fig. 78 demonstrates the effect of gain reduction with

increasing input current to maintain stability.

8.3.2.2 Power Dissipation

Following the earlier derivations, we use the constraint that the minimum desired

bandwidth is BW to satisfy :

BW ≤ Gma

CF + CIN

A

≈ Iin

UT
CIN

A

⇒Iref ≥
AIin(Iin + UTCINBW )

AIin − UTCINBW
= f(Iin), (67)

where Gad is the source conductance of the adaptation MOS added to the output

of the amplifier. So, Iref has to be always larger than f(Iin) when Iin varies over
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Figure 78: Loop gain of gain adaptation technique: The loop-gain for configuration
II drops as current increases. This assures stability while ensuring a minimum bandwidth
is still obtained.

a specified range. We can make some approximations to get a rough idea about

the range of Iref based on this equation. If DR > 10A, Iref > Iin,max is a sufficient

condition. If DR < A/10, Iref > AIin,min is the pertinent equation. For the general

case, a solution can be graphically obtained by plotting f(Iin). The second constraint

using the phase margin condition can be obtained as:

Gad +Go2

CL
≥ AIbIin
UTCIN(AIin + Ib)

⇒I2
ref + IrefIin(2A− A2CL

CIN
) + A2I2

in(1 +
CL

CIN
) ≥ 0. (68)

From (68) we can infer the range of Iref under some simplifying assumptions.

CASE I : ACL/CIN>> 1

(68) reduces to:

Iref ≥ A2Iin,max
CL

CIN

=
U2

TCLCIN(BW )2(DR)

Iin,min

. (69)

Comparing this with (66), it is clear that this method consumes more power than

adapting Iref .

CASE II : ACL/CIN<2

In this case, (68) does not put any constraint on Iref . The only constraint is from
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(67). Firstly, assuming DR> 10A, we get:

Iref ≥ Iin,max =
DR

A

U2
TCLCIN(BW )2

Iin,min
. (70)

Comparing with (66), again we see that this solution consumes more power if DR >

A2. This case corresponds to a situation where the desired dynamic range is much

more than required speedup.

In the second case, assuming DR< A/10, we get:

Iref ≥ AIin,min =
U2

TCLCIN(BW )2

Iin,min
. (71)

Thus in this case, comparing with (66), output impedance adaptation consumes lesser

power than Iref adaptation by a factor of ≈
√
DR. From (70) and (69), for a floating-

gate programming system that requires measurements spanning a very wide range of

currents (DR≈ 106) and a modest speedup (A≈ 100), adapting the amplifier’s bias

current is the better solution compared to adapting the output impedance.

8.4 Noise Performance of the Adaptive Logarithmic TIA

In this section, the noise performance of the circuit in Fig. 74(a) referred to as con-

figuration I is discussed in detail. Configuration II can be analyzed following the

analysis presented.

For the noise analysis, we consider channel noise current sources for each tran-

sistor separately and compute their contribution to voltage noise power, V̂ 2
out at the

output. The total noise power is found by adding the noise power due to these uncor-

related sources. The calculation can be simplified by noting that noise currents due

to transistors M7 - M11 appear as a common-mode signal to the differential amplifier

and are thus attenuated by the CMRR. Also, M5 and M6 are in saturation with equal

values of Gm denoted by Gm5 in the following analysis. Then we have :

V̂ 2
out ≈

(̃i25 + ĩ26)

G2
m5

+
(̃i21 + ĩ22 + ĩ23 + ĩ24)

G2
m1

, (72)
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where ĩ2k denotes the channel current noise power of transistor Mk. The output noise

can also be referred back to the input as a current noise whose value is given by:

î2in ≈
(

κ

κ+ 1

)2

(̃i25 + ĩ26) +

(

κ

κ+ 1

Gm5

Gm1

)2

(

4
∑

k=1

ĩ2k) (73)

From (73) it is evident that as the adaptation makes Gm1 >> Gm5 the noise due to the

amplifier becomes negligible. The noise at the output is going to have a thermal noise

component and a component due to 1/f noise. This expression needs to be integrated

over the bandwidth of the TIA to get the total integrated output noise. For the

analytic derivation, we only consider the thermal noise component of a transistor

modelled following [90] as:

ĩ2

∆f
= 2qI, (74)

where q is the electronic charge and I is the current flowing through the transistor.

Using the transfer function from Iin to Vout calculated earlier, we get the total noise

to be:

V̂ 2
out,total = 4qI

G2
m5

∫

df

1+ ω2

p2
1

=
kT

(κ+ 1)Ceff
(75)

Thus the total integrated noise is independent of I, a result that is expected because

the bandwidth increases with I while the voltage noise density at the output decreases

with I. An intuitive explanation of this phenomenon based on equipartition of energy

is found in [33].

The output voltage noise spectrum up yo 100kHz was measured for configuration

I using a spectrum analyzer(Stanford research System’s SR 780) for different input

currents; the result is plotted in Fig. 79. The bandwidth obtained from the noise

plots corroborate the value of Ceff≈20fF which is close to the value calculated based

on process parameter values in the AMI 0.5µm process and also from measured step

responses. From the figure, integrating the noise spectrum gives a total noise of 700µV

rms. The theoretical equation for thermal noise predicts a value of 396µV rms with the
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Figure 79: Noise performance: Measured output voltage noise spectrum for Configura-
tion I. The thermal noise floor reduces and the corner frequency increases with increasing
input current. At higher currents the 1/f noise dominates in a 5kHz band.

difference probably being due to 1/f noise and measurement noise. The theoretically

calculated thermal noise density for Iin = 65 pA is 3.7µVrms which matches closely

with the measured noise density of 4.7µV rms as shown in Fig. 79. Also, the fact that

the adaptation circuitry does not indeed add more noise was verified by comparing

the noise spectra of a circuit in Configuration I with a similar circuit but with no

adaptation circuit. Both the circuits were biased at an input current ≈ 1nA. The

results are plotted in Fig. 80. The SNR can now be computed using the transfer

function as follows:

SNRpower =
(κ+ 1)3

κ4

CeffUT

q
(76)

Using the earlier obtained value of Ceff and choosing κ=1, we get an approximate

value of SNR as 45dB. But it should be noted that in applications like floating-gate

programming or imaging, the scaling of bandwidth with input current is not required.

Rather, this system demands a constant bandwidth of a few kHz depending on a

fixed sample rate of the system clock. Thus using a filter after the TIA to limit the

bandwidth to say 5 kHz, we get the SNR to scale with Iin. The SNR in the case
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Figure 80: Adaptation noise: Comparison of measured noise performance of a circuit
with and without adaptation. The adaptation introduces minimal noise
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Figure 81: Signal to noise ratio: Scaling of SNR with input current for a fixed bandwidth
of 5kHz. The plot based on theoretical thermal noise and measured 1/f noise is close to the
measured curve.

where the bandwidth is limited to“fBW ” is given by:

SNRpower ≈
(

κ+ 1

κ

)2
Iin
qfBW

(77)

This equation ignores the noise introduced by the filter itself.

Fig. 81 depicts the theoretically predicted and the measured variation of SNR.

Thus, over the plotted range of input currents the average SNR is approximately

65dB. The theoretical curve flattens out at low currents when the bandwidth of the
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Config. 1

Figure 82: Die micrograph: Die Photo of the fabricated chip in 0.5um AMI CMOS
process. Configuration I occupies 91 × 75µm2 of area.

TIA is lower than 5kHz. It should be noted that the increase in SNR with increasing

current saturates for the measured case because the contribution of 1/f noise starts

dominating in the 5kHz band. A curve plotted with theoretical thermal noise and

measured 1/f noise corresponds very closely to actual data proving the claim. Fig.

82 shows the micrograph of the fabricated chip.

8.5 Conclusions

Traditionally, different architectures for transimpedance amplifiers including common-

source, common-gate and common-drain have been explored. In all these systems,

there is an inherent trade-off between input-current noise and bandwidth due to

the fixed feedback impedance [28]. For this reason, applications requiring very wide

dynamic range and low-noise need some form of gain-adaptation. Techniques that

extend the dynamic range right at the preamplifier include varying the preamplifier

gain [49, 57, 71], placing a variable signal attenuator before the preamplifier [88, 111]

or using two feedback paths with different gains [46]. The first two techniques use

neither continuous nor automatic adaptation, but instead have a gain control input

which is set by the user. The third technique has the disadvantage of having two

outputs which need to be combined using additional circuitry. Table 9 compares this

work with some of the references.
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Table 9: Comparison of Performance of wide dynamic range TIA designs

Reference [34] [49] [46] This Work

Process 1.6µm 1.5µm Discrete 0.5µm

Area - 2.9×3.7mm2 - 91 × 75µm2

Supply - ±6V - 3.3 V

DR 100dB 114dB 80dB 140dB

Bandwidth >10Hz 1kHz 25kHz >3.5kHz

Power 10pA-1µA 30mW - .1µW - 33µW

In this chapter, we analyze in detail the power dissipation for the two main loga-

rithmic transimpedance amplifier topologies and show their functional dependance on

speedup (BWUT CIN

Iin,min
), dynamic range (Iin,max/Iin,min) and input, output capacitances.

We present two adaptation methods to overcome this problem. The first technique

adapts the amplifier’s bias current depending on input current to maintain bandwidth

and stability. The second method reduces the gain of the amplifier at higher currents

when the required speedup is less. It is shown that configuration I is ideal for wide

dynamic ranges. For this configuration, bandwidth or SNR can be made to scale with

input currents. It is also shown that adaptation does not adversely affect bandwidth

or noise performance. Measured results show operation over 7 decades of current with

an average power consumption of 3.45µW. The average SNR for operation at 5kHz

is 65 dB. The adaptation schemes introduced are very general and can be applied to

a wide class of circuits.

156



CHAPTER IX

CONCLUSION

In the earlier chapters of this thesis, I have discussed methodologies for designing

compact and low-power analog models of different neurons and the architecture of a

reconfigurable processor for neural simulations and analog signal processing. In this

chapter, I shall summarize the key points of the research completed and point out

several possible future directions.

9.1 Research Summary

In the context of neural systems, this work has introduced the concept of bifurcation

based analog neuron design which has resulted in the lowest power dissipating type

I neuron reported so far. Chapters II and III discussed the dynamical properties of

two neurons exhibiting two different codimension one bifurcations - Hopf and saddle-

node. In chapter II, a silicon neuron is modeled and it is demonstrated that the

neuron exhibits Hodgkin-Huxley type transient dynamics. In particular, we show

a subcritical Hopf bifurcation which is the trademark of Class 2 neural excitability.

Also, we demonstrate a bifurcation mechanism involving subcritical Hopf bifurcation

and a fold limit-cycle bifurcation that models the excitation block phenomenon. This

work enables finding the proper biasing regime for this circuit, a non-trivial task

because of the large dimensionality of the parameter space. Also, this is the first low-

power on-chip implementation of the circuit as [37] mentions using large bias currents

and off-chip capacitors.

In chapter III, we have presented a bifurcation based type I silicon neuron that

consumes 1.74 nW at an average spiking rate of 100 Hz, the lowest power among all

designs reported till date. Since it is based on a saddle-node bifurcation, it possesses
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all the phenomenon/properties associates with the bifurcation. The proposed design

mimics the dynamics of a type-I membrane and exhibits refractory period, positive

feedback and spike frequency adaptation. We also propose a circuit to extract the

nullclines for the system which leads to an algorithm for correctly biasing the circuit.

Combined with the ability of floating-gate transistors to set bias voltages locally, this

method should reduce variation in silicon neurons while not incurring a significant

area penalty.

In general, I have shown that the power efficiency in analog models of spiking

neural networks, while being far lesser than its biological counterparts, is around

ten thousand times better than a digital simulation. This allows us to scale neural

simulations to larger networks without running into constraints due to excessive power

dissipation. However, communicating spikes across chips will incur an extra power

penalty that I have not yet considered. To keep that penalty as low as possible, the

strategy should be to hard-wire the dense local interconnections while reserving spike

transmission only for sparse long distance connections.

To use these analog circuits instead of a digital simulation, the analog system

needs to have the flexibility of reconfiguring the network topology and tuning the

neuron parameters. Chapter IV presents one such reconfigurable analog architecture

based on the concept of a floating-gate (FG) based field programmable analog array.

The improved features of this chip compared to earlier FPAA designs are discussed.

The general structure of the chip is composed of an array of computational analog

blocks (CABs) within a programmable switch matrix. By modifying the components

in the CABs, different FPAAs can be made for different applications. Chapters V and

VI present two such different FPAA chips for neural simulations and analog signal

processing.

In chapter V, we presented a reconfigurable integrated circuit for accurately de-

scribing neural dynamics and computations. Both the topology of the networks as
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well as the parameters of the individual blocks can be modified using floating-gate

transistors. Neuron models of complexity varying from integrate and fire to Hodgkin-

Huxley can be implemented. Computational area efficiency is considerably improved

by implementing synaptic weight on the analog switch matrix resulting in all to all

connectivity of neurons. We demonstrate dynamics of integrate and fire neurons,

Hopf neurons of Hodgkin-Huxley type, inhibitory and excitatory synapses, dendritic

cables and central pattern generators.

In chapter VI, the RASP 2.8 IC is described that provides a powerful platform

for prototyping and implementing large-scale signal processing applications. The pro-

grammable switch matrix composed of floating gate devices shows excellent isolation

and can be readily utilized in computation. Different levels of routing allow imple-

mentation of high performance circuits while allowing for fast turn-around times.

The chip we present is the largest designs reported with around fifty-thousand pro-

grammable analog parameters and has significantly more variety in CAB components

compared to others.

One of the most important improvements of this family of FPAA chips over its

predecessors is the integration of floating-gate programming circuits on the same chip

as the FG array. This is enabled by digital-analog converters for supplying gate

and drain voltages and a floating-point analog-digital converter that measures the

programmed current in the FG device. This has led to improved speed, accuracy

and dynamic range of FG programming. The associated circuits and infrastructure

are detailed in chapter VII. The central element of the programming infrastructure

is a logarithmic transimpedance amplifier that can measure a wide dynamic range of

current but dissipates lower power than other designs by employing adaptation. This

problem is a general one faced in sensing applications too and hence this circuit is

detailed separately in chapter VIII.

This work has laid the foundation for using reconfigurable analog systems for a
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wide variety of applications. In the context of analog integrated circuit design, the

advent of these reconfigurable chips should usher in a revolution similar to or bigger

than what happened in the digital market because of the introduction of FPGAs.

The analog FPAAs can be used for prototyping different analog algorithms leading

to a reduced number of cycles for the final custom implementation. For applications

where the performance on this platform is allowable for the final system, this FPAA

chip can be used for the actual product leading to a time-to-market of less than an

year. Users should now be able to concentrate more on the system design and signal

processing aspects rather than be concerned about the details of every transistor.

9.2 The Future

The work done in this thesis allows one to think about solving problems in a wide

variety of fields. I shall elaborate a few topics that I plan to pursue in the following

years.

9.2.1 Computational Neuroscience

There are several neuroscience problems that can be studied using these integrated

circuits including the ones mentioned below:

1. Differences in computational properties of Hopf and saddle-node neurons

2. Importance of the inhibition time-constant variation in Hodgkin-Huxley models

3. Computational properties of active dendrites and their similarities with hidden

markov models

4. Synchronization properties of bursting neurons with different bifurcations re-

sulting in the bursts

5. Effect of noise on synchronization, effect of noise on network properties etc.
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While digital simulations will still be popular in the near future for its ease of use

and well controlled, accurate simulation engine, I can envision a future where neu-

roscientists will resort to using these analog chips as a co-processor or for their full

simulation. There is still a long road to be traveled before achieving that goal, but

the path seems to be clear.

9.2.2 Electrophysiology

The current electronic equipment needed for electrophysiology experiments, in partic-

ular, voltage or patch clamps, current clamps and dynamic clamps consist of a bulky

instruments mounted on a large rack. The setup is both costly and cumbersome. It

also has its limitations, particularly for dynamic clamps, where the delay in digitizing

the acquired voltage and computing the feedback current may cause instabilities [84].

Also, the number of channels and maximum update rates have been limited to four

and 50 kHz respectively. An FPAA system combining signal processing and silicon

ion channel elements can replace this whole lot of equipment and also provide supe-

rior performance. The signal processing and conditioning circuits are needed mostly

to cancel the parasitic effects of probe resistance and capacitance. The neural ele-

ments can be used in dynamic clamps as conductance inputs to the real cell. Since

every channel operates independent of any other, the number of channels is limited

to only chip area and can easily be as high as sixteen in a 3mm×3mm IC in 0.35

µm CMOS. Also, instability problems should be reduced due to the removal of the

analog-digtal converter(ADC) from the loop. This small FPAA board should make

electrophysiology setups relatively inexpensive and hopefully make it easier to teach.

9.2.3 Sensor Interfacing

The reconfigurable analog processors that I have developed can be used for several

applications other than neural modeling. One such instance is that of a ‘smart sensor’

or a sensor with an integrated processor. This work is motivated by collaborative
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research that I have performed with the MIST laboratory advised by Dr. Levent

Degertekin. For the sake of completeness, I shall briefly discuss this next.

I have worked on developing low-noise interface circuits for capacitive micro-

machined ultrasound sensors (cMUT) [80] [79] [81] with Dr. S. Peng, Dr. M. Qureshi

and Mr. G. Gurun. Our approach of using a capacitive voltage amplifier for sensing

changes in capacitance is one of the lowest noise approaches since it eliminates the

noise from the feedback resistor in typical transimpedance approaches. The floating-

node at the input is stabilized either by a MOS switch, or MOS pseudo-resistor or

continuous time injection and tunneling mechanisms. For ultrasound applications,

since the current through the cMUT carries the information, using a capacitive am-

plifier requires a derivative operation down the processing chain. To alleviate this,

we have also developed transimpedance approaches to directly transduce the current

to a voltage. We have also worked on integrating the MEMS sensor part on the

same wafer as the CMOS circuits. This approach reduces parasitic capacitances by

an order of magnitude. Initial results of this system are very promising.

I have also worked with Dr. S. Qureshi in designing interface circuits for an optical

hearing-aid. The system uses pulses of light shined on a movable optical grating to

sense the motion of the grating from the resulting interference pattern. The motion

of the grating depends on the incident sound wave. Two approaches have been used

to sense the current from the photodiode detector - one is continuous while the other

is discrete-time. An analog receiver chain with a passive transimpedance, bandpass

filter with gain, peak detector and low-pass filter has been fabricated. The reason

for using a passive transimpedance stage is that the speed required is not very high.

The chip is designed in 0.35µm CMOS and operates from a low power supply voltage

of 1.5V. Special design techniques are used for low-voltage design. Different peak-

detector topologies have been tried to overcome the problems associated with a fixed

discharge rate that is most suitable for a fixed modulating frequency. The other
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receiver takes advantage of the fact that the received signal is already sampled. So

a current-mode delta sigma converter is used to digitize the current directly. Wide

input linear-range OTA circuits employing capacitive attenuation are used for the

integrators. These circuits have the advantage that the Gm-degeneration circuit does

not add noise.

An obvious next step is combining these low-noise sensor interfaces with the re-

configurable processors described earlier. Such an initial design has been developed

and described in [78]. The first row of CABs is a special one with high performance

LNA circuits that are connected to the pads with minimum switches in the signal

path. The amplified signal can be processed by the signal processing circuits in the

remaining CABs. The resulting smart sensor can be used for several applications

like dynamic clamps in experimental neuroscience, beam-forming in intra vascular

ultrasound, hearing aids etc.

9.2.4 Adaptive FPAA - Spike Timing Dependent Plasticity

The FPAA designs described till now, though reconfigurable, are pre-programmed.

In other words, the configuration or the parameter values are preset before it is used

for an application; it is not dynamically tunable. Using a separate digital controller,

the output of the circuits implemented on the FPAA can be monitored to generate

the next set of parameters to be programmed on the chip. But this requires a digital

controller and the update time may not be well controlled. Instead, it is more useful

if the parameters of the circuit could be modified naturally in an analog way based on

some system output. This belongs to a class of circuits popularly called ‘self-healing’

since it can modify or heal its parameters to maintain the output of the system at

the desired value. Hence, the system becomes largely immune to drift of parameters

due to temperature, ageing etc.

In the context of neural systems, this concept of self-healing coincides with the
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concept of ‘learning’. There has been several different algorithms for learning in

networks of neurons with the most popular ones arguably being back-propagation (in

traditional static neural networks) and STDP or spike timing dependent plasticity (in

spiking neural networks). A set of new FPAA designs are being developed which allow

for modification of FG charge in run-time to explore different learning algorithms. A

more custom chip will be made with a dense synaptic matrix with STDP being the

supported learning format. Using these two chips, I plan to conduct experiments to

understand how the dynamics of individual networks affect the learning properties of

the network. Also a neuron simulator needs to be developed to simulate the effect of

different hardware learning rules on the learning properties of the network.

In the context of VLSI systems, a slightly different and less flexible format of

learning might be more useful. Using the concept of built in self test (BIST) from

digital systems, we can fabricate an FPAA which can allow blocks of the chip to be

selectively put into ‘PROG’ mode for testing the properties of its components. The

test signals for this block may be obtained from other blocks which are in ‘RUN’ or

operational mode. Then that block can be put in ‘RUN’ mode with the desired biases

based on the tests performed earlier.

Thus, this work seems to have opened several avenues of exciting research over the

next few years. Once this programmable analog technology becomes more popular,

I believe we will be faced with another problem - that of educating researchers (and

learning ourselves) how to efficiently utilize the available resources in this kind of a

platform. The design philosophy in this system is going to be different from that of a

custom chip since the building blocks and their quantities will differ. Educating other

researchers about this technology has also been a part of the work that I have done; I

have taught in several workshops and classes but that has definitely not been a major

focus yet. Over the years, I envision more effort being spent in teaching people till a

day comes when less effort is spent in developing new designs than teaching others to
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do system-design in reconfigurable ICs. When we do reach that day, I shall consider

the work done in this thesis to have achieved its goal.
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APPENDIX A

NORMAL FORM FOR HOPF NEURON

In this section, the derivations of the center manifold reduction and associated normal

form described in chapter 2 is presented.

Let us consider a general problem defined by the equation

ẋ = V (µ, x), xǫR4, µǫR (78)

where µ is a parameter (Iin in the present case) and without loss of generality we

consider the system to have an equilibrium at the origin for µ = 0. The Taylor

expansion of this system around the origin gives rise to a linearized flow given by:

ẋ = DV (0, 0)x,DxV (µ, 0)ij = DV (µ, 0)ij ≡
∂Vi

∂xj
(µ, 0) (79)

Let Es, Eu and Ec denote the linear subspaces spanned by the eigenvectors of DV

which have eigenvalues with negative, positive and zero real parts respectively. Let

the dimensions of the respective spaces be ns, nu and nc. The non-linear system has

stable, unstable and center manifolds denoted by Ws,Wu and Wc which are tangential

to the corresponding linear spaces at the origin(Center-Manifold Theorem) [44]. At

a Hopf bifurcation, two eigen-values lie on the imaginary axis and hence ns = 2.

Since all bounded solutions in the neighborhood of the equilibrium are confined to

the center manifold [31], we only need to consider projections of the flow onto this

manifold for observing periodic solutions. In order to capture the behavior of the

solutions as the parameter is varied, another dummy equation µ̇ = 0 is appended to

78 which makes ns = 3 and x = (x, µ).

Considering µ = 0 to be the critical value we can write (78) as:

ẋ = DV (0, 0).x+N(x), (80)
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where N(x) denotes the non-linear terms. We can choose variables x1ǫEc and x2ǫEs
⊕

Eu

such that x=(x1,x2) and (80) becomes:

ẋ1 = A.x1 +N1(x1, x2)

ẋ2 = B.x2 +N2(x1, x2), (81)

where A is an nc × nc matrix with all eigenvalues on the imaginary axis, B is an

(ns + nu) × (ns + nu) matrix with all eigenvalues off the imaginary axis, and N1 and

N2 are the resulting non-linear terms. The crucial observation in this case is that

as Wc is tangent to Ec at x=0 and passes through x=0, we can describe W c as the

graph of a function h(x1) near x=0,

h : Ec −→ Es
⊕

Eu, h(x1) = x2 (82)

Thus for a trajectory belonging to W c we can write:

x2(t) = h(x1(t)) (83)

⇒ dx2

dt
= [Dx1h(x1)].

dx1

dt
(84)

= [Dx1h].[A.x1 +N1(x1, h(x1))] (85)

Now, combining (83) and (81), we have:

[Dx1h].[A.x1 +N1(x1, h(x1))] = B.h(x1) +N2(x1, h(x1)) (86)

This partial differential equation gives an expression for the center manifold which is

solved by considering the Taylor series for the function h near x=0.

Following the above procedure for Hopf bifurcation, we get a reduced two dimen-

sional equation depending on µ. These may be further simplified by near identity

co-ordinate changes. As the normal form equations for Hopf is two dimensional, it

is useful to cast the equations in the complex form. Let the equation obtained after

center manifold reduction be

ż = λz + h(z, z); z, λǫC1 (87)
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Let the normal form variable be w. Then we know the desired normal form for Hopf

is given by:

ẇ = λw + c1w
2w +O(|w|5) (88)

where the cubic coefficient c1 needs to be determined. To remove the second order

term, we consider a change of variables:

z = w + ψ(w,w)

= w + ψww
w2

2
+ ψwwww + ψww

w2

2
(89)

Substituting (89) in (87) and equating coefficients we can solve for the function ψ.

Using this function, the cubic coefficient can now be obtained. The resulting equation

after these simplifications is stated in (11) after converting the variables to polar form.

The same theory can be applied to the other Hopf bifurcation occurring at lower

currents leading to the following normal form:

ṙ = r(0.113µ− 0.03µ2 + (0.61 + 0.061µ− 0.012µ2)r2)

θ̇ = 2.42 + 0.5µ− 0.02µ2 + (−0.015 − 0.034µ+ 0.014µ2)r2, (90)
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