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Abstract— The vector-matrix multiply and winner-take-all
structure is presented as a general-purpose, low-power, compact,
programmable classifier architecture that is capable of greater
computation than a one-layer neural network, and equivalent to
a two-layer perceptron. The classifier generates event outputs and
is suitable for integration with event-driven systems. The main
sources of mismatch, temperature dependence, and methods for
compensation are discussed. We present measured data from
simple linear and nonlinear classifier structures on a 0.35-µm
chip and analyze the power and computing efficiency for scaled
structures.

Index Terms— Analog computing, classifiers, computing effi-
ciency, reconfigurable.

I. EFFICIENT ANALOG CLASSIFIERS

ENERGY efficiency is a key concern in information
processing in low-power smart sensors and mobile

devices [1]. A typical information processing chain usually
involves a refinement stage that reduces the processing load
on the following stages. In embedded systems that receive
sensory inputs, process and classify them to take decisions, it
is essential to take a low-power approach for enabling such
structures in robots and other mobile platforms. Classifiers are
typically used in the information refinement stage and it is
often essential that besides being low power, they also produce
very few events. Events are generated when a certain class has
been detected, triggering further circuitry dependent on this
decision.

In highly integrated systems, an increased number of events
often leads to increased power consumption, which is required
to transmit events over interconnects between blocks that
have significant capacitances. This strategy of minimizing
the number of events is observed in biology, where the
nervous system processes several sensory inputs and refines
the information before transmitting them along large distances.
The high power efficiency of the nervous system observed in
biological organisms is achieved by maintaining a low rate of
spiking in the neurons, which is on average 100 Hz or less [2].
In the past, significant effort in hardware classifiers has
been through the rise of the artificial neural network (ANN)
community since the 1980s, which solidified a framework of
neural models that resulted in a variety of techniques to solve
problems in many applications. Many of these techniques are
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Fig. 1. Application in analog speech recognizer chain. Speech input
undergoes frequency decomposition or enhancement resulting in sub-band
signals. These signals undergo first-level information refinement in the feature
detection stage, resulting in a sparse “symbols” or “event” representation.
The following stage detects sequences of symbols/events to identify words
or syllables. The feature detect stage may be implemented as an ANN,
GMM, or a VMM + WTA classifier. A typical two-layer NN has synaptic
inputs represented by the VMM and the sigmoid modeling the soma of a
point-neuron. Alternatively, we can have synaptic computation followed by
a competitive network modeled by the WTA. We investigate computational
advantages to using the VMM + WTA over the ANN/GMM approach.

considered standard and taught in most universities. The neural
network (NN) approach has its early roots in the perceptron
[3] and adaptive filter models [4] that then extend to multilevel
network models, Hopfield models, and other related computa-
tional approaches. A simple NN has inputs being multiplied
by a weight vector, added together at the soma compartment,
where a linear or nonlinear function is applied to generate
the output. ANN approaches include having continuous-valued
(e.g., tanh) functions that approximate the spike frequency
versus current input (f-I) characteristic of neurons with an
analog voltage, or spiking (integrate-and-fire neurons, rate-
encoded neurons), feedforward or feedback stages.

In this paper, we consider an analog classifier consisting of
a vector-matrix multiply (VMM) terminated with a winner-
take-all (WTA), shown in Fig. 1, that is versatile and has
more computing power than a one-layer NN. The VMM
block performs a multiply operation between a vector and
a matrix of weights, resulting in a vector and forming a
core component of many signal processing algorithms. The
VMM + WTA, which we use as the base classifier, compares
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Fig. 2. (a) Field programmable analog array. The FPAA used in this paper consists of 78 CABs embedded in reprogrammable routing enabled by floating-gate
switches [8]. Each CAB consists of capacitors, transistors, and OTAs that have programmable bias currents. Some OTAs have floating-gate inputs that allow
cancellation of input offsets. (b) Two types of routing elements. (c) Switch programming schemes. The device(s) within the dashed circle appear in the signal
path, while other devices are used for programming and selection. The indirect programming scheme minimizes parasitic in the signal path by using a separate
device that shares the floating gate with the actual device. The selection device is required for isolation. The indirect scheme can result in inaccuracies due to
a mismatch between the programmed device and actual device, but can be characterized. The direct scheme, where the programmed device and actual device
are the same, requires no additional characterization. However, there is an extra selection device in the signal path, which reduces switch conductance at low
voltages.

favorably against the one-layer NN in terms of the number of
components as well. We show a direct translation of a one-
layer NN to a VMM + WTA, where the WTA acts as a current
comparator. In a different formulation, the WTA can perform
an analog max function, selecting the largest (or smallest) of
its inputs. With minor modifications, the WTA can be designed
to allow multiple winners, local winners, or exhibit hysteresis
[5]–[7], leading to classifiers that allow multiple winners with
spatial responses, which can be useful in image processing, or
exhibit hysteresis, which makes the classifier immune to noisy
inputs.

We see this structure being used in an analog speech
recognizer as shown in Fig. 1. The speech input undergoes
frequency-decomposition or signal-enhancement in the front-
end, resulting in input features, such as sub-band energies.
These signal inputs are transformed into symbols or events
with ANN, Gaussian mixture model (GMM), or VMM +
WTA in the first stage of information refinement. This can
be followed by higher level refinement or by a sequencing
block to detect syllables or words.

This paper is organized as follows. We briefly discuss the
computational efficiency and circuit complexity comparisons
of VMM + WTA versus NN implementations in Section II.
In Section III, we describe the hardware platform used for
implementing our classifiers. Next, in Section IV, we discuss
the multiple-winner WTA circuit. In Section V, we describe
our VMM implementation, which is more compact and has
lower noise and power than the previously described VMMs.
In Section VI, we present measured results from classifier
circuits that integrate the VMM and WTA to yield linear,
multiclass, and nonlinear classifier systems. Finally, we discuss
mismatch, computing efficiency, and temperature effects in
Section VII.

II. IMPLEMENTATION AND EFFICIENCY OVERVIEW

A one-layer NN requires the computation of a VMM +
neuron. The addition of various weighted inputs is achieved
through Kirchoff’s current law (KCL) at the soma node. We
define synaptic computation as the multiplication of inputs
with synaptic weights, and neuron computation as a nonlin-
ear threshold function. Assuming we have n synapses per
neuron and m neurons, we expect a complexity of m ∗ n

for synaptic computation. The computation at the neuron
is governed by the choice of complexity in the model.
A simple neuron model [tanh(.)] would require four multiply-
accumulate (MAC) units per neuron computation, as seen from
a Taylor series expansion with four terms

tanh(x) ≈ x − x3
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Usually, for a moderate size of n, the synaptic computa-
tion dominates the neuron computation. The VMM + WTA
classifier topology has the advantage of being highly dense
and low power. Each multiply is performed by one single
transistor that stores the weight as well, and each WTA unit
has only two transistors, providing very high circuit density.
Custom analog VMMs have been shown to be 1000× more
power efficient than commercial digital implementations [9].
The nonvolatile weights for the multiplier can be programmed
allowing flexibility. The transistors performing multiplication
are biased in a deep sub-threshold regime of operation,
resulting in high computing efficiency. We combine these
advantages of VMMs with the reconfigurability offered by
field-programmable analog array (FPAA) platforms to develop
simple classifier structures. VMMs on FPAA with high power
efficiency have already been demonstrated in core signal
processing applications viz. Image transforms and orthogonal
frequency-division multiplexing receivers [10], [11]. In this
paper, we discuss the computing power of the VMM + WTA
classifier, and show that we can implement any two-layer
perceptron with modifications to the WTA.

III. HARDWARE: FPAA IMPLEMENTATION

The hardware platform used for implementing the classifier
is among the family of FPAA chips specifically geared toward
building large VMMs. A detailed description of this chip and
its features can be found in [8]. However, for the sake of com-
pleteness, we provide a short discussion on the architecture of
this chip.

FPAAs have the general structure of a computational ana-
log block (CAB) with routing infrastructure to make repro-
grammable connections between the components. The CAB
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Fig. 3. (a) Traditional WTA modified to a k-WTA with a current threshold
at each output, realized using a cascaded pFET. The current flowing through
the winning branch is constrained, allowing other inputs to the WTA to win.
The voltage outputs from the WTA are inverted and a node wins when its
output is below mid-rail. (b) WTA with 0, 1, 2, and 3 winners. The choice
of current threshold determines the number of winners.

consists of circuit blocks commonly used in analog design,
as shown in Fig. 2. The re-programmability is enabled using
floating-gate transistors that can be programmed ON or OFF
by operations known as injection and tunneling, respectively,
similar to programming Electrically Erasable Programmable
Read-Only Memories. The programming infrastructure that
includes selecting specific switches and injecting them is
integrated on-chip, as discussed in [12].

IV. WINNER TAKE ALL

WTA networks of neurons were an early area in which
VLSI and neuroscience positively interacted with each other,
providing a unique and efficient means of computation. The
classic circuit in [5] was based on continuous-valued approx-
imations to neurons, and utilized transistor device physics to
build an efficient circuit. Later, others built multiple spike-
based representations to complete the connection between
the analog VLSI approach and biological computation [13].
Several modifications to this circuit exist that allow local
winners, hysteresis behavior that stabilize the outputs, tem-
porary winners that fatigue after a period of winning and
allow other inputs to win and multiple winners [6], [14],
[15]. The CAB components in the FPAA support several WTA
implementations, but we implement the classic WTA from [5].

A. Multiple Winners

Often, we require classifiers that generate not just one
output, but multiple outputs. In pattern classification, we can

expect the classifier to indicate that a certain pattern matches
two categories instead of just one. The WTA circuit does
not preclude multiple winners and this can be achieved by
modifying the circuit in [5], as shown in Fig. 3. For a
k-WTA, or a WTA with k winners, we use the current outputs
from the WTA and apply a current threshold at the output.
The modified implementation is shown in Fig. 3(a). A current
threshold Ithresh is mirrored to each of the current outputs from
the WTA. By constraining the current in the winning branch,
we allow other inputs of the WTA to continue winning after
the first winner. The choice of Ithresh determines the number
of winners. For k winners, the relation between Ithresh and Ic
is given by

Ic

k + 1
≤ Ithresh <

Ic

k
. (2)

The distribution of input currents also determines the number
of winners for a fixed Ithresh. When the inputs are close
to each other, Ithresh needs to be closer to Ic/(k + 1) than
Ic/k. The value of Ithresh required to guarantee k winners
is given by the lower limit of (2). Fig. 3(b) shows the
measured results from a five-input WTA, with different cur-
rent thresholds to obtain multiple winners. The cascading
p-type field-effect transistor (pFET), devices were inserted to
improve the Early voltage of the current threshold, thereby
constraining the current through the winning branches to
Ithresh more effectively than if cascades were not present.
The k-WTA produces inverted voltage outputs that are taken
at the drain of the thresholding pFET. Compared to the
k-WTA circuit in [14], this implementation does not require
any additional power/circuitry.

V. COMPACT VMM IMPLEMENTATIONS

VMMs can be implemented in a power-efficient and com-
pact manner using floating gates. The multiplication weights
are stored as charge on the floating node and can be precisely
programmed and controlled. The weight can be expressed as

w = eκQ/CT UT (3)

where Q is the charge programmed on the floating-gate node
and CT is the total effective capacitance seen at the floating
node. A single floating gate stores the weight as well as
performs a multiply function. The programming accuracy of
the VMM weights has been well characterized and in one
application, has been shown to be 1.5% accurate in [8].
Examples of the different VMM topologies that we can
implement are discussed in [9].

For a VMM with voltage inputs, we require a structure
shown in Fig. 4. This structure converts a voltage input
linearly into a current, using an operational transconductance
amplifier (OTA) as a transconductance stage. The current is
log-compressed on the source terminal using a logarithmic
transimpedance amplifier and broadcast. Hence, the voltage
input into the VMM and the weight of the input is encoded
in the source voltage using the transconductance amplifier and
logarithmic transimpedance amplifier. The signal-conditioning
block that maps the input voltage to a broadcast source voltage
is shown in the dashed box in Fig. 4.

We note that the number of OTAs required in the signal-
conditioning block scales linearly with inputs, and is 2n
for single-quadrant multipliers, and 4n for four-quadrant
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Fig. 4. Equivalence between VMM topologies (see Appendix). The VMM
structure shown on the left transforms voltage inputs into currents using a
transimpedance stage. The multiplication is achieved in current mode using
a source-driven floating-gate current mirror where the weights are a result
of differences in charge programmed on the floating gates. vin,p − vin,n is
the differential input to the VMM. The structure shown on the right shows a
source-driven VMM where the input signal is applied directly to the source
of the floating gates. vs,p − vs,n is the differential input to the source-driven
VMM.

multipliers, where n is the number of inputs. Hence, for
classifiers with a large number of inputs, a significant portion
of the power budget is spent in the signal-conditioning block.
In addition to the power overhead due to the amplifiers,
we see effects of mismatch and noise added on the inputs.
The main sources of mismatch are input offsets in the V-I,
mismatch between bias currents of the V-I, and input offsets
in the I-V. Cancellation of these effects often requires a
lengthy characterization process. In this paper, we choose a
source-driven VMM topology as shown in Fig. 4 to build
low-power compact structures that minimize the added noise
and mismatch effects by eliminating 4 OTAs per VMM
input. Here, the voltage inputs are directly applied to the
source terminal of the weighted current sources. We derive
the equivalence between the two topologies in the Appendix.

We assume that the inputs to the classifier are from the set
{x : |x | ≤ 1}, which is reasonable for normalized inputs. It can
be shown that for small x , there is a linear relation between
the differential inputs for the two different VMM topologies
shown in Fig. 4

vin,p − vin,n ∝ vs,p − vs,n. (4)

The differential input at the source is a compressed linear
representation of the inputs to the V-I, and the attenuation
factor is inversely related to the input linear range of the
transconductance stage. The two voltage inputs for different
values of x are plotted in Fig. 5. The equivalence of the two
structures in Fig. 4 shows that we can achieve compact VMM
structures using just the routing infrastructure in the FPAA.
From (4), the voltage inputs to the VMM can be applied
directly to the source of the FG transistors. We note that the
differential voltage inputs to the source-driven VMM need
to be constrained to a range of 2 UT ≈ 50 mV for linear
operation of the VMM. The stage driving the VMM also
needs to supply the current required for the VMM. The output
current can be expressed as

Iout = Ibias(2w + x"w) (5)

Fig. 5. The differential input voltages for the two topologies versus signed
input x , as calculated in (24). x is the normalized input to the classifier. We
notice that the input for the source-driven topology (dashed) is a compressed
form of the input for the standard VMM topology (solid). In this simulation,
we use κeff = 0.1.

VI. CAPABILITY OF VMM + WTA CLASSIFIERS

We now integrate the VMM and WTA circuits to build
simple classifier structures. In this section, we first describe
measured results from system compilations of linear, multi-
class, and nonlinear classification problems.

A. Linear Classifiers

We start by considering a perceptron, which is a simple
linear classifier with a binary output that can be implemented
with a one-layer NN. A linearly separable set of inputs can be
classified using a perceptron trained to weights wi and bias b
with the equation

z =
{

1, if
∑

i wi xi − b ≥ 0
0, otherwise (6)

A VMM + WTA classifier can be trained as a generalized
single-layer perceptron by using a fixed current source as an
additional bias input to the WTA, shown in Fig. 6. The WTA
functions as a current comparator and detects the largest input.
When

∑
i wi xi > b, the first input wins. By using a 1-WTA

circuit implemented with the current threshold at the WTA
output, we obtain inverted voltage outputs. Hence, the first
output is low when

∑
i wi xi > b and high otherwise.

We measured results from two different linear classifier
boundaries programmed on the VMM + WTA circuit, for
multiple bias values. For a linear decision boundary, we
train a perceptron using MATLAB’s NN toolbox and apply
the weight and bias values directly to the VMM + WTA
classifier. We restricted ourselves to a two-input case for
ease of visualization. The structure in Fig. 6(a) only supports
positive values for the bias. Since our implementation required
signed weights and bias values, we chose a topology with fully
differential inputs. The classifier was tested over all inputs
from the set {(x, y) : |x | ≤ 0.8, |y| ≤ 0.8}. We plot the
inverted WTA voltage output in Fig. 6(c) and (d). The output
makes a sharp transition at the desired decision boundary,
which is marked by the solid line in the plots. Since our VMM
implementation consisted of directly programmed floating-gate
transistors, we were able to directly apply the weights obtained



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAMAKRISHNAN AND HASLER : VMM AND WTA AS AN ANALOG CLASSIFIER 5

(a)

(b)

(c)

(d)

Fig. 6. Linear classifiers: Simple perceptron or a one-layer feed-forward network can be implemented using a VMM + WTA structure. (a) Input multiplication
can be implemented using VMMs. The bias b is the second input to the WTA, implemented as a fixed current source. (b) Differential implementation of a
linear separator. The bias is programmed as a differential weight with a fixed input. Measured results: (c) VMM + WTA classifier trained to have a decision
boundary of y + x ≥ b, for bias values b = 0.25, −0.25. (d) VMM + WTA classifier trained to have a decision boundary of y − 3x ≤ b, for bias values
b = 0.75, −0.75. The black solid line represents the theoretical decision boundary.

Fig. 7. Multi-dimensional classifiers: a four-input six-output VMM+WTA
classifier constructed to classify input sequences. The weights are computed
using the psuedo-inverse method. The trained classifier responds to sequence
of input patterns.

from the training algorithm and target them to the hardware,
without any calibration or offset correction procedure and still
match the theoretical decision boundary.

B. Multiclass Classifiers

As the name suggests, multiclass classifiers have several
outputs, and classify data into multiple classes. The compet-

itive behavior modeled in the VMM + WTA circuit allows
building of such classifiers with multiple outputs that can
detect regions of interest. We demonstrate the capability of
the VMM + WTA circuit to build a region detector in
Fig. 8. We train a two-input, three-output classifier to detect
regions of inputs defined as shown in Fig. 8. Again, for
simplicity of visualization, we chose only two differential
inputs. We constructed a classifier with three outputs and the
region boundaries specified in Fig. 8(a). From this theoretical
construction, we obtained the weights for the VMM using
the pseudo-inverse method. We generate random inputs in
MATLAB and multiply them by the weight matrix obtained.
We then do a max function on the transformed inputs to
generate the theoretical classifier output in Fig. 8(a). Since
the theoretical weights were signed, we constructed a fully
differential implementation and targeted the weights to the
VMM circuit. We then applied 1000 inputs randomly from
the set {(x, y) : |x | ≤ 0.8, |y| ≤ 0.8}. Since the WTA
voltage outputs are inverted, we found the winning output
by finding WTA voltages below inverter threshold (mid-
rail) and recording its position. In Fig. 8(b), we denote the
winning position for each of the random inputs by a different
colored dot. Our three-output classifier was programmed with
weights obtained directly from MATLAB and matched desired
classifier response quite well. Multiclass classifiers are often
used as pattern recognizers. We constructed a simple pattern
recognizer consisting of four inputs and six outputs, shown in
Fig. 7, where the input sequence produces an identity matrix
at the output. Each column in the identity matrix represents an
output of the WTA and each bit of the four-bit input pattern
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Fig. 8. Multi-dimensional classifiers: (a) a two-input three-output
VMM+WTA classifier constructed to have the theoretical decision boundaries
shown. Each color represents a different winner. (b) Measured results from
the VMM+WTA classifier compiled.

represents a differential input. We obtained the weights using
the pseudo-inverse method and programmed the classifier. We
tested the classifier by generating a repeating sequence of
the inputs. Each pattern was held for 5 ms before the next
pattern was presented to the classifier. The transient response
measured from each output of the WTA shows that the system
classifies the patterns correctly. Since the outputs from the
WTA were unbuffered and saw a pin capacitance of ≈ 10
pF, we see a slow transition between states of the classifier.
This was also the reason why we presented inputs for a long
time before switching, and can be avoided by buffering the
output nodes.

C. Nonlinear Classifiers

Nonlinear classification boundaries required in most real-
world problems are usually very computationally intensive.
Single-layer NNs can only implement classifiers for linearly
separable data, but a two-layer NN can approximate any
function [16]. A two-layer NN has an input layer, hidden
layer, and an output layer. An analog VLSI implementation
would require two VMMs for the synaptic computation and
two layers of threshold blocks for the hidden and the output
layers. This considerably increases the complexity and power
consumption of the circuitry. In [17], Maass showed that any
Boolean function with analog or digital inputs and one binary
output can be approximated with a VMM+k-winner-take-all
classifier. He showed that the weights for the VMM + WTA
classifier are a linear combination of weights of the two-
layer perceptron, and further, they are all positive, requiring
only single-ended inputs in our implementation. This result
provides additional support to the computational power of the
VMM + WTA classifier, by halving the computing resources
required.

One of the most computationally challenging problems for
NNs is the XOR problem. We use the algorithm provided
in [17] to compute weights for our VMM+k-winner-take-
all structure to implement a nonlinear classification boundary
for an XOR circuit. One possible implementation of the XOR
gate with a two-layer NN and its equivalent VMM + WTA
implementation is shown in Fig. 10. The VMM + WTA XOR
circuit requires only a single-winner WTA. The position of
the WTA output computing the XOR function is marked z in
Fig. 10. We tested the XOR circuit by generating inputs from
the set {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and recording the
voltage at the third output. The VMM weights are biased at
10 nA, resulting in 95 nA drawn in the VMM when both inputs
are active. The WTA is biased at 100 nA, resulting in 0.47 µW

Fig. 9. Nonlinear classifiers. VMM + WTA structure is powerful enough to
implement any Boolean function with one digital output. A solution for the
XOR problem using a two-layer NN can be translated to a VMM + WTA
implementation. Measured results from an XOR implementation using the
VMM + WTA structure are plotted.

drawn at 2.4 V, when all inputs are active. The XOR gate is
also the simplest case of the N-input parity function. Here, we
demonstrate the implementation of a four-input parity function
using the VMM + WTA classifier. Starting with a two-layer
NN implementation [18], we obtain weights for the VMM
+ WTA classifier using the procedure detailed in [17]. This
implementation requires a two-WTA, with five inputs, with
the fifth output computing the parity function. The theoretical
NN and VMM + WTA implementation is shown in Fig. 10.
We obtain a two-WTA by setting Ithresh to Ic/3, as shown in
Fig. 3, where Ic is the WTA bias current. We test the four
bit parity circuit by setting input patterns using DACs on our
test platform. We compute the expected parity (marked in the
figure) and plot the fifth output from the WTA in Fig. 10.
The slow transition at the WTA output is due to the large
capacitance at the node and can be avoided by buffering the
output. The WTA output does not swing all the way up to the
rail for the case of all zeros and all ones, since the VMM
output for those cases is very close to the second winner.
However, the transition from this state to the winning case
is large enough that it can be detected by a logic gate.

VII. SYSTEM PERFORMANCE CHARACTERIZATION

In the following section, we characterize the system perfor-
mance by considering mismatch effects, power consumption,
computing efficiency, and speed of computing. We also discuss
the temperature dependence of the classifier output.

A. Mismatch Compensation

In this section, we investigate effects of mismatch in the
WTA circuit, and techniques to compensate for them. We will
ignore effects of mismatch in (W/L) and κ . The dominant
source of mismatch in analog design is the threshold voltage
mismatch "VT [19], which is true in sub- and near-threshold
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Fig. 10. Nonlinear classifiers. Four-bit parity problem implementation using a
two-layer NN and its equivalent VMM + WTA implementation and measured
results from the parity detect block.

Fig. 11. Schematic of VMM + WTA circuit. Node capacitance at the WTA
input scales with the VMM inputs, the common node capacitance scales with
WTA outputs. We assume single-quadrant multiplication in the VMM.

regions. In particular, effects of mismatch are worse in the
sub-threshold mode of operation since δ I/I = −κ"VT /UT .

In the WTA shown in Fig. 3(a), we assume that
Iin1 = Iin2 = Iin. Then, we expect that V1 = V2. Both M1
and M2 share the same gate voltage Vc. The equation for the
drain current through M1, assuming sub-threshold saturation is

I = 2Ith(
W
L

)e
κ(Vg−VT0)

UT eVd/VA (7)

where Ith is the threshold current of the device, Vg is the gate
voltage, and Vd is the drain voltage. In the balanced case, the
difference between V1 and V2 can be expressed as

V1 − V2 = κVA"VT1

UT
+ "VT3 (8)

Fig. 12. Computing efficiency versus classifier size. Inverse of the
power-delay product in (13) is approximately the computing efficiency in
MMAC/s/µW, which is fixed and scales with inputs and outputs.

where "VT1 is the mismatch between M1 and M2 and "VT3
is the mismatch between M3 and M4. A difference in the input
currents Iin1 = Iin +"Iin and Iin2 = Iin results in a difference
in output voltages given by

V1 − V2 = VAln
(

1 + "Iin

Iin

)
≈ VA

"Iin

Iin
. (9)

This difference in input currents can be programmed in the
VMM bias currents to cancel offsets present in the WTA.
Another technique for mismatch compensation is including
floating-gate transistors in the WTA circuit (M1 and M2),
which would require floating-gate nFET devices. Our current
chip does not include floating-gate nFET transistors, but this
is possible in future versions of this chip. A detailed treatment
of mismatch characterization and its automation on the FPAA
is presented in [20].

B. Speed, Power, and Efficiency

We observe the classic power-speed tradeoff in the perfor-
mance of the VMM + WTA classifier. The power consumption
of the VMM is O(mn), while the WTA power is O(n). The
settling time of the WTA is dominated by the input capacitance
Cin. The settling time can be reduced by increasing the VMM
bias current, which also increases the power consumption.

The dynamic response of the system is determined by
the capacitance at the common node in the WTA, shown in
Fig. 11. From [5], we get first-order behavior from the circuit
when

Iwta > 4nIbias(Cc/Cin) (10)

which gives us the WTA bias current to avoid ringing at the
winning outputs. Then, the winning node has a time constant
τ = CinUT /(nIbias). Since Cin scales with the number of
inputs n, we write Cin = nCin0. Hence, the settling time for
the winning node is independent of n and can be written as

τ = Cin0UT

Ibias
. (11)

The power consumption for our classifier, when all inputs
are active can be expressed as

P = PVMM + PWTA

= mnIbiasVdd + IwtaVdd

= IbiasVdd

(
mn + 4m

Cc0

Cin0

)
(12)
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Fig. 13. Temperature dependence. Classifier with a differential VMM can
be compensated for temperature.

where m is the number of outputs. PVMM scales linearly with
the number of inputs and outputs, while PWTA scales with
the number of outputs only. This is because the common
node capacitance scales with the number of WTA outputs as
Cc = mCc0.

We assume a settling time of 4τ to calculate the com-
putation performed by the classifier. The VMM compu-
tation is m ∗ n MAC. The WTA computation is more
involved, and is equivalent to solving dynamical equations
at the m input nodes and the common node. For an
equivalent ordinary differential equation (ODE) simulation
using Runge–Kutta fourth- and fifth-order adaptive integra-
tor (RK45), we need approximately 60 MAC per node.
Thus, the effective computation performed by the classifier
can be approximated as C = (m ∗ n) + 60 ∗ (m + 1)
MAC. The power per unit computation can be calculated as

P ∗ (4τ )

C
=

4m(n + 4 Cc0
Cin0

)Cin0UT Vdd

(m ∗ n) + 60 ∗ (m + 1)
. (13)

The computing efficiency is plotted in Fig. 12. We assume
that Cin0 = Cc0 = 1 pF for this calculation. For a large
number of inputs and outputs, the VMM efficiency (which is
constant) dominates. For smaller outputs from the classifier,
the WTA efficiency dominates.

C. Temperature Effects

The programmed weights have a direct temperature depen-
dence due to UT , as seen in (3). In a classifier with a
differential VMM implementation, as seen in Fig. 13, it is
possible to compensate for temperature effects [9]. To derive
the temperature dependence, we first note that the WTA output
voltage Vout in Fig. 13 is directly proportional to UT . This is
true, whether in the balanced case (gain determined by Early
voltage) or in the winning case (gain determined by diode-
connected nFET), and only the proportionality constants differ.
We use the exponential formulation for Early voltage in the
nFET drain current equation given by

Infet = 2Ith
W
L

e(κ(Vg−VT0) + σ Vd )/UT (14)

where σ = UT /VA.
We determine the current from a single differential cell in

terms of a reference temperature T0

I1 = Ibw
T0/T eVb/UT

[(
1 + "w

2w

)T0/T (
1 + x

2

)

+
(

1 − "w

2w

)T0/T (
1 − x

2

)]

(15)

which can be approximated, by ignoring higher order terms,
as

I1 = 2Ibw
T0/T eVb/UT

[
1 + x1

"w1

4
T0

T

]
(16)

where Vb is the common mode input voltage, x is the differ-
ential input normalized to UT , and w is the bias weight. We
assume that the bias weight w = 1 and express the total WTA
input current as

Iout = 2IbeVb/UT

n∑

k=1

[
1 + xk

"wk

4
T0

T

]

= 2nIbeVb/UT

[

1 + (1/n)
n∑

k=1

xk
"wk

4
T0

T

]

. (17)

For small increases in temperature, we can assume that Vg
remains fixed, resulting in the WTA output voltage

Vout = UT

σ
log

(
2nIb

Ith

)
+ Vb

σ
+ UT0

4nσ

n∑

k=1

xk"wk . (18)

The WTA output voltage consists of a bias term, which
is temperature-dependent and the signal term, which is tem-
perature independent. We note that the signal term contains x ,
which shows no temperature dependence when the differential
input to the VMM scales with temperature.

VIII. CONCLUSION

Analog classifiers can provide low-power alternatives to
digital signal processing (DSP) techniques for low-precision
applications [21]–[23]. We presented results from a pow-
erful reprogrammable classifier that can implement linear
and nonlinear decision boundaries. The classifier architecture
combines two power efficient circuits to provide an analog
signal processing (ASP) alternative to traditional approaches.
The system is extremely compact, allowing scaling to a large
number of inputs. One of the disadvantages of ASP is fixed
functionality. The reconfigurability of the chip allows pro-
grammable weights, which enable off-line training, modifica-
tions to the size and topology of the WTA to generate different
behavior. As an extension to this paper, we can implement
local and hysteretic WTAs for certain applications. We have
seen that the VMM + WTA is roughly equal to a one-layer NN
in circuit complexity, but has computing power equivalent to a
two-layer NN. We demonstrated this by implementing classic
small-scale nonlinear classification problems.

APPENDIX

Consider a four-quadrant VMM cell, shown in Fig. 4. We
start with the signed input x and the desired multiplication
y = w ∗ x , where w is a signed weight. The core of the
VMM is a current multiplication with the input current being
expressed as Iin ∝ x . In our multiplier structure, currents are
unidirectional, but we desire four quadrant behavior. This is
achieved by using differential input currents. The signed input
x is encoded as

Iin,p,n = Iin,bias(1 ± (x/2)). (19)

The output of the transimpedance stage implementing the I-V
stage can be calculated by writing the sub-threshold current
equation for the transistor in feedback. We assume that the
transistor bulk is tied to the power supply

Ipfet = Ioeκ(VDD−VFG)/UT e−(VDD−VS)/UT = Iin,biasweVS/UT .
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The constraint on the input range can be seen from (20). x
is a dimensionless input and (1+ (x/2)) expresses the ratio of
the input current to the bias current. Since the voltage input is
applied to the source, and due to the exponential dependence of
the drain current on source voltage, the linear approximation
only holds for a small range. Using (20), the output of the
transimpedance stage that sets the source voltage of the input
device, which has a weight w = 1, we get

vs,p = UT ln
Iin,p

Iin,bias

vs,n = UT ln
Iin,n

Iin,bias

vs,p − vs,n = UT ln
Iin,p

Iin,n
= UT ln

1 + (x/2)

1 − (x/2)
. (20)

For small values of x , i.e., −1 ≤ x ≤ 1, ln( 1+x/2
1−x/2 ) ≈ x and

hence, vs,p − vs,n ≈ UT x . To generate the current inputs to
the VMM, vin,p, vin,n are applied to the negative terminal of
an OTA with bias current Iotabias, used here as a V-I block. To
allow values for −1 ≤ x ≤ 1, we require Iotabias ≥ 2Iin,bias.
As a result, the input currents are

Iin,p,n = Iotabiastanh(κeff (vin,p,n − vref)/2UT ). (21)

By using small inputs or a highly linear input stage that
has capacitive dividers at the inputs, we can make a linear
approximation of (21)

Iin,p,n = κeff Iotabias(vin,p,n − vref)/2UT . (22)

The differential voltage input can be expressed as

vin,p − vin,n =
(

2UT

κeff

)
Iin,p − Iin,n

Iotabias
. (23)

By choosing Iotabias = 2Iin,bias, we obtain the relation between
voltage inputs to the two VMM topologies as a function of
the input x

vin,p − vin,n = UT

κeff
x = vs,p − vs,n

κeff
(24)

where κeff denotes the effective coupling from the OTA input
to the channel of the differential pair transistors and includes
any linearizing factor applied to the OTA to obtain a wide
linear input range. The output current can be calculated using
the pFET subthreshold (20) as

Iout = Iin,bias(w + "w)evsp/UT + Iin,bias(w − "w)evsn/UT

= (w + "w) ∗ Iin,p + (w − "w) ∗ Iin,n

= 2Iin,biasw + Iin,biasx"w. (25)

The first and second terms in (25) represent the bias and
the four quadrant multiplication terms, respectively, since
x and "w can be signed.
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