
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011 403

A Highly Dense, Low Power, Programmable Analog
Vector-Matrix Multiplier: The FPAA Implementation

Craig R. Schlottmann, Student Member, IEEE, and Paul E. Hasler, Senior Member, IEEE

Abstract—This paper presents a solid foundation for imple-
menting analog vector-matrix multipliers (VMMs) in field-pro-
grammable analog arrays (FPAAs). Custom analog VMMs have
been demonstrated to be 1000 times more power efficient than
commercial digital implementations. However, no previous analog
VMM discussion has carefully provided all of the implementation
and performance considerations needed to utilize such a system.
We utilize the FPAA because it provides an ideal platform for em-
bedding low-power analog processing into larger systems. FPAAs
allow the analog processing system to be rapidly prototyped,
implemented at low cost, and easily reconfigured in the field. This
paper can double as a complete analog VMM design specification,
as well as a systematic tutorial on developing general systems with
FPAA hardware. We detail the aspects of VMM topology choice,
completely analyze the performance metrics, and describe the
methods and tools involved in FPAA synthesis.

Index Terms—Embedded systems, hardware/software co-de-
sign, low-power design, field-programmable analog array (FPAA)
synthesis, formal methods.

I. RECONFIGURABLE ANALOG SIGNAL PROCESSING

S IZE, WEIGHT, and POWER (SWaP) are recognized as
driving forces in many modern embedded systems. Mo-

bile and tactical systems are often on a fixed power supply, so
these forces have a direct effect on the entire performance of
the system. Minimizing these costs can result in an increased
lifetime, a lighter load for the carrier, or more space for other
processing. By attacking the power consumed in traditional em-
bedded processors, we can reduce the rest of the SWaP by al-
lowing for smaller batteries or possibly even moving to har-
vested energy sources. Although the digital signal processor
(DSP) has been making steady gains in power efficiency [1], a
true paradigm shift in computing is needed if we hope to make
any sizable leap in power efficiency.

This paradigm shift is enabled by signal processors for the
analog domain [2], shown in Fig. 1. For instance, when a mod-
erate signal-to-noise ratio (SNR) is allowable, analog proces-
sors have recently been demonstrated to be 1000 times more
power efficient than comparable digital implementations [3].
This gain in power efficiency can have great implications on
the whole field of low-power system design. The core enabler
of ultra-low-power operation is the subthreshold transistor. By
using currents in the nano-ampere to pico-ampere range, system

Manuscript received January 10, 2011; revised June 29, 2011; accepted
July 21, 2011. Date of publication October 03, 2011; date of current version
November 09, 2011. This paper was recommended by Guest Editor K. Roy.

The authors are with the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
(e-mail:cschlott@gatech.edu; phasler@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2011.2165755

Fig. 1. RASP FPAA design flow. Users can design analog signal processing
systems in MATLAB Simulink, then compile that design onto the FPAA hard-
ware. Analog signal processing can provide extreme power efficiency, utilizing
subthreshold currents. FPAA design flow facilitates rapid prototyping, fast time
to market, and no fabrication costs.

power can remain in the sub-micro-watt range. Also, analog
subthreshold computation can easily be done as a function of
gate voltage and does not require any lowering of , which
increases integration with other system blocks. One ideal set-
ting for an analog processer is in remote sensor networks. Often
placed in difficult or impossible to access areas, remote sensor
nodes could remain active for much longer before requiring ser-
vice or dying. As a compliment to the naturally low current
draw, analog processors can operate directly on the incoming
signal in its native continuous domain, thus reducing the preci-
sion of (or eliminating) the costly conversion stage. In light of
the many advantages of analog signal processing, it has been the
traditional lack of programmability that has stymied its wide-
spread use in embedded systems.

The vector-matrix multiplier (VMM) is a core component in
many signal processing applications. Vector-matrix multiplica-
tion is commonly performed in FIR filters, 2-D block image
transforms, convolution, correlation, and classification [4]. Re-
cently, custom analog VMM cores have provided a low-power,
high-throughput tool for signal processing [5]. Several orders
of magnitude in efficiency can be gained by allowing the
natural physics of the transistors to perform the multiply and
accumulate (MAC) operations. Analog VMMs have recently
demonstrated low-power solutions in such embedded systems
as a transform imager and an OFDM receiver [6], [7]. Although
the benefits of analog VMM have been clearly demonstrated,
the systematic design of such a system has only been loosely
defined in the existing literature.

2156-3357/$26.00 © 2011 IEEE

404 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

The field-programmable analog array (FPAA) is the ideal
tool to incorporate analog signal processing into low-power
embedded systems. FPAAs introduce the concept of pro-
grammable analog, which brings analog processing in line
with what most embedded system designers are comfortable
with. This new application space can bridge the gap and allow
system-design engineers to unleash the power of analog signal
processing. The FPAA gives us a workspace to create a sys-
tematic discussion on analog VMM systems. We can use the
FPAA to test multiple VMM design choices and put the overall
design on solid ground.

The goal of this paper is twofold: first, provide a solid foun-
dation for analog VMM design, and second, formulate a de-
sign methodology for reconfigurable analog systems, with the
VMM as a case study. In Section II, we provide a brief re-
view of modern FPAAs, the workspace for our analog systems.
In Section III, we fully detail the design of analog VMMs. In
Section IV, we characterize the performance metrics that are
most relevant to analog signal processing. In Section V, we walk
through much of the practical matters involved to implement
an FPAA-embedded system. Lastly, in Section VI, we provide
concluding remarks.

II. MODERN FPAA SYSTEMS

FPAAs are mixed-signal systems that provide a platform for
rapidly implementing analog systems in real hardware. FPAAs
consist of a programmable network of switches and routing
used to electrically connect analog elements, arranged in con-
figurable analog blocks (CABs). The user of such a device can
design, program, and test large scale analog systems in a matter
of minutes. This provides the engineer a considerable decrease
in fabrication costs and speedup in time-to-market.

Originally reported about twenty years ago [8], FPAAs have
seen several architectural revisions. Most have been of modest
proof-of-concept size and contained CAB elements that target
particular applications. For instance, previous FPAAs have been
built specifically as ODE computers [9], or analog filters [10].
More recently it has been the RASP FPAA that has pushed the
boundary in both size and performance of what was previously
capable [11].

The RASP 2.8a is the largest and most versatile FPAA
available [11]. It is composed of 32 CABs, multilevel routing,
and on-chip programming structures. The first 28 CABs each
contain common analog components: 1 programmable bias
operational transconductance amplifier (OTA), 2 programmable
input and bias OTAs, 1 OTA buffer, 4 n/pFETs, 2 multiple-input
translinear elements, 4 500 fF capacitors, and 1 transmission
gate. The other 4 CABs contain elements for signal-by-signal
multiplication, such as a Gilbert multiplier. The routing is a
full crossbar switch matrix. There are multiple levels of routing
lines to reduce the capacitance nodes: local, nearest neighbor,
and global.

The core element that facilitates highly dense FPAA systems
is the floating-gate (FG) MOS transistor. These transistors have
a gate that is electrically isolated from ground, allowing it to
store and retain charge. Modern FPAA designs make use of this
element as a switch at the intersections of rows and columns
in the crossbar switch matrix. No external memory is required

Fig. 2. Three types of switches: (a) traditional switch with a separate memory
element; (b) floating gate switch elements store their programmed value, al-
lowing for a very area efficient design; and (c) indirect programming reduces
the switches in the signal path.

Fig. 3. Architecture of the RASP2.8 FPAA. The routing is full crossbar switch
matrix with FG switches. The FG switches can be used for computation, such
as for VMM weights.

when utilizing this switch that stores its own value. The FG
switch is illustrated in Fig. 2, along with the indirect-program-
ming implementation [12]. The RASP FPAA incorporates all of
the necessary circuitry on chip that is required to program the
FG switches, thus demanding less overall real estate and sup-
porting structures in embedded systems [13].

One of the most beneficial features of FG switches is that
they can also be used as computational elements [14]. FGs can
be programmed to hold any value between ‘open’ and ‘closed’
essentially providing a free bias source. The use of routing for
computation is a major enabler of highly dense FPAA VMMs.

The illustration in Fig. 3 shows the architecture of the RASP
2.8a FPAA and the connections between the CABs, routing, and
FG switches. It is fabricated in 350 nm CMOS, with a 2.4 V .
The RASP 2.8a will be the platform of choice when discussing
VMM specifics in the rest of this paper.

SCHLOTTMANN AND HASLER: PROGRAMMABLE ANALOG VMM: THE FPAA IMPLEMENTATION 405

Fig. 4. Current-scaling mirrors. (a) Traditional current mirrors scale current
based on the fabricated aspect ratio. Although this can perform a fixed coeffi-
cient multiplication, it is not reconfigurable post fabrication. (b) By introducing
floating gates into the current mirror, we can set the scaling weight based on the
amount of charge on the floating node.

III. BUILDING VMM ON FPAA DEVICES

In this section, we provide a thorough discussion on the de-
sign of analog VMMs. Although the RASP FPAA is versa-
tile enough to implement any topology discussed here, we will
guide our design choices towards the most efficient use of the
FPAA architecture.

A. Analog Vector-Matrix Multiplication

Vector-matrix multiplication is mathematically defined as
where , and . We

restrict our discussion to real values, since we will be dealing
with physical quantities. To get a sense of the analog elements
needed to perform this task, we look at the component-wise
output signal:

(1)

Each element of the output vector is made up of the inner
product of the input vector with a row of the matrix, an
operation requiring scalar multiplication and addition. This
component-wise operation is shown in the breakout of Fig. 1.

Fortunately, by utilizing current-mode signals, scaling and
adding are two very easy and efficient operations. Addition can
be performed by Kirchoff’s current law (KCL), by mixing two
currents. This function requires no power to perform. Scaling
currents is simple to perform as well. One transistor is used
to sense the input current and broadcast the log-compressed
voltage, while another transistor receives the voltage and expo-
nentiates it back into a current. This operation is recognizable
as a current mirror, illustrated in Fig. 4(a). A common CMOS
current mirror scales current based on its geometry:

. This scaling is commonly used to create
bias currents as multiples of a reference current.

Although the common-current-mirror approach performs our
desired scaling, our application demands a system that is ca-
pable of being rescaled after fabrication. Fig. 4(b) illustrates the
use of a FG mirror to create a programmable scaling value [15].
To achieve ultra low power, we operate each transistor in the
subthreshold regime, where the drain current has the following
exponential dependence on gate voltage:

(2)

Here, is a pre-exponential constant term, is the capaci-
tive division between the oxide capacitance and the depletion
capacitance, and is the thermal voltage. For this pFET, all

Fig. 5. Two implementations of floating-gate source-coupled current mirrors.
(a) Buffered input stage: the source voltage is buffered with an OTA follower.
(b) Log-amp input stage: a logarithmic amplifier is used to compress the input
current.

potentials are referenced to the bulk. Analog subthreshold op-
eration is performed by using gate biases below the threshold
value. This facilitates integration with other systems, because
we can leverage the subthreshold current levels without the low

values that typify subthreshold digital design.
The mirror’s scaling factor is found by taking the ratio of the

output to the input current,

(3)

Here, is the voltage on the floating node, which is a function
of the stored charge and any capacitively coupled voltages.

Although the gate coupling of Fig. 4 serves the purpose of
a weighted current mirror, we can also use the source-coupled
topology of Fig. 5. Here too, the input current is sensed, log
compressed, and broadcast. This topology allows us to take
advantage of the many thousands of FG switch elements in
modern FPAAs, which are two-terminal devices. Source cou-
pling is also beneficial because it eliminates the effect of kappa
variation with input signal. However, whereas the gate is a
high-impedance node and has no current draw, the source will
sink current, so it must be broadcast. Fig. 5 shows two ways
of broadcasting the source voltage, referred to in this paper
as buffered and log-amp stages, respectively. Source coupling
involves forcing the input current into the source of the sensing
FET, then buffering the source voltage to the output stages.
The bandwidth of the buffered structure is , where

. The log-amp structure uses the amplifier of
[16] as the sensing stage. This incorporates active feedback
which increases the bandwidth to , where is
the voltage gain of the OTA, which is typically 100–200 on the
RASP FPAA.

As mentioned in the previous discussion, the architecture of
the FPAA guides the design of the output array. As defined in
(3), each output weight depends on the ratio of the output FG
charge with the input state’s charge. We achieve this ratio by
connecting an FG element’s source to the broadcast line. For
the summing operation we get a current-mode addition by tying
the drains of multiple output elements together. This fits ex-
actly with what is available in the RASP FPAA: an array of FG
switches that are source coupled along a row and drain coupled
along a column.

Pulling all of this together, we have the structure in Fig. 6.
We use the log-amp structure to log compress each of the el-
ements in the input vector, broadcasting the resultant voltage
across a row. Each row has output-stage FGs, creating the
multiplier weights. The output current of each scaling element
is then summed along the columns. With FG transistors, the
output impedance is mainly degraded by the drain voltage cou-
pling back onto the floating node. Adding a cascode transistor

406 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

Fig. 6. Schematic of the VMM. The input floating-gate stage produces a log-
compressed voltage representation of the input current. This voltage is broadcast
to the source of each FG element in that row. These FGs produce an output
current that is a scalar multiple of the input current, which are then summed
along a column by KCL.

at the output of each column helps to reduce the effect of the
drain voltage on the computation. Thus, we have successfully
implemented (1) in an extremely compact, highly dense fashion
on the RASP FPAA.

B. Signal Conditioning

From the structure in Fig. 6, it is clear that the input and output
currents must be unidirectional. This results in weights that need
to be strictly positive. In this scenario, we are left with a single-
quadrant multiplier: positive signals and weights.

Ideally, we would prefer to have full four-quadrant multi-
plication: both positive and negative signals and weights. To
achieve this, we incorporate a differential syntax. We define the
signed signal to be the difference between two positive currents:

(4)

We will constrain the differential signals to small changes
around a bias current

(5)

Now, we will utilize a similar syntax for the weights

(6)

For one four-quadrant differential multiplier element, we have

(7)

which is shown in Fig. 6. This core multiplier cell has a mesh
four times as large as the single mirror. The final gain of the
four-quadrant cell is

(8)

The differential-signal operation is illustrated in Fig. 7 [17]. An
additional benefit of differential signals is that it will remove DC
offsets and even-order harmonics.

Fig. 7. VMM characterization. (a) 1 1 VMM; the inputs were swept differen-
tially, to create differential outputs. The gains for this sweep were 1, 0.5.
(b) 2 1 VMM; this sweep demonstrates the summation of the two inputs. One
input is swept differentially for each constant value of the second input, resulting
in vertical offsets.

IV. POWER, SPEED, NOISE, AND TEMPERATURE DEPENDENCE

In this section, we discuss the relevant performance parame-
ters. The power-delay product illustrates an important trade-off
in subthreshold design: speed at the expense of power. Also,
two of the most often criticized shortcomings of analog com-
putation are discussed: noise and temperature dependence. Al-
though these effects are unavoidable, by characterizing them we
can understand their effects and design the rest of the system to
compensate for them.

A. Power and Speed

One of the most attractive features of subthreshold processing
is its extreme power efficiency. This efficiency is very impor-
tant for VMM applications in mobile devices or any system
on a limited power budget. However, this low-power operation
comes at the cost of operating speed, manifest in the power-
delay product. This discussion is in similar fashion to that given
in [18].

The input stage is shown to dominate the frequency response
of the VMM system. The small-signal analysis of the input stage
follows the analysis given for the log-amp [16]. For the case

SCHLOTTMANN AND HASLER: PROGRAMMABLE ANALOG VMM: THE FPAA IMPLEMENTATION 407

Fig. 8. Linear- and log-plot of the inverse VMM time constant. The inverse of
the time constant increases linearly with an increase in bias current. The slope
of the linear plot corresponds to an input capacitance of 1.62 pF. The slope of
the log plot is 0.99.

where the input capacitance is much larger then the parasitic
feedback capacitance, the dominant pole is given as:

(9)

where is the source conductance of the feedback FET, is
the voltage gain of the OTA, and is the total capacitance at
the input.

Here, the benefit of the OTA can be seen for the log-amp input
stage; the input impedance is decreased from buffered input
stage by the factor , increasing the bandwidth by that same
amount. The typical value of on an OTA of the RASP FPAA
is 100–200, so a sizable increase in bandwidth can be achieved.

By substituting the subthreshold equation for we see a
3 dB frequency of

(10)

This shows that the operating frequency scales linearly with
signal bias, and thus power. Fig. 8 shows the speed of the re-
sponse of the VMM for given bias currents, shown both on linear
and log plots. The slope of the linear plot empirically gives us an
input capacitance value of 1.62 pF, a reasonable result given the
reconfigurable nature of the routing. The slope of the log plot is
0.99, which is expected from the linear dependence.

This results in a power-delay product for our MAC cell of

(11)

The power is approximated as the product of the total current
and the supply voltage. The factor of 6 is due to the power con-
sumed in the OTA of a 1 1 cell; it provides current to supply
both the input and output stages, and it has a copy of the total
current in each of 3 internal branches. The full power will scale
with the size of the matrix: . This
power-delay equation is shown to be a linear function of capac-
itance and independent of the signal bias. In this log-amp input
stage, the input capacitor has effectively been reduced by the

Fig. 9. Schematic of the 1 1 VMM noise model.

factor . The inverse of this product can also roughly be con-
sidered the computation per unit power.

B. Noise Performance

On the topic of analog computation, the issue of noise perfor-
mance is very important. We will analyze the core 1 1 cell of
the log-amp source-coupled VMM following the discussion in
[16]. To create an equivalent noise model, shown in Fig. 9, we
consider channel noise current sources for each transistor of the
FG mirror and the OTA. Since we are restricting our operation
to subthreshold currents, we will neglect flicker noise and focus
on thermal noise.

The thermal noise contributions are

(12)

Referring the noise to the input, using the noise model
[19], and substituting the subthreshold transcon-

ductance, we get

(13)

We use the bandwidth found in (10) and utilize the relation that
the ratio . We note that the amplifier bias needs
to source current for each FG of the current mirror, initiating
the constraint . Given these definitions, (13)
becomes

(14)

What this highlights is the increase in noise power with , effec-
tively decreasing . This goes back to the trade-off in topolo-
gies chosen for higher bandwidth. For lower noise, we can use
a topology without the amplifier or increase the input capaci-
tance. Fig. 10 shows a plot of the current spectral density taken
from a VMM compiled on the RASP 2.8a FPAA.

For the current mirror, the input signal is also the bias of the
input stage. We will constrain the VMM operation to weights of
a small range around 1, in which case we will use the average

for the final signal-to-noise (SNR) relation. With
and , the three terms summed in the parenthesis can each
be approximated as unity. The RMS SNR is now in the relation:

(15)

408 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

Fig. 10. Current spectral density of the VMM. The lower bias current produces
less current noise.

We see from this equation that this multiplier’s SNR is not
dependent on input bias, but is increased by the input capacitor.
However, the performance trade-off with increasing the input
capacitance is an increase in power-delay. This trade-off is il-
lustrated in the following relation:

(16)

C. Temperature

A weight produced by subthreshold-current ratios will see a
temperature dependence. This is unavoidable, but we can char-
acterize it and thus compensate for it. To determine the temper-
ature dependence, we will rewrite the weight from (3) in terms
of a constant thermal voltage,

(17)

The actual temperature is a change around a constant tem-
perature: . Now, lets say , so

. Using the relation from (8), we
have the VMM differential weight in temperature form

(18)

Imposing the constraints from (16), we get

(19)

Using the binomial theorem, we can expand the terms

(20)

We benefit from the differential structure by seeing the even-
order terms drop out. From this, we can drop the higher-order
terms based on our original constraint that . We are left
with a weight that is linear in the inverse of temperature change

(21)

To verify our assumptions when deriving this simplified model,
we have plotted (19)–(21) in Fig. 11(a). A comparison is shown
in Fig. 11(b) of the weight versus temperature for the differen-
tial- and single-ended cases. The differential case is much less
drastically affected by the change in temperature.

With the temperature dependence now defined, we can design
the surrounding structures to compensate for this dependence.
One common way to introduce a temperature term in the nu-
merator is to pass the current-mode signal through a diode-con-
nected nFET. The output voltage signal is now

(22)

By taking the signals differentially and expanding the log
terms, (22) is:

(23)

canceling the temperature dependent term.
On the input side, we can introduce a temperature-neutral

V-to-I stage with a differential (diff) pair. For the diff pair to
be temperature neutral, it should have a proportional-to-abso-
lute-temperature (PTAT) current source. This overall system is
shown in Fig. 12. The VMM is now in voltage mode which
makes it much easier to interface with other elements in an em-
bedded system.

Table I shows a compilation of the performance metrics dis-
cussed in this section. The parameters are calculated for three
common values of signal bias, based on a single differential cell
(2 2). In the calculations, we used the input capacitance found
in the delay measurements and of 1. The computation per
power W is roughly the inverse of the power-delay
product in (16). The computation per power and SNR are shown
to be constant and independent of bias. The 68 nW for 1 million
MAC operations used by this source-coupled architecture is a
marked improvement in power efficiency over the 270 W in
the custom analog VMM in [5], which was itself a 1000 times
improvement over commercially available DSPs.

V. METHODS AND TOOLS FOR FPAA VMMS

In this section, we discuss the practical matter of imple-
menting a VMM into an embedded system. We provide a full
discussion on the density issues when utilizing an FPAA. To
make it easy for engineers to utilize analog VMMs, we have
incorporated it into the software compiler tools. In addition, we
discuss a few supporting blocks, also supported by the software
tools, that make designing full systems very easy.

A. FPAA Density

The architecture of the RASP FPAA is particularly well suited
to implement the VMM structure discussed in Section III. By
utilizing the FG switches for computation, we can effectively
use the switch matrix as the VMM mesh. Fig. 13 shows an il-
lustration of how the core differential 1 1 MAC block can be
compiled into the switch matrix.

When discussing VMM density, the question arises of how
large of a VMM can be built. Highly parallel processing is where
the most computational gains can be made with analog. The

SCHLOTTMANN AND HASLER: PROGRAMMABLE ANALOG VMM: THE FPAA IMPLEMENTATION 409

Fig. 11. Temperature dependence of the VMM weight. (a) Plotting the derived
equations shows that we were founded in our assumptions; the linearized model
very closely follows the original equation and the reduced model fits for
within C. The weights are normalized to the programming condition (30
C) (b) Temperature sweep of the weights from the FPAA VMM FPAA. The
differential weights are shown to have a much smaller slope than the single-
ended multiplier. The weights are normalized to the programming condition
(30 C).

Fig. 12. Schematic of the temperature compensation circuitry. Diode-con-
nected nFETs at the output cancel the temperature dependence of the multiplier
weight. The input diff-pair with PTAT current source will have no temperature
dependence.

TABLE I
SUMMARY OF PERFORMANCE PARAMETERS FOR 1 1 DIFFERENTIAL CELL.
WE USE: ROWS (R) AND COLUMNS (C) PF, V,

, AND

RASP 2.8a is one of the most recent and advanced FPAAs, with
55 general I/O and a 16-bit scanner I/O block; however, newer
and larger RASP FPAAs are continuously being developed for
which the same analysis will hold.

When using an entire FPAA solely for a VMM, the first con-
straint is the analog I/O limit. With 55 I/O, the largest square
computation would be 27 27. Of course, the matrix by no
means has to be square. In addition, the on-chip scanner can be
used to multiplex multiple results to a single I/O pin. With the
scanner, a 55 16 VMM is possible, with the 16 outputs being
available in series.

Fig. 13. Map of the 2 2 VMM implemented on the FPAA. VMM utilizes
floating gates programmed as both switches and computational elements. This
allows very efficient utilization of all chip area and results in highly dense mul-
tipliers.

The discussion gets more interesting if dealing with a VMM
internal to a system on the FPAA, where the signals do not need
to be pinned out; in this case, the density is routing-limited. The
RASP 2.8a is symmetric with 4 identical columns of CABs (cab-
stacks) which can be treated independently in the calculation
and summed down the rows. Each cabstack contains 21 OTAs
and 32 vertical lines. By referencing the diagram in Fig. 13, we
see that each input needs a vertical line and an OTA, each output
needs a vertical line, and the reference voltage needs one vertical
line. Each cabstack VMM is constrained by: inputs outputs

, with the inputs . The total VMM is then four times this
number by accounting for the four cabstacks. To put in numbers,
one possible VMM is calculated to be 82 10.

B. Compiler Tools

To make it as easy as possible to design FPAA systems with
the VMM block, we have incorporated it into the Simulink
compiling tool, Sim2spice. This tool allows engineers to design
analog signal processing systems at the block level in Simulink,
then compile that design onto the FPAA [20].

By adding a block to the Simulink library, the main objective
is to abstract the design to as simple as allowable. The Simulink
tool compiles down to a netlist, so full transistor-level simula-
tion can be done in SPICE. The Simulink model will capture the
important signal attributes without bogging down the simulation
time. Certain design parameters are abstracted and presented to
the user in a fashion that is intuitive. Fig. 14 shows the block
design of a system in Simulink using the VMM and the GUI di-
alog box which corresponds to the VMM. A graphical interface
(the RAT) is provided to visualize the compiled chip utilization,
shown in Fig. 15.

Once the VMM design is compiled from Simulink, it can be
programmed and tested using our RASP Program & Evalua-
tion (RPE) board [21]. This platform allows us to fully test the
system before embedding it into a larger system. The RPE board
communicates with MATLAB on a PC via a USB connection. The
board provides 40 DAC channels and 12 ADC channels for test-
benching systems.

410 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

Fig. 14. (a) Simulink block level design for a VMM system, including sup-
porting blocks. The Sim2spice tool is used to compile this block diagram down
to object code ready to be programmed on the FPAA. (b) The Sim2spice param-
eters for the VMM block. Rather than overwhelm the user with circuit specifics,
the functionality has been abstracted for high-level system design.

Fig. 15. The RAT visualization tool. This tool allows the user to view and
modify the switches that will be programmed on the FPAA.

C. Supporting Blocks

In addition to the core VMM block, it is helpful to have sev-
eral supporting blocks available in the design library. Since the
VMM is a current-in/current-out system, we have created sev-
eral signal conversion blocks to transform the input/output into
the voltage domain.

Fig. 16. Supporting blocks. (a) Input stageV–I converter, (b) output stageI–V
converter, and (c) programmable voltage reference. The design for these blocks
was highly motivated by the available components in the FPAA, in this case
OTAs.

The V/I block is shown in Fig. 16(a). The design for this block
was highly motivated by the CAB elements in modern FPAAs;
this particular design only needs 1 wide-linear-range OTA. The
expanded linear range is a result of the capacitive attenuation
on the input. Other V/I converters are certainly possible, such
as the differential pair discussed in Section IV-C which is good
for designing for temperature.

The I/V block is shown in Fig. 16(b). Again, this design was
highly motivated by the CAB elements, highly utilizing OTAs.
Here we display the output characteristics of a transimpedance
amplifier (TIA). The TIA has the benefit of being able to convert
bi-directional currents, although this means that the two differ-
ential output currents of the VMM must first be combined with
a current mirror.

As a final example of Simulink supporting blocks, the voltage
reference is shown in Fig. 16(c). This is implemented with a
single FG-input OTA with negative feedback. By programming
a different ratio of currents on the inputs, we can effectively
create a fixed output voltage on the OTA. This block is useful for
setting all of the references, without burning an I/O pin, which
are valuable for large dimension VMM computation.

VI. CONCLUSION

We have presented a thorough design methodology for im-
plementing a vector-matrix multiplier on a field-programmable
analog array. We first highlighted the power of analog signal
processing and FPAAs in particular. FPAAs provide an ideal
framework for ultra low power in embedded system design. We
next described the structure of the analog VMM and discussed
some of the topology trade-offs. The trade-offs became clear
in the analysis section, in terms of speed, noise, and temper-
ature performance. The topology that we focused on proved to
have extremely high computational power efficiency. Lastly, we
elaborated on the practical implementation. There is an entire
tool-set infrastructure available for designing analog systems in

