CHAPTER

FOLLOWER-INTEGRATOR
CIRCUIT

In Chapter 4, we noted that neural processes are insulated from the extra-
cellular fluid by a membrane only approximately 50 angstroms thick. The
capacitance of this nerve membrane serves 1o integrate charge injected
into the dendritic tree by synaptic 1nputs Much of the real- time nature
of neural computation is vastly simplified because this mtegratlng capa-
bility is used as a way of storing information for short time periods—{rom
less than 1 millisecond to more than 1second. There is an important les-
son to be learned here, an insight that would not follow na.turally from the
standard lore of either computer science or electrical engineering, Like the
spatial smoothing performed by resistive networks in Chapter 7, temporal
smoothing is an essential and generally useful form of computation.

In CMOS technology, the elementary temporal- -smoothing circuit is
the follower—mtegrator circuit shown in Figure 9.1. It is the most
universally useful of all time-dependent circuits.

The circuit consists of a transconductance amplifier connected as a foi—
lower, with its output driving a capacitor. As usual, we set the transcon-
ductance G with the bias voltage V4. The rate at which the capacitor
charges i is proportlonal to the output current of the follower:

Cd%ut _ Ib tanh( ( in ; Vout))

9.1
dt ®.1)
where the voltages are measured in units of £T'/q.
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FIGURE 9.1 Schemalic of the follower— — Vou 1
integrator circuit. The current into the ca- Yin
pacitor is proportional to the difference —L 30T
betwean Vi and Vour. The rate at which You 1
is able to respond to changes in ¥, is set Vi A VYou
by the transconductance of the amplifier. = 207
104
Tirst, we will examine the behavior of this circuit for signals that have small |
time-dependent deviations from some steady (quiescent) value. We wilt restrict
the quiescent input voltage to the range within which the amplifier is well be- 47 o7 o8 T os 1o
Time ' ’

haved, as described in Chapter 5. Under these conditions, we can analyze the
circuit using the linear-systems-theory approach of Chapter 8. We will then com-
pare the results with those we obtained for the RC integrator of Chapter 8. We
will consider the large-signal behavior of the circuit at the end of the chapter.

FIGU‘R.E 8.2 Measured response of the follower-integrator circuit to an approximately
flO—mHIlvo\t step change in input voltage. The guiescent input voltage was approx-
imate_ly %(DP/2. The output is a temporally smoothed version of the input. Because
tr_}e circuit is not finear, the form of the response will be different for large inputs (see
Flgure' 9.12). We can adjust the time constant of the response over many orders of
magnitude by setting the transconductance of the amplifier.

SMALL-SIGNAL BEHAVIOR

TFor small signals, the tanh can be approximated by its argument, and Equa-
tion 9.1 becomes

dVou
¢ — G(Vin — Vout) (9.2)
et +
Avoul
Equation 9.2 can be rewritten in s-notation as T
Vout 1 C i
=4 h = — . +
v 31 where 7= (9.3)

The response of the circuit of Figure 9.1 to a step input is shown in Figure 9.2.
It can be compared with that of the RC integrator, which is shown In Figure 9.3.
The two responses are not distinguishably different for the small (approximately
40-millivolt) signals used.

Using the principle of linear superposition of Equation 8.28 (p. 143), we
can define precisely the temporal-smoothing properties of a single time-constant
integration such as Equation 9.3
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FIGURE 9.3 Measured response of the RC circuit of Figure 8.3 {p. 137) to step change

in input voitage. Because the circutt is linear, the form of the n isi
) \ €5pon
P o ponse is independent of

COMPOSITION

The transfer function Voo /Vin of the follower—integrator circuit is identical
to that of the RC integrator of Chapter 8. You might think, therefore, that we
have used a very difficult solution to a simple problem: We have replac:ed a sim-
ple resistor by a complicated transconductance amplifier. From the point of view
of the transfer function, that is indeed what we have done; but a system has
more properties than just its transfer function. There are important differences
between the RC circuit and the follower-integrator circuit, which we can best

Vou(t) = f Via(t — A)e2/T dA
Q

The output at any time t is made up of the input for all previous times; the
contribution of the input to the present output decreases exponentially with
time into the past. In other words, the output is a moving average of the input,
exponentially weighted by its timeliness. One could hardly ask for a more bio-
logically relevant single measure of history—which is, no doubt, why this is the
. most ubiquitous computation in neural systems.
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FIGURE 9.4 Delay line made up of a large number of RC-integrator sections in
cascade.

appreciate by conducting an experiment. Let us take the RC integrator of Fig-
ure 8.3 (p. 137) and say, “If one is good, a lot more are better.” We co.nnect the
output of one section to the input of anocther to form the RC delay line shown
in Figure 9.4.

The response measured at the output of the first section of the line is shown
in Figure 9.5. It is clear that the response of the first RC section has been
changed from that of Figure 9.3 by the addition of the rest of the line. The
reason is ohvious: There is current flowing out of the first output through the
second resistor, to charge up the rest of the line. This current must come from the
input, and no particular node capacitance can get charged up until the capacitors
between that node and the input get charged up. The waveform at the output
of the first section of the line is much more sluggish than that out of the same
single section with the rest of the line disconnected.

Transfer functions are most useful when their form is not changed by the
environment in which they are used. Assume we have two circuit building blocks,
the output of the first one feeding the input of the second. If we want to know
the transfer function of this combined circuit, we just multiply the two transfer
functions of the two individual circuits. The transfer functions are algebraic
functions of s, and their product is the transfer function for the whole cir-

+ + . + } vt 3 i _MS
0 Q.2 04 0.6 0.8 1.0
Time

FIGURE 9.5 Measured response of the output of the first section of the RC delay line
of Figure 9.4. The addition of subsequent stages has drastically changed the form of the
response from that of a single RC integrator (Figure 9.3).
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cuit. For a circuit to be an independent module, it must have this composition
property.

The RC circuit does not have this important property. Although that circuit
is linear, it is rof an independent module. The RC circuit looks simple, but in a
system context it is actually extremely complicated; whenever we hook up one
to another, we change what the first one does. So we cannot just multiply the
transfer functions. The transfer function of the composition of the two circuits
is not the composition of their individual transfer functions. In other words, the
RC circuit does not have a simple abstraction.

Each input of the follower~integrator circuit is the gate of a transistor. The
gate is isolated from the rest of the circuit by the gate oxide, which for all
practical purposes is a perfect insulator. We can hock the input of such an
amplifier to the output of any other cirenit without drawing any current. We can
obtain the transfer function of the composition by multiplying the two transfer
functions, because we have not disturbed the first one by hooking up the second
one. Using the amplifier instead of a resistor has bought us a clean abstraction
of the smoothing function.

By throwing away the amplifier voltage gain A, we have oblained unity gain
at very low frequencies to a high accuracy. We also have got much better control
over the value of (7, because G is directly related to the bias current in the
amplifier, which we can control with a current mirror. The time constants are
useful up to about 10seconds. The follower—integrator first-order section works
just like the RC integrator would have done had we put unity-gain amplifiers
between every stage.

IMPLEMENTATION

The layout of a typical follower—integrator circuit is shown in Plate 8(a). The
circuit consists of a wide-range amplifier driving a capacitor structure. In CMOS
technology, the only excellent capacitor material we have available is the gate
oxide. Unfortunately, the p- and n-type diffused areas do not extend under the
polysilicon gate material, and hence we do not have a structure with good con-
ductors on both sides of the thin gate oxide. Instead, we use a p-type transistor
with its source tied to Vpp, and an n-type transistor with its source tied to
ground. Because each transistor is biased above its threshold voltage, its capac-
itance is very nearly equal to the ozide capacitance—the same value as that of
an ideal capacitor employing the gate oxide as its dielectric. I the gate voltage
falls below the transistor threshold voltage, the capacitance falls rapidly. For the
structure shown in Plate 8(a) to maintain a relatively constant capacitance, the
voltage on the common polysilicon gate area should be kept away from both rails
by at least the threshold voltage of the relevant transistor. This limitation is not
much more severe than are the voltage limitations imposed by other circuits in
a system.
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FIGURE 9.6 Delay line formed by connection of a large number of follower-ntegrator
circuits in cascade.

DELAY LINES

We can create a delay line using follower—integrator first-order sections, as
shown in Figure 9.6. The step response at the first few taps is shown in Figure 9.7.
We can compare this figure with a similar plot for the RC line of Figure 9.4,
shown in Figure 9.8. It is clear that the signal decays much faster in the RC line,
because current must flow all the way from the input to the point at which the
capacitor is being charged. In the follower—integrator line, the current required
for charging each capacitor is supplied from the power supply, mediated by the
transconductance amplifier.

Follower—Integrator Delay Line

Because of the modular nature of the sections, we can write the transfer
function of the line up to the nth section as the product of the transfer functions
of each of the individual sections:

Vout. . 1 "
Vi (T.s e 1) (9-4)

To understand how Fquation 9.4 represents a signal propagating along the line,
we will pick a particular form for the input—a sine wave. We represent a sinu-
soidal signal of angular frequency w by setting s equal fo jw in the transfer
function. We need to understand what the nth power of a complex number rep-
resents, and how to take the inverse of a complex number. We can delay worrying
about the inverse by considering Vin [ Vous instead of Vout/ Vin. We therefore write
the inverse of Equation 9.4 for s = jw:

Vin

cut

= (jwr+1)" (9-5)

We will be interested in lines with many gections. For such lines, the response -
at high frequency will decrease very steeply, falling with increasing frequency -

as (1/wT)". We are concerned with frequencies for which the line has measurable
output, so we can safely assume that wr is much less than 1. In Chapter 8, we
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F:?:.UFIE 9.7 Measurepl response at the outputs of the first nine taps of the dslay line
$h igure 9.6. lThe spacing between any two curves is the delay of a particutar section.
e delay varies randomly due to transistor mismatch, as discussed in Chapter 3.

noted that the polar form of a complex number was the representation in which

multiplication .is a simple operation. In this regime, each term in Equation 9.5
can be approximated by the polar form .

1+ jwr =~ (1 + %(w'r)z) el {9.6)

Using Equation 9.6 and the rule for multiplying complex numbers given in
Chapter 8, we can approximate Equation 9.5 for jwr much less than 1:

Vi _ (14 (o) g
Vout 2((“',7—) = (97)
Ao |
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FIGURE 9.8 Measured response at the outputs of the first 10 sections of the RC delay

itir?g l(i)ﬂfe%:igure 9.4. Tha rise time of the waveforms Increases rapidly with distance through
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FIGURE 9.9 Linear relationship between the delay at several taps along a follower
integrator line and the square of the rise time at the same taps. The data were obtained
from Figure 9.7 by the procedure described in the text.

Equation 9.7 leads to the following approximate form for the transfer function:

Vout 1 —jnw
Your 1 T 9.8
Vin 1+ %(WT)26 &8

The line acts as a phase delay of nwT radians, corresponding to a time delay
of nr seconds—7 seconds per section. The signal magnitnde is attenuated by
1{wr)? per section. We can estimate the bandwidth of the line by finding the
frequency where the response has decreased to one-half of the input amplitude.
To the level of approximation used in Equation 9.8, the cutoff frequency wy is

given by —
wer =42 (9.9)

The bandwidth of the line thus decreases as the square root of the number of
sections, whereas the delay is linear with the number of sections.

The rise time to a step input is approximately the reciprocal of the band-
width. We can measure the rise time of the curves of Figure 9.7 by extrapolating
the steep part of thé‘sig,nal upward to its upper steady-state value, and down-
ward to its initial value. =Th‘e delay is the time when the output crosses the level
midway between the two limiting values. 'The square of the rise time is plot-
ted as a function of the delay in Figure 9.9. The regult is an excellent straight
line, as predicted by Equation 9.9. Note that the delé’}} of the individual sections
varies considerably, due to the mismatch among the bias transistors in the indi-
vidual amplifiers. In spite of this variation, the relationship between delay and
bandwidth is in excellent qualitative agreement with our analysis. We will see in
Chapter 16 that the form of the behavior of much more sophisticated delay lines
also is preserved despite a wide variation among the individual delay elements.
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RC Delay Line

In Chapter 7, we analyzed the propagation of steady (DC) signals in a pas-
sive dendritic process. The signals were not varying with time, and hence we
could neglect the membrane capacitance. We will now derive the behavior of
such a process, including the effects of membrane capacitance on time-dependent
signals. ' ”

We model the process by adding capacitors at every node, as shown in Fig-
ure 9.10. We can analyze the line by using the same approach by which we derived
Equation C.5 (p. 340). The differential equations for current and voltage are

v _
*‘é; =1IR (9.10)
and '
ar av
—% = Cﬁ + VG (9.11)

where R is the axial resistance, & is the conductance o ground, and C is the
capacitance, all given per umit length of line. Both = and 7 are taken to be
positive pointing to the right. Differentiating Equation 9.10 with respect to z,
and substituting into Equdtion 9.11, we can eliminate I, and thus we obtain the
equaiion for V{z,t): : |

8%V av
Tt = RGV + RO"@? (9.12)
We recognize our old friend RG = a? = 1/L*, where o is the space constant and
L is the diffusion length of the line, as defined in Equation 7.2 (p. 108). .
Equation 9.12 is called the diffusion equation; it governs the time course
of signal propagation in a dissipative passive medium where the stuff out of
which the signal is made ig stored in the medium, and the fraction lost as the
signal propagates is proportional to the amount presént. The passive dendrites
of a neuron obey this equation: V is the voltage across the membrane, C' is the
capacitance of the membrane, R is the axial resistance of the cytoplas;m, and G is
the conductance to the extracellular fluid, all given per unit length. The flow of

FIGURE 9.10 Network model of a dendritic process. The Rs represent the axial

res§3tance of the cytoplasm, the Cs represent the membrane capacitance, and the Gs
represent the membrane conductance. i
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heat in a medium also is governed by Equation 9.12: R is the thermal resistance,
C is the heat capacity, and V is the temperature. The diffusion of minority car-
riers in a semiconductor follow Equation 9.12 as well; in that medium, G models
the recombination process with the majority carriers. All these applications are
rich sources both of mathematical treatments of the problem and of intuition
concerning the nature of particular solutions. Treatments of the diffusion equa-
tion in one, two, and three dimensions, under various boundary conditions in
time and space, are the subject of entire books [Carslaw et al., 1959]. Time-
dependent electrotonic spread in neural processes was first discussed by Wilfrid
Rall [Rall, 1960], and is treated at length in Jack, Noble, and Tsien [Jack et al.,
1983]. We will derive only certain solutions of the one-dimensional problem of
Equation 9.12, and will compare them with those for the follower-integrator line.

We use the method of separation of variables, assuming V(z,t) can be ex-
pressed as

Ve, {) = X(2) T(t) (9.13)

where X is a function of z alone, and T' is a function of t alone. Substituting
Equation 9.13 into Equation 9.12, we obtain

92X ar
T—" = RGXT+ RCX —
dx? + at
Dividing by XT, we obtain
162X RC 0T
= =R e ¢
X 0x2 G+ T 3t A

Because one side of the equation is a function of z alone, and the other is a
function of ¢ alone, both sides of the equation must be independent of z and ¢.
Therefore, ¥ must be a constant. The left-hand side then becomes

PX
o —A2X (9.14)
and the right-hand side becomes
T 1 ‘
%; = - (; + D,\Z) T (9.15)

where 7 = C/G is the time constant of the line, and D = 1/(RC)) is calted the
diffusion constant of the line. Because R and C are the values per unit length,
the units of D are length? /time. We have encountered Equation 9.15 before; it
is of the same form as Equation 8.3 (p. 130). We know that its solutions are

T— et (9.16)

Both A and s are, in general, complex. Substituting Equation 9.16 into Equa-

tion 9.15, we obtain

s=— (% + AzD) (9.17)
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Similarly, the solutions to Equation 9.14 can be written

X = @ (9.18)

"I‘here are two special cases in which physically meaningful solutions can be
obtained Frlwally: one when X is comstant, and the other when T is constant.
The first is obtained by setting A equal to 0, in which case

T = e—t/'r

As we ex‘pect, when the voltage on the line is independent of z, it dies away
exponentially with time constant 7.

The second case is obtained by setting s equal to 0 in Equation 9.17:

1
2 _ .
Al = —E or A= ﬂ:ja (919)

where_a = vVRG = 1/v/Dr is the space constant of the line, as defined in
Equation 7.2 (p. 108). As we found in that analysis, when the line is driven by a

DC source at the origin (z = (), the voltage dies away exponentially with space
constant o .

X =e bl (9.20)

The. +j root in Equation 9.19 corresponds to a signal dying out in the 4z di-
rection, and the —j root in Equation 9.19 represents a signal dying out in the
- direction. These two roots give rise to the absolute value of z in Equa-
tion 9.20; the signal dies out as it propagates in either direction away from the
source.

Now that we have a saniiy check on the solutions of Equations 9.18 and 9.16
we cail derive the response of the line to a sine-wave input. To compare the result;
directly with those for the follower—integrator line, we will treat the case where
G is 0. Substituting jw for s into Equation 9.17, we obtain

2_ _Jw
= (9.21)

The square root of a complex number N has magni
‘ gnitude /|N| and angle one-
half that of N. In Equation 9.21, the magnitude of A% is w/D and the angle

is 270 degrees; A therefore will have magnitude /w/I} and angle 135 degrees.
In terms of real and imaginary parts,

A=G-Dy/55

The solution for V(z,%) can thus be written?

vV — ej)«:nejwt — ewkmejw{t—-m/u) (922)

1 . . . o s
Equation 9,21 alsoc has a 1 — j solution, it is a wave propagating in the —=x direction.
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[w
=g — = 2D .2
k 5D and v 2Dw (9.23)

Equation 9.22 is the classic form for a wave traveling at velocity v, attenuated
with space constant k. For any given point z along the lne, the bandwidth
can be defined as the cutoff frequency w. at which kx is equal to 1. From
Equation 9.23,

where

2D

bandwidth = w, = —
T

The delay is /v, which at the cutoll frequency is 1/kv.2 From Equation 9.23,

1 1 x?
delay—E#wC—Q_D_

We can compare these results directly with those for the follower-integrator
line given in Equations 9.9 and 9.8. In that case, the delay was linear in z, and
the bandwidth decreased as 1/1/2. The delay of the RC line is quadratic in z,
and the bandwidth is the inverse of the delay.

The rise time to a step input is approximately the inverse of the bandwidth
at any point z. Thus, for the RC line, the rise time s equal to the deloy. This
behavior can be seen in the plots of Figure 9.8. The response curves become
slower, but they still extrapolate back to near the origin; they never develop the
delay-line behavior exhibited in Figure 9.7.

LARGE-SIGNAL BEHAVIOR

The large-signal response of the follower—integrator circuit is either not so
nice or quite nice, depending on our point of view. We will Iook at the large-signal
behavior of the circuit both in the time domain and in the frequency domain.

Transient Response

1f we put a small step function of amplitude Aw into this circuit (Figure 9.11),
the output responds as

Vour = Aol — e7¥7)

The e~t/7. term is the homogeneous solution. The “1” occurs because the DC
value after the step is different from that before the step.

2 A rigorous treatment of this problem is beyond the scope of this book. An excellent
treatment of time-domain solutions to various forms of the diffusion eguation is given in
Carslaw and Jaeger [Carslaw et al.,, 1959].
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FIGU.FIIE 8.11 Response of the followar-integrator circuit 1o a small {approximately
30-millivolt) step-function input.

- If we put in a big step (Figure 9.12), we get tanh-ed Remember, these
circuits can supply only a certain amount of current—the bias current I,. Once
Fh(.a difference in the input voltages is larger than about 100 millivolts, the output
is just a current source; the current I charges the capacitor C at a constant rate.
Eventually, when the output gets close enough to its final value, the response
approaches its final value as e=¥/7,

One way of looking at this behavior is with horror—there is no linear system
anymore! If we double the input, we certainly do not get an output that is just
scaled up by a factor of two. On the other hand, as the output gets close to its
final value, the approach is just like the small signal response. The voltage just

does not get there as fast because there is a limit to the maximum rate at which
the output can charge its capacitor.
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FIGURE 9.12 Response of the follower-integrator cirouit to a large (approximately

SOO-miEliyoﬁt? step-function input. The constant slope of the initial response is due to the
current-limiting behavior of the transconductance amplifier.
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If you have ever watched a plotter plot with a pen, you may have noticed
that this system has the same property. There is a maximum speed at which
the servo system that runs the pen can drive the motors. When the plotter is
programmed to draw a shape in one corner of the page, and then to draw the
next shape in the opposite corner, it goes wzzZ ZELZZ, .. . There is & maximum
tone the plotter makes when it tries to get to the other side; that tone represents
the device's slew-rate limit.

Our amplifier is slew-rate limited, just like the plotter; in fact, every physical
system has a slew-rate limit. There is an inevitable capacitance associated with
any electrical node—in particular, with the output of our amplifier—and we
can draw only a finite current out of any power supply. There are finite energy
resources we can devote to getting from here to there. When a system reaches
its slew-rate limit, it cannot accelerate beyond this speed. An automobile has a
velocity limit at which the horsepower of the engine matches the drag due to the
friction of the air; that is the car’s cruising speed on a straight, deserted road.
When you start a car from a stop light, it is acceleration limited. But when you
are driving it across the desert, it is the slew-rate limit you are up against.

So every physical system has a slew-rate limit, but the follower—integrator
circuit has it in spades—at 100 miliivolts. That might seem to be a problem. The
cireuit is not a linear system even in the voltage range in which we are going to
use it. Alternately, we can look at the low slew-rate limit as a fortunate factor—
hecause we are going to build VLSI systetns. If anything goes wrong somewhere
(which it certainly will —somewhere}), the amount of damage any one of these
amplifiers can do is restricted. If one input gets stuck on, or if something at
one spot is driving the system crazy, the magnitude of the damage one amplifier
can cause is Mmited. So the slew-rate limit can be either a blessing or a curse,
depending on how you look at it. '

Frequency Response

Of course, the slew-rate limit also affects the time scale of the response. In
a strict sense, a bandwidth is defined for only a linear system. On the other
hand, if we think about bandwidth in a looser sense, it is reasonable to define
one for the real system, but that bandwidth will be a function of the amplitude
of the input. For small signals, we saw that the rise time for a step input was
inversely proportional to the bandwidth. We can define an amplitude-dependent
bandwidth that is the inverse of the rise time, for any input amplitude.

When the circuit is slew-rate limited,

av.
Jab AN
Cdt

where I is the current that is set by the transconductance control, The solution
under these conditions is just a straight line. The input step has amplitude Av, s0
the time £ it would take the output to get to Awv if it kept going at its maximum
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rate is

¢
b= Ao (9.24)

That peculiar rise time depends on the size of the input signal—of coursc!
The larger the signal, the longer it takes the output to reach its final value If'
you go from Los Angeles to New York, it takes longer than if you go from I.Jo's
Angeles to Las Vegas. That is not a big surprise. In the small-signal case, t = 7
We can c_ompute the fraction of the small-signal bandwidth we have ax’failablt;,
for any size signal. We recall from Figure 5.5 (p. 71) that the tanh function
has unity slope at the origin, and the point at which the tangent intersects the
asymptote [ is 24T /{¢x), which is 90 millivolts or so. We can thus relate the
slew rate to the small-signal parameters: G = I/(2kT/(gx)) and v = C/G. So
from Equation 9.24, the time for a large-signal response is o

£ = A/ (KT /(gr)

W].aat else could it be? It is the size of the output signal in the natural voltage
units of the technology. If we make the output signal many times larger, then v%e
get a frequency response that is that many times lower. Or a time resp(,)nse that
is that many times longer. Another way of looking at it is that, for large signals,

this deyice is a perfect integrator; it turns into a single time-constant circuit for
small signals.

STAYING LINEAR

We can always make sure the follower—integrator circuit acts like a lin-
ear system; we just do not allow the input to change by more than approxi-
mately 1 £T/{gx) in 1 time-constant 7. In that way, the dV/dt of the input is
always less than the slew-rate limit, and the system is always linear. The Eignal
range can be as large as we want if the rate of change of the input is less than the
slope of the large-signal response waveform. Under those conditions, the differ-
ence between the output and the input of the amplifier never gets ve;y big, even
though the signal may be huge. The circuit will stay linear nearly up to VD;) and
nearly down to ground, provided we use one of the wide-range amplifiers, and
do not put large step functions into it. If we increase dV/dt past (kT/( fs’)) /
the circuit still works well, but it is slew-rate Hmited. ! "
Th.at is a graceful way for a computation to degrade; it does not give you
a floating exception or an integer overflow or any dumb thing like that, it jzlst
follo\x:rs as fast as it can. Such a nice gentle way to hehave itself. Tn Cha;Jter 16
we will study a system in which we can gnarantee, by the way the systém is ar:
ranged, that the input never varies so quickly that the circuit becomes nonlinear
Because the follower-integrator circuit responds only up to a maximum rate, it-
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automatically limits the rate any subsequent device will have to follow. We use
the slew-rate limit of the first to control the rise time of the input to the second.

If staying linear is important to us, we organize the system so that it will
not be subjected to rise times that are embarrassingly short, and we thus ensure
that it will be a linear system. And because it s a follower, it will try very hard
to keep in the linear range if we just give it half a chance.

SUMMARY

We have introduced our first explicitly time-dependent computational meta-
phor, The follower—integrator circuit allows us to perform the same kind of
smoothing in the time domain that resistive networks achieved in the space do-
main. Integration in one domain or the other (or in both) is the basis on which
a large (but unknown) fraction of neural computation is built. The balance of
this part of the book is devoted to the more elaborate computations that can be
derived from this humble beginning. ' ‘
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