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Biological in forma tion-processing systems operate on com- 
pletely different principles from those with which most engineers 
are familiar. For many problems, particularly those in which the 
input data are ill-conditioned and the computation can be speci- 
fied in a relative manner, biological solutions are many orders of 
magnitude more effective than those we have been able to imple- 
ment using digital methods. This advantage can be attributed prin- 
cipally to the use of elementary physical phenomena as computa- 
tional primitives, and to the representation of information by the 
relative values of analog signals, rather than by the absolute values 
of digital signals. This approach requires adaptive techniques to 
mitigate the effects of component differences. This kind of adap- 
tation leads naturally to systems that learn about their environ- 
ment. Large-scale adaptive analog systems are more robust to com- 
ponent degredation and failure than are more conventional 
systems, and they use far less power. For this reason, adaptive ana- 
log technology can be expected to utilize the full potential of wafer- 
scale silicon fabrication. 

TWO TECHNOLOGIES 

Historically, the cost of computation has been directly 
related to the energy used in that computation. Today's 
electronic wristwatch does far more computation than the 
Eniac did when it was built. It is not the computation itself 
that costs-it i s  the energy consumed, and the system over- 
head required to supply that energy and to get rid of the 
heat: the boxes, the connectors, the circuit boards, the 
power supply, the fans, all of the superstructure that makes 
the system work. As the technology has evolved, it has 
always moved in the direction of lower energy per unitcom- 
putation. That trend took us from vacuum tubes to tran- 
sisitors, and from transistors to integrated circuits. It was 
the force behind the transition from n-MOS to CMOS tech- 
nology that happened less than ten years ago. Today, it still 
i s  pushing us down to submicron sizes in semiconductor 
technology. 

So it pays to look at just how much capability the nervous 
system has in computation.There is a myth that the nervous 
system i s  slow, i s  built out of slimy stuff, uses ions instead 
of electrons, and i s  therefore ineffective. When the Whirl- 
wind computer was first built back at M.I.T., they made a 
movie about it, which was called "Faster than Thought." 
The Whirwind did less computation than your wristwatch 
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does. We have evolved by a factor of about 10 million in the 
cost of computation since the Whirlwind. Yet we s t i l l  can- 
not begin to do the simplest computations that can be done 
by the brains of insects, let alone handle the tasks routinely 
performed by the brains of humans. So we have finally come 
to the point where we can see what is  difficult and what is  
easy. Multiplying numbers to balance a bank account i s  not 
that difficult. What i s  difficult is processing the poorly con- 
ditioned sensory information that comes in through the lens 
of an eye or through the eardrum. 

A typical microprocessor does about 10 million opera- 
tions/s, and uses about 1 W. In round numbers, it cost us 
about l O - ' J  to do one operation, the way we do it today, 
on a single chip. I f  we go off the chip to the box level, a 
whole computer uses about 10-5J/operation. Awhole com- 
puter is  thus about two orders of magnitude less efficient 
than is a single chip. 

Back in the late 1960's we analyzed what would limit the 
electronic device technology as we know it; those calcu- 
lations have held up quite well to the present [I]. The stan- 
dard i ntegrated-ci rcu it fabricat ion processes available today 
allow usto build transistorsthat have minimum dimensions 
of about 1 p m). By ten years from now, we will have 
reduced these dimensions by another factor of 10, and we 
will be getting close to the fundamental physical limits: if 
we make the devices any smaller, they will stop working. 
It is conceiveable that a whole new class of devices will be 
invented-devices that are not subject to the same limi- 
tations. But certainly the ones we have thought of up to 
now-including the superconducting ones-will not make 
our circuits more than abouttwoordersof magnitude more 
dense than those we have today. The factor of 100 in density 
translates rather directly into a similar factor in computa- 
tion efficiency. So the ultimate silicon technology that we 
can envision today will dissipate on the order of J of 
energy for each operation at the single chip level, and will 
consume a factor of 100-1000 more energy at the box level. 

We can compare these numbers to the energy require- 
ments of computing in the brain. There are about 10"syn- 
apases in the brain. A nerve pulse arrives at each synapse 
about ten timesls, on average. So in rough numbers, the 
brain accomplishes 10'' complex operations/s. The power 
dissipation of the brain is a few watts, so each operation 
costs only IO6 J. The brain i s  a factor of 1 billion more effi- 
cient than our present digital technology, and a factor of 
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10 million more efficient than the best digital technology 
that we can imagine. 

From the first integrated circuit in 1959 until today, the 
cost of computation has improved by a factor about 1 mil- 
lion. We can count on an additional factor of 100 before 
fundamental limitations are encountered. At that point, a 
state-of-the-art digital system will still require 10MW to pro- 
cess information at the rate that it i s  processed by a single 
human brain. The unavoidable conclusion, which I reached 
aboutten years ago, isthatwe have something fundamental 
to learn from the brain about a new and much more effec- 
tive form of computation. Even the simplest brains of the 
simplest animals are awesome computational instruments. 
They do computations we do not koow how to do, in ways 
we do not understand. 

We might think that this big disparity in the effectiveness 
of computation has to do with the fact that, down at the 
device level, the nerve membrane i s  actually working with 
single molecules. Perhaps manipulating single molecules 
is fundamentally moreefficientthan is usingthecontinuum 
physics with which we build transistors. If that conjecture 
were true, we would have no hope that our silicon tech- 
nology would ever compete with the nervous system. In 
fact, however, the conjecture i s  false. Nerve membranes 
use populations of channels, rather than individual chan- 
nels, to change their conductances, in much the same way 
that transistors use populations of electrons rather than sin- 
gle electrons. It is  certainly true that a single channel can 
exhibit much more complex behaviors than can a single 
electron in the active region of a transistor, but these chan- 
nels are used in large populations, not in isolation. 

We can compare the two technologies by asking how 
much energy i s  dissipated in charging up the gate of a tran- 
sistor from a 0 to a 1. We might imagine that a transistor 
would compute a function that i s  loosely comparable to 
synaptic operation. In today’s technology, it takes about 

j to charge up the gate of a single minimum-size tran- 
sistor. In tenyears,the numberwill beabout 10-15j-within 
shooting range of the kind of efficiency realized by nervous 
systems. So the disparity between the efficiency of com- 
putation in the nervous system and that in a computer i s  
primarily attributable not to the individual device require- 
ments, but rather to the way the devices are used in the 
system. 

WHERE DID THE ENERGY Go? 

Where did al l  the energy go? There i s  a factor of 1 million 
unaccounted for between what it costs to make a transistor 
work and what is required to do an operation the way we 
do it in a digital computer. There are two primary causes 
of energy waste in the digital systems we build today. 

1) Weloseafactorofabout100 because,thewaywe build 
digital hardware, the capacitance of the gate i s  only a very 
small fraction of capacitance of the node. The node is mostly 
wire, so we spend most of our energy charging up the wires 
and not the gate. 

2) We use far more than one transistor to do an opera- 
tion; in a typical implementation, we switch about 10 000 
transistors to do one operation. 

So altogether it costs 1 million times as much energy to 
make what we call an operation in a digital machine as it 
costs to operate a single transistor. 

I do not believe that there i s  any magic in the nervous 

system-that there i s  a mysterious fluid in there that is not 
defined, some phenomenon that i s  orders of magnitude 
more effective than anything we can ever imagine. There 
is npthing that is done in the nervous system thatwecannot 
emulate with electronics if we understand the principles of 
neural information processing. I have spent the last decade 
trying to understand enough about how it works to be able 
to build systems that work in a similar way; I have had mod- 
est success, as I shall describe. 

So there are two big opportunities. The first factor-of-I00 
opportunity, which can be done with either digital or ana- 
log technology, i s  to make alogrithms more local, so that 
we do not have to ship the data all over the place. That i s  
a big win-we have built digital chips that way, and have 
achieved a factor of between 10 and 100 reduction in power 
dissipation. That still leaves the factor of IO4,  which is the 
difference between making a digital operation out of 
bunches of AND and OR gates, and using the physics of the 
device to do the operation. 

Evolution has made a lot of inventions, as it evolved the 
nervous system. I think of systems as divided into three 
somewhat arbitrarily levels. There i s  at the bottom the ele- 
mentary functions, then the representation of information, 
and at the top the organizingprinciples. All three levels must 
worktogether;all threeareverygifferent from thoseweuse 
in human-engineered systems. Furthermore, the nervous 
system is not accompanied bya manual explainingthe prin- 
ciples of operation. The blueprints and the early prototypes 
were thrown away a long time ago. Now we are stuck with 
an artifact, so we must try to reverse engineer it. 

Let us consider the primitive operations and represen- 
tations in the nervous system, and contrast them with their 
counterparts in a digital system. As we think back, many of 
us remember being confused when we were first learning 
about digital design. First, we decide on the information 
representation. There is  only one kind of information, and 
that is the bit: It i s  either a 1 or a 0. We also decide the ele- 
mentary operations we allow, usually AND, OR, and NOT or 
their equivalents. We start by confining ourselves to an 
incredibly impoverished world, and out of that, we try to 
build something that makes sense. The miracle i s  that we 
can do it! But we pay the factor of I O 4  for taking all the beau- 
tiful phyics that i s  built into those transistors, mashing it 
down into a 1 or a 0, and then painfully building it back up, 
with AND and OR gates to reinvent the multiply. We then 
string together those multiplications and additions to get 
morecomplexoperations-thosethat are useful in a system 
we wish to build. 

COMPUTATION PRIMITIVES 

What kind of computation primitives are implemented 
by the device physics we have available in nervous tissue 
or in a silicon integrated circuit? In both cases, the state 
variables are analog, represented by an electrical charge. 
In the nervous system, there are statevariables represented 
by chemical concentrations as well. To build a nervous sys- 
tem or a computer, we must be able to make specific con- 
nections. A particular output i s  connected to certain inputs 
and not to others. To achieve that kind of specificity, we 
must beableto isolateone signal on asingleelectrical node, 
with minimum coupling to other nodes. In both electronics 
and the nervous system, that isolation i s  achieved by build- 
ing an energy barrier, so that we can put some charge on 
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an electrical node somewhere, and it does not leak over to 
someother node nearby. In the nervous system, that energy 
barrier i s  built by the difference in the dielectric constant 
between fat and aqueous solutions. In electonics, it i s  built 
by the difference in the bandgap between silicon and si l -  
icon dioxide. 

We do basic aggregation of information using the con- 
servation of change. We can dump current onto an elec- 
trical node at any location, and it all ends up as charge on 
the node. Kirchhoff’s law implements a distributed addi- 
tion, and the capacitance of the node integrates the current 
into the node with respect to time. 

In nervous tissue, ions are in thermal equilibrium with 
their surroundings, and hence their energies are Boltz- 
mann distributed. This distribution, together with the pres- 
ence of energy barriers, computes a current that i s  an expo- 
nential function of the barrier energy. I f  we modulate the 
barrier with an applied voltage, the current will be an expo- 
nential function of that voltage. That principle i s  used to 
create active devices (those that produce gain or amplifi- 
cation in signal level), both in the nervous system and in 
electronics. In addition to providing gain, an individual 
transistor computes a complex nonlinear function of i t s  
control and channel voltages. That function i s  not directly 
comparable to the functions that synapses evaluate using 
their presynaptic and postsynaptic potentials, but a few 
transistors can be connected strategically to compute 
remarkably competent synaptic functions. 

Fig. l(a) and (b) shows the current through a nerve mem- 
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Fig. 1. Current-voltage plots for several important devices, 
each showing the ubiquitous exponential characteristic. 
Curves A and 6 show the behavior of populations of active 
ion channels in nerve membrane. Curve C illustrates the 
exponential dependence of the arrival rate of packets of the 
neurotransmitter at the postsynaptic membrane on the pre- 
synaptic membrane potential. Curve D shows the saturation 
current of a MOS transistor as a function of gate voltage. 

brane as a function of the voltage across the membrane. A 
plot of the current out of a synapse as the function of the 
voltage across the presynaptic membrane i s  shown in (c). 
The nervous system uses, as i t s  basic operation, a current 
that increases exponentially with voltage. The channel cur- 
rent in atransistor as afunction of thegatevoltage is  shown 
in (d). The current increases exponentially over many orders 
of magnitude, and then becomes limited by space charge, 
which reduces the dependence to the familiar quadratic. 
Note that this curve i s  hauntingly similar to others in the 
same figure. What class of computations can be imple- 
mented efficiently using expontential functions as primi- 
tives? Analog electronic circuits are an ideal way to explore 
this question. 

Most important, the nervous system contains mecha- 
nisms for long-term learning and memory. All higher ani- 
mals undergo permanent changes in their brains as a result 
of life experiences. Neurobiologists have identified at least 
one mechanism for these permanent changes, and are 
actively pursuing others. In microelectronics, we can store 
a certain quantity of charge on a floating polysilicon node, 
and that charge will be retained indefinitely. The floating 
node is completely surrounded by high-quality silicon diox- 
ide-the world’s most effective known insulator. We can 
sense the charge by making the floating node the gate of 
an ordinary MOS transistor.This mechanism has been used 
since 1971 for storing digital information in EPROM’s and 
similar devices, but there i s  nothing inherentlydigital about 
the charge itself. Analog memory comes as a natural con- 
sequence of this near-perfect charge-storage mechanism. 
A silicon retina that does a rudimentary form of learning 
and long-term memory is  described in the next section [2].  
This system uses ultraviolet light to move charge through 
the oxide, onto or off the floating node. Tunneling to and 
from the floating node i s  used in commercial EEPROM 
devices. Several hot-electron mechanisms also have been 
employed to transfer charge through the oxide. The ability 
to learn and retain analog information for long periods i s  
thus a natural consequence of the structures created by 
modern silicon processing technology. 

The fact that we can build devices that implement the 
same basic operations as those the nervous system uses 
leads to the inevitable conclusion that we should be able 
to build entire systems based on the organizing principles 
used by the nervous system. I will refer to these systems 
generically as neurornorphic systems. We start by letting 
the device physics define our elementaryoperations. These 
functions provide a rich set of computational primitives, 
each a direct result of fundamental physical principles. They 
are not the operations out of which we are accustomed to 
buildingcomputers, but in manyways, they are much more 
interesting. They are more interesting than AND and OR. They 
are more interesting than multiplication and addition. But 
they are very different. If we try to fight them, to turn them 
into something with which we are familiar, we end up mak- 
inga mess. So the real trick i s  to inventa representation that 
takesadvantageof the inherent capabilities of the medium, 
such as the abilities to generate exponentials, to do inte- 
gration with respect to time, and to implement a zero-cost 
addition using Kirchhoff’s law. These are powerful primi- 
tives; using the nervous system as a guide, we will attempt 
to find a natural way to integrate them into an overall sys- 
tem-design strategy. 
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RETINAL COMPUTATION 

I shall usetwoexamplesfromtheevolutionof silicon reti- 
nas to illustrate a number of physical principles that can be 
used to implement computation primitives. These exam- 
ples also serve to  introduce general principles of neural 
computation, and to show how these principles can be 
applied to realize effective systems in analog electronic 
integrated-circuit technology. 

In 1868, Ernst Mach [3] described the operation per- 
formed by the retina in the following terms. 

The illumination o f  a retinal point will, in proportion to 
the difference between this illumination and the average 
of  the illumination on neighboring points, appear brighter 
or darker, respectively, depending on whether the illumi- 
nation o f  i t  i s  above or below the average. The weight o f  
the retinal points in this average is to be thought o f  as rap- 
idly decreasing with distance from the particular point con- 
sidered. 

For many years, biologists have assembled evidence 
about the detailed mechanism by which this computation 
is accomplished. The neural machinery that performs this 
first step in the chain of visual processing i s  located in the 
outer plexiform layer of the retina, just under the photo- 
receptors. The lateral spread of information at the outer 
plexiform layer i s  mediated by a two-dimensional network 
of cells coupled by resistive connections. The voltage at 
every point in the network represents a spatially weighted 
average of the photoreceptor inputs. The farther away an 
input is from a point in the network, the less weight it i s  
given. The weighting function decreases in a generally 
exponential manner with distance. 

Using this biological evidence as a guide, Mahowald [4], 
[5] reported a silicon model of the computation described 
by Mach. In the silicon retina, each node in the network i s  
linked to i ts  six neighbors with resistive elements to form 
a hexagonal array, as shown in Fig. 2. A single bias circuit 

Fig. 2. Schematic of pixel from the Mahowald retina. The 
output is  the difference between the potential of the local 
receptor and that of the resistive network. The network corn- 
putes a weighted average over neighboring pixels. 

associated with each node controls the strength of the six 
associated resistive connections. Each photoreceptor acts 
as avoltage input that drives the corresponding node of the 
resistive network through a conductance. A transconduc- 
tance amplifier is used to implement a unidirectional con- 
ductance so the photoreceptor acts an effective voltage 
source. No current can be drawn from the output node of 
the photoreceptor because the amplifier input i s  con- 
nected to only the gate of a transistor. 
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The resistive network computes a spatially weighted 
average of photoreceptor inputs. The spatial scale of the 
weighting function is determined by the product of the lat- 
eral resistance and the conductance coupling the photo- 
receptors into the network. Varying the conductanceof the 
transconductance amplifier or the strength of the resistors 
changes the space constant of the network, and thus 
changes the effective area over which signals are averaged. 

From an engineering point of view, the primaryfunction 
of the computation performed by a silicon retina is to pro- 
vide an automatic gain control that extends the useful oper- 
ating range of the system. It i s  essential that a sensory sys- 
tem be sensitive to changes in its input, no matter what the 
viewing conditions. The structure executing this level-nor- 
malization operation performs many other functions as 
well, such as computing the contrast ratio and enhancing 
edges in the image. Thus, the mechanisms responsible for 
keeping the system operating over an enormous range of 
image intensity have important consequences with regard 
to the representation of data. 

The imageenhancement performed bythe retinawasalso 
described by Mach. 

Let us call the intensity o f  illumunation U = f (x, y). The 
brightness sensation v of the corresponding retinal point is 
given by 

d2u d2u 
v = U - m (z + p) 

where m is a constant. If the expression in parentheses is 
positive, then the sensation of  brightness i s  reduced; in the 
opposite case, i t  i s  increased. Thus, v i s  not only influenced 
by U, but also its second differential quotients. 

The image-enhancement property described by Mach i s  
a result of the receptive field of the retinal computation, 
which shows an antagonistic center-surround response. 
This behavior is a result of the interaction of the photo- 
receptors, the resistive network, and the output amplifier. 
A transconductance amplifier provides a conductance 
through which the resistive network i s  driven towards the 
photoreceptor potential. A second amplifier senses the 
voltage difference across that conductance, and generates 
an output proportional to the difference between the pho- 
toreceptor potential and the network potential at that loca- 
tion. The output thus represents the difference between a 
center intensity and a weighted average of the intensities 
of surrounding points in the image. 

The center-surround computation sometimes i s  referred 
to as a Laplacian filter, which has been used widely in com- 
puter vision systems. This computation, which can be 
approximated by a difference in Gaussians, has been used 
to help computers localize objects; this kind of enhance- 
ment is effective because discontinuities in intensity fre- 
quently correspond to object edges. Both of these math- 
ematical forms express, in an analytically tractable way, the 
computation that occurs as a natural result of an efficient 
physical implementation of local normalization of the sig- 
nal level. 

In addition to i t s  role in gain control and spatial filtering, 
the retina sharpens the time response of the system as an 
intrinsic part of i t s  analog computation. Effective temporal 
processing requires that the time scale of the computation 
be matched to the time scale of external events. The tem- 
poral response of the silicon retina depends on the prop- 
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erties of the horizontal network. The voltage stored on the 
capacitance of the resistive network i s  the temporally as 
well as spatially averaged output of the photoreceptors. 
Because thecapacitanceof the horizontal network i s  driven 
by a finite conductance, i t s  response weights i t s  input by 
an amount that decreases exponentially into the past. The 
time constant of integration i s  set by the bias voltages of 
the wide-range amplifier and of the resistors. The time con- 
stant can be varied independently of the space constant, 
which depends on only the difference between these bias 
voltages, rather than on their absolute magnitude. The out- 
put of the retinal computation i s  thus the difference 
between the immediate local intensity and the spatially and 
temporally smoothed image. It therefore enhances both 
the first temporal and second spatial derivatives of the 
image. 

ADAPTIVE RETINA 

The Mahowald retina has given us a very realistic real-time 
model that shows essentially all of the perceptually inter- 
esting properties of early vision systems, including several 
well-known optical illusions such as Mach bands. One 
problem with the circuit i s  i t s  sensitivity to transistor offset 
voltages. Under uniform illumination, the output i s  a ran- 
dom pattern reflecting the properties of individual tran- 
sistors, no two of which are the same. Of course, biological 
retinas have precisely the same problem. No two receptors 
have the same sensitivity, and no two synapses have the 
same strength. The problem in wetware is  even more acute 
than it i s  in silicon. It i s  also clear that biological systems 
use adaptive mechanisms to compensate for their lack of 
precision, The resulting system performance is  well beyond 
that of our most advanced engineering marvels. Once we 
understand the principles of adaptation, we can incorpo- 
rate them into our silicon retina. 

technology [6]. I f  no metal contact is  made to the gate of 
a particular transistor, that gate will be completely sur- 
rounded by silicon dioxide. Any change parked on such a 
floating gate will remain for eons. The first floating-gate 
experiments of which I am aware were performed at Fair- 
child Research Laboratories in the mid-1960’s. The first 
product to represent data by charges stored on a floating 
gate was reported in 1971 [7]. In this device, which today 
i s  called an EPROM, electrons are placed on the gate by an 
avalanche breakdown of the drain junction of the transis- 
tor. This injection can be done selectively, one junction at 
a time. Electrons can be removed by ultraviolet light inci- 
dent on the chip. This so-called erase operation i s  per- 
formed on all devices simultaneously. In 1985, Classer 
reported a circuit in which either a binary 1 or a binary 0 
could be stored selectively in each location of a floating-gate 
digital memory [8]. The essential insight contributed by 
Classer’s work was that there is  no fundamental asymetry 
to the current flowing through a thin layer of oxide. Elec- 
tronsareexcited intotheconduction band of theoxide from 
both electrodes. The direction of current flow is deter- 
mined primarily by the direction of the electric field in the 
oxide. In other words, the application of ultraviolet illu- 
mination to a capacitor with a silicon-dioxide dielectric has 
the effect of shunting the capacitor with a very small leak- 
age conductance. With no illumination, the leakage con- 

. All ofouranalogchipsarefabricated in silicon-gateCMOS 

ductance is  effectively zero. The leakage conductance pre- 
sent during ultraviolet illumination thus provides a 
mechanism for adapting the charge on a float gate. 

Frank Werblin suggested that the Mahowald retina might 
benefit from the known feedback connections from the 
resistive network to the photoreceptor circuit. A pixel 
incorporating a simplified version of this suggestion i s  
shown in Fig. 3 [2]. In this circuit, the output node i s  the 

J= ‘ uv Coupler - 

Fig. 3. Schematic of a pixel that performs a function similar 
to that of the Mahowald retina, but can be adapted with 
ultraviolet light to correct for output variations among pix- 
els. This form of adaptation i s  the simplest form of learning. 
More sophisticated learning paradigms can be evolved 
directly from this structure. 

emitter of the phototransistor. The current out of this node 
i s  thus set by the local incident-light intensity. The current 
into the output node is set by the potential on the resistive 
network, and hence by the weighted average of the light 
intensity in the neighborhood. The difference between 
these two currents i s  converted into a voltage by the effec- 
tive resistance of the output node, determined primarily by 
the Early effect. The advantage of this circuit is  that small 
differences between center intensity and surround inten- 
sity are translated into large output voltages, but the large 
dynamic rangeof operation i s  preserved. Retinas fabricated 
with this pixel show high gain, and operate properly over 
many orders of magnitude in illumination. The transcon- 
ductance amplifier has a hyperbolic-tangent relationship 
between the output current and the input differential volt- 
age. For proper operation, the conductance formed by this 
amplifier must be considerably smaller than that of the 
resistive network node. For that reason, when a local output 
node voltage is  very different from the local network volt- 
age, the amplifier saturates and supplies a fixed current to 
the node. The arrangement thus creates a center-surround 
response only slightly different from that of the Mahowald 
retina. 

Toreducetheeffectof transistoroffsetvoltages,we make 
use of ultraviolet adaptation to the floating gate that has 
been interposed between the resistive network and the pull- 
up transistor for the output node. The network is capaci- 
tively coupled to the floating node. The current into the 
output node is thus controlled by the voltage on the net- 
work, with an offset determined by the charge stored on 
the floating node. There i s  a region where the floating node 
overlaps the emitter of the phototransistor, shown inside 
the dark circle in Fig. 3. The entire chip i s  covered by sec- 
ond-level metal, except for openings over the phototran- 
sistors. The onlyway in which ultraviolet light can affect the 
floating gate is by interchanging electrons with the output 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990 1633 



node. If the output node is  high, the floating gate will be 
charged high, thereby decreasing the current into the out- 
put node. If the output node is  low, the floating gate will 
be charged low, thereby increasingthecurrent into theout- 
put node. The feedback occasioned by ultraviolet illumi- 
nation is thus negative, driving all output nodes toward the 
same potential. 

ADAPTATION AND LEARNING 

The adaptive retina i s  a simple example of a general com- 
putation paradigm. We can viewthe function of a particular 
part of the nervous system as making a prediction about the 
spatial and temporal porperties of the world. In the case of 
the retina, these predictions are the simple assertions that 
the image has no second spatial derivative and no first tem- 
poral derivative. If the image does not conform to these 
predictions, the difference between expectation and expe- 
rience is sent upward to be processed at higher levels. A 
block diagram of the essential structure i s  shown in Fig. 4. 

output 

t 
Compare r 

I I Correction I 

Input 

Fig. 4. Conceptual arrangement of a single level of a neural 
processing system. The computation consists of a predic- 
tion of the input, and a comparison of that prediction to the 
actual input. When the model accurately predicts the input, 
no information i s  passed to the next level, and no correction 
i s  made to the model. When the model fails to predict the 
input, the difference i s  used to correct the model. Random 
differences will cause a continued small "random walk" of 
the model parameters around that required for correct pre- 
diction. Systematic differences will cause the model to cen- 
ter itself over the true behavior of the input. Most routine 
events are filtered out to low level, reserving the capabilities 
of higher centers for genuinely interesting events. 

The box labeled "model" i s  a predictor, perhaps a crude 
one; in the case of the retina, the model i s  the resistive net- 
work. We give the predictor the input over time, and it com- 
putes what i s  likely to happen next, just before the actual 
input arrives. Then, when that input materializes, it i s  com- 
pared to the prediction. If the two values are the same, no 
new information i s  produced; the system already knew what 
was about to happen. What happened is what was expected; 
therefore, no information i s  sent up to the next level of pro- 
cessing. But when something unexpected has occurred, 
there is a difference, and that difference i s  transferred on 
up to the next level to be interpreted. If we repeat this oper- 
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ation at each level of the nervous system, the information 
will be of higher quality at each subsequent level because 
we process only the information that could not be pre- 
dicted at lower levels. 

Learning in this kind of system is provided by the adap- 
tation feedback from the comparator to the model. If the 
model i s  making predictions that are systematically differ- 
ent from what happens in nature, the ongoing corrections 
based on the individual differences will cause the model 
to learn what actually happens, as well as can be captured 
at its level of representation. It i s  only those events that are 
truly random, or that cannot be predicted from this level 
and therefore appear random, that will cancel out over all 
experience. The system parameters will undergo a local 
random walk, but will stay nearly centered on the average 
of what nature i s  providing as input. The retina i s  presented 
with a wide variety of scenes; it sees white edges and black 
edges. But every pixel in the retina sees the same intensity, 
averaged over time. Corrections towards this average con- 
stantly correct differences in photoreceptor sensitivity and 
variation in the properties of individual neurons and syn- 
apses. All other information i s  passed up to higher levels. 
Even this simple level of prediction removes a great deal of 
meaningless detail from the image, and provides a higher 
level of representation for the next level of discrimination. 

That a system composed of many levels organized along 
the lines of Fig. 4 can compute truly awesome results i s  per- 
haps not surprising: each level i s  equipped with a model 
of the world, as represented by the information passed up 
from lower levels. All lower level processing may, from the 
point of view of a given level, be considered preprocessing. 
The most important property of this kind of system is that 
the same mechanism that adapts out errors and mis- 
matches in its individual components also enables the sys- 
tem to build its own models through continued exposure 
to information coming in from theworld. Although this par- 
ticular example of the adaptive retina learns only a simple 
model, it illustrates a much moregeneral principle: this kind 
of system i s  self-organizing in the most profound sense. 

NUERAL SILICON 

Over the past eight years, we have designed, fabricated, 
and evaluated hundreds of test chips and several dozen 
complete system-level designs. All these adaptive analog 
chips were fabricated using standard, commercially avail- 
able CMOS processing, provided to us under the auspices 
of DARPA's MOSIS fabrication service. These designs 
include control systems, motor-pattern generators, retina 
chips that track bright spots in an image, retina chips that 
focus images on themselves, and retina chips that perform 
gain control, motion sensing, and image enhancement. We 
have made multiscale retinas that give several levels of res- 
olution, stereo-vision chips that see depth, and chips that 
segment images. A wide variety of systems has been 
designed to process auditory input; most of them are based 
on a biologically sensible model of the cochlea. There are 
monaural chips that decompose sound into its component 
features, binaural chips that compute horizontal and ver- 
tical localization of sound sources, and Seehear chips that 
convert a visual image into an auditory image-one where 
moving objects produce sound localized in the direction 
of the object. 
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This variety of experiments gives us a feeling for how far 
we have progressed on the quest for the nine order of mag- 
nitude biological advantage. The retina described in the 
preceding section i s  a typical example; it contains about I O 5  
devices, performs the equivalent of about 10’ operations/ 
s, and consumes about W of power, This and other 
chips using the same techniques thus perform each oper- 
ation at a cost of only about I O - ”  J compared to about I O - ’  
J/operation for a digital design using the same technology, 
and with IO6 Jloperation for the brain. We are s t i l l  five 
orders of magnitude away from the efficiency of the brain, 
but four orders of magnitude ahead of that realized with 
digital techniques. The real question i s  how well the adap- 
tive analog approach can take advantage of future advances 
in silicon fabrication. My prediction i s  that adaptive analog 
techniquescan utilize the potential of advanced silicon fab- 
rication more fully than can any other approach that has 
been proposed. Today (1990), a typical 6 in diameter wafer 
contains about lo’devices, partitioned into several hundred 
chips. After fabrication, the chips are cut apart and are put 
into packages. Several hundred of these packages are 
placed on a circuit board, which forms interconnections 
among them. 

Why not just interconnect the chips on the wafer where 
they started, and dispense with all the extra fuss, bother, 
and expense? Many attempts by many groups to make a 
digital wafer-scale technology have met with abysmal fail- 
ure. There are two basic reasons why wafer-scale integra- 
tion isverydifficult. First, atypical digital chipwill fail if even 
a single transistor or wire on the chip i s  defective. Second, 
the power dissipated by several hundred chips of circuitry 
i s  over 100 W, and getting rid of all that heat i s  a major pack- 
aging problem. Together, these two problems have pre- 
vented even the largest computer companies from deploy- 
ing wafer-scale systems successfully. The low-power 
dissipation of adaptive analog systems eliminates the pack- 
aging problem; wafers can be mounted on edge, and nor- 
mal air convection will adequately remove the few hundred 
milliwatts of heat dissipated per wafer. Due to the robust- 
ness of the neural representation, the failure of a few com- 
ponents per square centimeter will not materially affect the 
performance of the system: i t s  adaptive nature will allow 
the system simply to learn to ignore these inputs because 
they convey no information. In oneortwodecades, I believe 
we will have 10” devices on a wafer, connected as a com- 
plete adaptive analog system. We will be able to extract 
information from connections made around the periphery 
of the wafer, while processing takes place in massively par- 
allel form over the entire surface of the wafer. Each wafer 
operating in this manner will be capable of approximately 
I O l 3  operationsls. At that time, we will still not understand 
nearly as much about the brain as we do about the tech- 
nology. 

“ 

SCALING LAWS 

The possibility of wafer-scale integration naturally raises 
the question of the relative advantage conveyed by a three- 
dimensional neural structure over a two-dimensional one. 
Both approaches have been pursued in the evolution of ani- 
mal brains so the question is of great interest in biology as 
well. Let us take the point of view that whatever we are going 
to build will be a space-filling structure. If it is  a sheet, it will 

have neurons throughout the whole plane; if it i s  a volume, 
neurons will occupy the whole volume. If we allow every 
wire from every neuron to be as long as the dimensions of 
the entire structure, we will obviously get an explosion in 
thesizeofthestructureasthe numberof neurons increases. 
The brain has not done that. If we compare our brain to a 
rat brain, we are not noticeably less efficient in our use of 
wiring resources. So the brain has evolved a mostly local 
wiring strategyto keepthe scalingfromgettingoutof hand. 
What are the requirements of a structure that keep the frac- 
tion of its resources devoted to wire from exploding as it 
i s  made larger? If the structure did not scale, a large brain 
would be all wire and would have no room for the com- 
putation. 

First, let us consider the two-dimensional case. For the 
purpose of analysis, we can imagine that the width W of 
each wire is independent of the wire’s length L, and that 
the probability that a wire of length between L and L + dL 
i s  dedicated to each neuron is p(L) dL. The expected area 
of such a wire i s  the WL p(L) dL. The entire plane, of length 
and width L,,,, is covered with neurons, such that there i s  
one neuron per area A. Although the wires from many neu- 
rons overlap, the total wire from any given neuron must fit 
in area A. We can integrate the areas of the wires of all 
lengths associated with a given neuron, assuming that the 
shortest wire is  of unit length: 

Lmax 

WL p(L) dL = A. 

The question i s  then: What are the bounds on the form of 
p(L) such that theareaA required for each neuron does not 
grow explosively as L,,, becomes large? We can easily see 
that if p(L) = 1/L2, the areaA grows as the logarithm of Lmax- 
a quite reasonable behavior. If p(L) did not decrease at least 
this fast with increasing L,,,, the human brain would be 
much more dominated by wire than it is, compared to the 
brain of a rat or a bat. From this argument, I conclude that 
the nervous system is  organized such that, on the average, 
the number of wires decreases no more slowly than the 
inverse square of the wire’s length. 

We can repeat the analysis for a three-dimensional neural 
structureof extent L,,,, in which each neuron occupiesvol- 
ume V. Each wire has a cross-sectional area S, and thus has 
an expected volume SL p(L). As before, the total wire asso- 
ciated with each neuron must fit in volume v: 

Lmax s SL p(L) dL = v. 

So the three-dimensional structure must follow the same 
scaling law as i t s  two-dimensional counterpart. If we build 
a space-filling structure, the third dimension allows us to 
contact more neurons, but it does not change the basic scal- 
ing rule. The number of wires must decrease with wire 
length in the same way in both two and three dimensions. 

The cortex of the human brain, if it i s  stretched out, i s  
about 1 mlside, and 1 mm thick. About half of that milli- 
meter iswire (white matter), and theother half i s  computing 
machinery (gray matter). This basically two-dimensional 
strategywon out over the three-dimensional strategies used 
by more primitive animals, apparently because it could 
evolve more easily: new areas of cortex could arise in the 
natural course of evolution, and some of them would be 
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retained in the genome if they conveyed a competitive 
advantage on their owners. This result gives us hope that 
a neural structurecomptising manytwo-dimensional areas, 
such as those we can make on silicon wafers, can be made 
into a truly usbful, massively parallel, adaptive computing 
system. 

CONCLUSION 

Biological information-processing systems operate on 
completely different principlesfromthosewith which engi- 
neers are familiar. For many problems, particularly those 
in which the input data are ill-conditioned and the com- 
putation can be specified in a relative manner, biological 
solutions are many orders of magnitude more effective than 
those we have been able to implement using digital meth- 
ods. I have shown that this advantage can be attributed 
principally to the use of elementary physical phenomena 
as computational primitives, and to the representation of 
information by the relative values of analog signals, rather 
than by the absolute values of digital signals. I have argued 
that this approach requires adaptive techniques to correct 
for differences between nominally identical components, 
and that this adaptive capability leads naturally to systems 
that learn about their environment. Although the adaptive 
analog systems build up to the present time are rudimen- 
tary, they have demonstrated important principles as a pre- 
requisite to undertaking projects of much larger scope. Per- 
haps the most intriguing result of these experiments has 
been the suggestion that adaptive analog systems are 100 
times more efficient in their use of silicon, and they use 
10 000 times less power than comparable digital systems. 
It i s  also clear that these systems are more robust to com- 
ponent degradation and failure than are more conventional 
systems. I have also argued that the basic two-dimensional 
limitation of silicon technology i s  not a serious limitation 
in exploiting the potential of neuromorphic systems. For 
these reasons, I expect large-scale adaptive analog tech- 
nology to permit the full utilization of the enormous, here- 
tofore unrealized, potential of wafer-scale silicon fabrica- 
tion. 
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