NYQUIST FREQUENCY ANALOG-DIGITAL CONVERTERS

The sampled nature of the ADC places a practical limit on the bandwidth of the input signal. If the sampling frequency is f_S, and f_B is the bandwidth of the input signal, then

$$f_B < 0.5f_S$$

which is simply the Nyquist relationship which states that to avoid aliasing, the sampling frequency must be greater than twice the highest signal frequency.
CLASSIFICATION OF ANALOG-DIGITAL CONVERTERS

Analog-digital converters can be classified by the relationship of f_B and $0.5f_S$ and by their conversion rate.

- **Nyquist ADCs** - ADCs that have f_B as close to $0.5f_S$ as possible.
- **Oversampling ADCs** - ADCs that have f_B much less than $0.5f_S$.

Table 10.5-1 - Classification of Analog-to-Digital Converter Architectures

<table>
<thead>
<tr>
<th>Conversion Rate</th>
<th>Nyquist ADCs</th>
<th>Oversampled ADCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>Integrating (Serial)</td>
<td>Very high resolution >14 bits</td>
</tr>
<tr>
<td>Medium</td>
<td>Successive Approximation</td>
<td>Moderate resolution >10 bits</td>
</tr>
<tr>
<td></td>
<td>1-bit Pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algorithmic</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Flash</td>
<td>Low resolution > 6 bits</td>
</tr>
<tr>
<td></td>
<td>Multiple-bit Pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folding and interpolating</td>
<td></td>
</tr>
</tbody>
</table>
STATIC CHARACTERIZATION OF ANALOG-TO-DIGITAL CONVERTERS

DIGITAL OUTPUT CODES

Table 10.5-2 - Digital Output Codes used for ADCs

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Thermometer</th>
<th>Gray</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0000000</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>0000001</td>
<td>001</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>0000011</td>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>0000111</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0001111</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>0011111</td>
<td>111</td>
<td>011</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>0111111</td>
<td>101</td>
<td>010</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>1111111</td>
<td>100</td>
<td>001</td>
</tr>
</tbody>
</table>
INPUT-OUTPUT CHARACTERISTICS

Ideal input-output characteristics of a 3-bit ADC

Figure 10.5-3 Ideal input-output characteristics of a 3-bit ADC.
DEFINITIONS

- The *dynamic range, signal-to-noise ratio (SNR)*, and the *effective number of bits (ENOB)* of the ADC are the same as for the DAC.

- *Resolution* of the ADC is the smallest analog change that can be distinguished by an ADC.

- *Quantization Noise* is the ±0.5LSB uncertainty between the infinite resolution characteristic and the actual characteristic.

- *Offset Error* is the horizontal difference between the ideal finite resolution characteristic and actual finite resolution characteristic.

- *Gain Error* is the horizontal difference between the ideal finite resolution characteristic and actual finite resolution characteristic which is *proportional* to the analog input voltage.

![Diagram](image)

Figure 10.5-4 - (a.) Example of offset error for a 3-bit ADC. (b.) Example of gain error for a 3-bit ADC.
INTEGRAL AND DIFFERENTIAL NONLINEARITY

The integral and differential nonlinearity of the ADC are referenced to the vertical (digital) axis of the transfer characteristic.

- **Integral Nonlinearity (INL)** is the maximum difference between the actual finite resolution characteristic and the ideal finite resolution characteristic measured vertically (% or LSB)

- **Differential Nonlinearity (DNL)** is a measure of the separation between adjacent levels measured at each vertical step (% or LSB).

 \[
 DNL = (D_{cx} - 1) \text{ LSBs}
 \]

 where \(D_{cx}\) is the size of the actual vertical step in LSBs.

 Note that INL and DNL of an analog-digital converter will be in terms of integers in contrast to the INL and DNL of the digital-analog converter. As the resolution of the ADC increases, this restriction becomes insignificant.
EXAMPLE OF INL and DNL
MONOTONICITY

A monotonic ADC has all vertical jumps positive. Note that monotonicity can only be detected by DNL.

Example of a nonmonotonic ADC:

If a vertical jump is 2LSB or greater, missing output codes may result.

If a vertical jump is -1LSB or less, the ADC is not monotonic.
EXAMPLE 10.5-2

INL and DNL of a 3-bit ADC

Find the *INL* and *DNL* for the 3-bit ADC shown on the previous slide.

Solution

With respect to the digital axis:

1.) The largest value of *INL* for this 3-bit ADC occurs between 3/16 to 5/16 or 7/16 to 9/16 and is 1 LSB.
2.) The smallest value of *INL* occurs between 11/16 to 12/16 and is -2 LSB.
3.) The largest value of *DNL* occurs at 3/16 or 6/8 and is +1 LSB.
4.) The smallest value of *DNL* occurs at 9/16 and is -2 LSB which is where the converter becomes nonmonotonic.
DYNAMIC CHARACTERISTICS

The dynamic characteristics of ADCs are influenced by:

- Comparators
- Sample-hold circuits
- Circuit parasitics
- Logic propagation delay
COMPARATOR

The comparator is the quantizing unit of ADCs.

Open-loop model:

```
+          -
Comparator  

V1 +
V2 -
```

Nonideal aspects:
- Input offset voltage, V_{OS} (a static characteristic)
- Propagation time delay
 - Bandwidth (linear)
 \[A_v(s) = \frac{A_v(0)}{s + \frac{\omega_c}{\tau_c} + 1} = \frac{A_v(0)}{s\tau_c + 1} \]
 - Slew rate (nonlinear)
 \[\Delta T = \frac{C\Delta V}{I} \] (I is constant)
LINEAR PROPAGATION TIME DELAY (Small input changes)

If V_{OH} and V_{OL} are the maximum and minimum output voltages of the comparator, then minimum input to the comparator (resolution) is

$$v_{in}(\text{min}) = \frac{V_{OH} - V_{OL}}{A_v(0)}$$

If the propagation time delay, t_p, is the time required to go from V_{OH} or from V_{OL} to $\frac{V_{OH} + V_{OL}}{2}$, then if $v_{in}(\text{min})$ is applied to the comparator, the t_p is,

$$\frac{V_{OH} - V_{OL}}{2} = A_v(0) \left[1 - e^{t_p/\tau_c} \right] v_{in}(\text{min}) = A_v(0) \left[1 - e^{t_p/\tau_c} \right] \left(\frac{V_{OH} - V_{OL}}{A_v(0)} \right)$$

Therefore, t_p is

$$t_p(\text{max}) = \tau_c ln(2) = 0.693 \tau_c$$

If v_{in} is greater than $v_{in}(\text{min})$, i.e. $v_{in} = k v_{in}(\text{min})$, then

$$t_p = \tau_c ln\left(\frac{2k}{2k - 1} \right)$$

Illustration of these results:
NONLINEAR PROPAGATION TIME DELAY (Large input changes)

The output rises or falls with a constant rate as determined by the slew rate, SR.

\[
\therefore t_p = \Delta T = \frac{\Delta V}{SR} = \frac{V_{OH} - V_{OL}}{2 \cdot SR}
\]

(If the rate of the output voltage of the comparator never exceeds \(SR \), then the propagation time delay is determined by the previous expression.)
EXAMPLE 10.5-2

Propagating Delay Time of a Comparator

Find the propagation delay time of an open loop comparator that has a dominant pole at 10^3 radians/sec, a dc gain of 10^4, a slew rate of 1V/µs, and a binary output voltage swing of 1V. Assume the applied input voltage is 10mV.

Solution

The input resolution for this comparator is 1V/10^4 or 0.1mV. Therefore, the 10mV input is 100 times larger than $v_{in}(\min)$ giving a k of 100. Using the previous expression for this case, we get

$$t_p = \frac{1}{10^3} \ln\left(\frac{2 \cdot 100}{2 \cdot 100 - 1}\right) = 10^{-3} \ln\left(\frac{200}{199}\right) = 5.01\mu s$$

If the output is slew-rate limited, then

$$t_p = \frac{1}{2 \cdot 1x10^6} = 0.5\mu s$$

Therefore, the propagation delay time for this case is the larger or 5.01µs.

Note that the maximum slope of the linear response is

$$\text{Max}\left(\frac{dv_{out}}{dt}\right) = \frac{d}{dt}\left(A_v(0)[1-e^{-t/\tau_c}](0.01V)\right) = \frac{A_v(0)}{\tau_c} e^{-t/\tau_c}(0.01V) = \frac{A_v(0)}{100\tau_c} = \frac{A_v(0)\omega_c}{100} = \frac{10^4 \cdot 10^3}{100} = 0.1V/\mu s$$

Since the maximum rate of the linear response is less than the slew rate, the response is linear and the propagation time delay is 5.01µs.
APERATURE JITTER IN S/H CIRCUITS

Illustration:

\[v_{in}(t) = V_p \sin(\omega t) \]

Therefore, the value of \(\Delta V \) is given as

\[\Delta V = \left| \frac{dv_{in}}{dt} \right| \Delta t = \omega V_p \Delta t. \]

The rms value of this noise is given as

\[\Delta V(rms) = \left| \frac{dv_{in}}{dt} \right| \Delta t = \frac{\omega V_p \Delta t}{2\sqrt{2}}. \]

The aperature jitter can lead to a limitation in the desired dynamic range of an ADC. For example, if the aperature jitter of the clock is 100ps, and the input signal is a full scale peak-to-peak sinusoid at 1MHz, the rms value of noise due to this aperature jitter is 111\(\mu \)V(rms) if the value of \(V_{REF} = 1 \text{V} \).
TESTING OF ADCs

INPUT-OUTPUT TEST FOR AN ADC

Test Setup:

The ideal value of Q_n should be within ±0.5 LSB

Can measure:

- Offset error = constant shift above or below the 0 LSB line
- Gain error = constant increase or decrease of the sawtooth plot as V_{in} is increased
- INL and DNL (see following page)
ILLUSTRATION OF THE INPUT-OUTPUT TEST FOR A 4-BIT ADC
MEASUREMENT OF NONLINEARITY USING A PURE SINUSOID

This test applies a pure sinusoid to the input of the ADC. Any nonlinearity will appear as harmonics of the sinusoid. Nonlinear errors will occur when the dynamic range (DR) is less than $6N$ dB where N = number of bits.

Comments:
- Input sinusoid must have less distortion than the required dynamic range
- DAC must have more accuracy than the ADC
FFT TEST FOR AN ADC

Test setup:

- Stores the digital output codes of the ADC in a RAM buffer
- After the measurement, a postprocessor uses the FFT to analyze the quantization noise and distortion components
- Need to use a window to eliminate measurement errors (Raised Cosine or 4-term Blackmann-Harris are often used)
- Requires a spectrally pure sinusoid
HISTOGRAM TEST FOR AN ADC

The number of occurrences of each digital output code is plotted as a function of the digital output code.

Illustration:

Comments:
- Emphasizes the time spent at a given level and can show DNL and missing codes
- \(DNL \)

\[
DNL(i) = \frac{\text{Width of the bin as a fraction of full scale}}{\text{Ratio of the bin width to the ideal bin width}} - 1 = \frac{H(i)/N_t}{P(i)} - 1
\]

where
- \(H(i) \) = number of counts in the \(i \)th bin
- \(N_t \) = total number of samples
- \(P(i) \) = ratio of the bin width to the ideal bin width

- \(INL \) is found from the cumulative bin widths
COMPARISON OF THE TESTS FOR ANALOG-DIGITAL CONVERTERS

Other Tests

- Sinewave curve fitting (good for ENOB)
- Beat frequency test (good for a qualitative measure of dynamic performance)

Comparison

<table>
<thead>
<tr>
<th>Test → Error Error ↓</th>
<th>Histogram or Code Test</th>
<th>FFT Test</th>
<th>Sinewave Curve Fit Test</th>
<th>Beat Frequency Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNL</td>
<td>Yes (spikes)</td>
<td>Yes (Elevated noise floor)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Missing Codes</td>
<td>Yes (Bin counts with zero counts)</td>
<td>Yes (Elevated noise floor)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>INL</td>
<td>Yes (Triangle input gives INL directly)</td>
<td>Yes (Harmonics in the baseband)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aperature Uncertainty</td>
<td>No</td>
<td>Yes (Elevated noise floor)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Noise</td>
<td>No</td>
<td>Yes (Elevated noise floor)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bandwidth Errors</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes (Measures analog bandwidth)</td>
</tr>
<tr>
<td>Gain Errors</td>
<td>Yes (Peaks in distribution)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Offset Errors</td>
<td>Yes (Offset of distribution average)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY ON ADC TESTING

