Switched Capacitor Circuits

• Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock and the capacitor.

• Filters built in this technology are set by external clocks, and ratio of capacitors (matching of 0.1% to 1%)

The precision of the frequency response is realized by ratios of capacitors (1% to 0.1%…better matching, larger caps; therefore more power/area), and a clock signal (which can be set precisely with a crystal reference)
Capacitor Circuits

Capacitive Voltage Divider

\[V_{out}(t) = \frac{C_1}{C_T} V_1(t) + \frac{Q}{C_T} \]

Multiple Input Voltage Divider

\[V_{out}(t) = \frac{C_1}{C_T} V_1(t) + \frac{C_2}{C_T} V_2(t) + \frac{Q}{C_T} \]

Capacitive Feedback

\[V_{out}(t) = - \frac{C_1}{C_2} V_1(t) - \frac{Q}{C_2} \]

\[V_{out}(t) = (1 + \frac{C_1}{C_2}) V_1(t) - \frac{Q}{C_2} \]
Non-Overlapping Clocks

We will always be using non-overlapping clocks; therefore, we want a waveform like

We effectively have four phases.
Non-Overlapping Clocks

We will always be using non-overlapping clocks; therefore, we want a waveform like

We effectively have four phases.

Would want t_d as small as possible for proper operation

We will also assume that the input is held constant through the entire $[n]^{th}$ cycle
Non-Overlapping Clocks

We will always be using non-overlapping clocks; therefore, we want a waveform like

We effectively have four phases.

Would want \(t_d \) as small as possible for proper operation

We will also assume that the input is held constant through the entire \([n]^{th}\) cycle
Basic Switched Capacitors
Basic Switched Capacitors

\[\Delta Q = C_1(V_1[n] - V_2[n-1]) \]
Basic Switched Capacitors

\[\Delta Q = C_1(V_1[n] - V_2[n-1]) \]

\[\Delta Q = C_1(V_1[n] - V_2[n]) \]
If we assume the input changes slowly
\((V_2[n-1] \sim V_2[n]; \text{therefore we are oversampling}) \),
we get
\[
I = Q f = f C_1 (V_1(t) - V_2(t)) \ ; \ R = 1 / (C_1 f)
\]
where \(f = \text{clock frequency} \).
Basic Switched Capacitors

\[V_1(t) \sim I \sim V_2(t) \]

\[
\text{where } f = \text{clock frequency.}
\]

\[R = \frac{1}{C_1 f} \]
Basic Switched Capacitors

\[
\begin{align*}
V_1(t) & \xrightarrow{\phi_1} C_1 \xrightarrow{\text{GND}} V_2(t) \\
& \xrightarrow{\phi_2}
\end{align*}
\]

where \(f = \text{clock frequency} \).

For \(0.1\text{pF} \) capacitor, and a \(10\text{kHz} \) clock, we get a resistance of \(1\text{GOhm} \).
Basic Switched Capacitors

\[\phi_1 \quad \phi_2 \]

\[V_1(t) \quad V_2(t) \]

\[C_1 \quad GND \]

\[I \]

\[V_1(t) \quad V_2(t) \]

\[R = \frac{1}{(C_1 f)} \]

where \(f \) = clock frequency.

For 0.1pF capacitor, and a 10kHz clock, we get a resistance of 1GOhm.

Rule of thumb: slow moving means we oversample the Nyquist frequency of the input signal by a factor of 20 or more.
Basic Switch-Cap Integrator
Basic Switch-Cap Integrator

- We will step through all four phases, to get the proper result.
Basic Switch-Cap Integrator

(4), [n-1] cycle

\[Q = -C_2 V_{\text{out}[n-1]} \]

Voltage = 0V

GND

- This case is important to understand our starting point
 charge is stored on a capacitor; therefore we need to know the initial state
Basic Switch-Cap Integrator

(1), [n] cycle: ϕ_1

- Charge up the capacitor with voltage $V_1[n]$

\[Q = -C_2 V_{out}[n-1] \]

(Output unchanged)
Basic Switch-Cap Integrator

(2), [n] cycle

\[Q_1 = C_1 V_1[n] \]

\[Q = -C_2 V_{out[n-1]} \]

- We remove the capacitor from the input voltage.
- The voltage is stored across the capacitor.
Basic Switch-Cap Integrator

(3), [n] cycle: \(\phi_2 \)

\[V_{\text{out}}[n] = V_{\text{out}}[n-1] - \left(\frac{C_1}{C_2} \right) V_1[n] \]

- We connect the capacitor to the charge summing node.

- The charge initially stored on the capacitor as well as the resulting charge from the second input \((v_2[n])\) contributes to the total charge.
We disconnect the capacitor from the charge summing node, and return to our initial case

\[V_{\text{out}}[n] = V_{\text{out}}[n-1] - \left(\frac{C_1}{C_2} \right) V_1[n] \]
Basic Switch-Cap Integrator

\[V_{out}[n] = V_{out}[n-1] - \left(\frac{C_1}{C_2} \right) V_1[n] \]

\[\frac{V_{out}(z)}{V_1(z)} = H(z) = - \left(\frac{C_1}{C_2} \right) \frac{1}{1 - z^{-1}} \]
Basic Switch-Cap Integrator

\[V_{\text{out}[n]} = V_{\text{out}[n-1]} - \left(\frac{C_1}{C_2} \right) V_1[n] \]

\[\frac{V_{\text{out}}(z)}{V_1(z)} = H(z) = - \left(\frac{C_1}{C_2} \right) \frac{1}{1 - z^{-1}} \]

\[H(j\omega) = - \left(\frac{C_1}{C_2} \right) \frac{1}{1 - e^{-j\omega T}} \]

\[\sim - \left(\frac{C_1}{C_2} \right) \frac{1}{j\omega T} \]

assumes \(\omega T << 1 \); therefore we need to sample much higher (factor of 10 to 20) over frequencies of interest.