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Abstract 
 
Basic properties of the Operational Transconductance 
Amplifier (OTA) are discussed. Applications of the OTA in  
voltage-controlled amplifiers, filters, and impedances are 
presented. A versatile family of voltage-controlled filter 
sections suitable for systematic design requirements is 
described. The total number of components used in these 
circuits is small, and the design equations and voltage-control 
characteristics are attractive. Limitations as well as practical 
considerations of OTA based filters using commercially 
available bipolar OTAs are discussed.  Applications of OTAs 
in continuous-time monolithic filters are considered. 
 
 
 

Introduction 
 
The conventional operational amplifier (op amp) is used as 
the active device in the vast majority of the active filter 
literature. For design purposes, the assumption that the op 
amp is ideal 0R,R,A oinv =∞=∞=  is generally 
made, and large amounts of feedback are used to make the 
filter gain essentially independent of the gain of the op amp. 
A host of practical filter designs have evolved following this 
approach. It has also become apparent, however, that 
operational amplifier limitations preclude the use of these 
filters at high frequencies, attempts to integrate these filters 
have been unsuccessful (with the exception of a few non-
demanding applications), and convenient voltage or current 
control schemes for externally adjusting the filter 
characteristics do not exist. 

With the realization that the BJT and MOSFET are 
inherently current and transconductance amplifiers, 
respectively, the following question naturally arises.  Can 
any improvements in filter characteristics, performance, or 
flexibility be obtained by using one of the other basic types 
of amplifiers (e.g., transconductance, current, or 
transresistance) in place of a voltage amplifier (or 
specifically the operational amplifier) as the basic active 
device in a filter structure? 

This question is currently difficult to answer for two 
reasons. First, there is a near void in the literature of active 
filter structures employing the alternative amplifier types. 
Second, the evolution of good integrated transresistance, 
transconductance, and current amplifiers has not kept pace 
with that of the voltage amplifiers, although a few devices 
in these alternate categories are commercially available (e.g., 
transconductance amplifiers such as the CA 3080 and LM 
13600 and transresistance amplifiers such as the LM 3900) 
[l]-[5]. Comparisons of some characteristics of these 
amplifiers were recently discussed by Brugger et al. [40]. 

In this paper, basic first- and second-order structures 
using the transconductance amplifier (often termed the 
operational transconductance amplifier: OTA) are 
discussed. It is shown that these structures offer 
improvements in design simplicity and programmability 
when compared to op amp based structures as well as 
reduced component count. 

Many of the basic OTA based structures use only OTAs 
and capacitors and, hence, are attractive for integration. 
Component count of these structures is often very low 
(e.g., second-order biquadratic filters can be constructed 
with two OTAs and two capacitors) when compared to 
VCVS designs. Convenient internal or external voltage or 
current control of filter characteristics is attainable with 
these designs. They are attractive for frequency referenced 
(e.g., master/slave) applications. Several groups have 
recently utilized OTAs in continuous-time monolithic filter 
structures [28] - [40]. 

From a practical viewpoint, the high-frequency 
performance of discrete bipolar OTAs, such as the CA 
3080, is quite good. The transconductance gain, gm, can be 
varied over several decades by adjusting an external dc bias 
current, IABC. The major limitation of existing OTAs is the 
restricted differential input voltage swing required to 
maintain linearity [5]. For the CA 3080, it is limited to 
about 30 mV p-p to maintain a reasonable degree of 
linearity. Although feedback structures in which the 
sensitivity of the filter parameters are reduced (as is the 
goal in op amp based filter design) will be discussed, major 
emphasis will be placed upon those structures in which the 
standard filter parameters of interest are directly 
proportional to gm of the OTA. Thus, the gm will be a 



design parameter much as are resistors and capacitors.  
Since the transconductance gain of the OTA is assumed 
proportional to an external dc bias current, external control 
of the filter parameters via the bias current can be obtained. 

Most existing work on OTA based filter design 
approached the problem by either concentrating upon 
applying feedback to make the filter characteristics 
independent of the transconductance gain or modifying 
existing op amp structures by the inclusion of some 
additional passive components and OTAS. In either case, 
the circuits were typically component intense and 
cumbersome to tune. Some of the earlier works are listed in 
the Refs. [6]-[16].  Some of the most practical circuits can 
be found in the manufacturer's application notes [3]-[5]. 
 

 
Fig.1 OTA. (a) Symbol. (b) Equivalent circuit of ideal OTA. 
 

OTA Model 
 
 The symbol used for the OTA is shown in Fig. 1, along 
with the ideal small signal equivalent circuit. The 
transconductance gain, gm, is assumed proportional* to 
IABC. The proportionality constant h is dependent upon 
temperature, device geometry, and the process [2]. 

  gm = hIABC                (1) 

 

*  A linear dependence on bias current is typically obtained 
for bipolar OTAs and MOS configurations operating in 
weak inversion. MOS structures operating in the saturation 
region typically exhibit a quadratic dependence on IABC. 

The output current is given by 

  Io = gm(V+ - V-)           (2) 

 
As shown in the model, the input and output impedances in 
the model assume ideal values of infinity. Current control of 
the transconductance gain can be directly obtained with 
control of IABC- Since techniques abound for creating a 
current proportional to a given voltage, voltage control of 
the OTA gain can also be attained through the IABC input. 
Throughout this paper, when reference is made to either the 
current or voltage controllability of OTA based circuits' it is 
assumed to be attained via control of gm by IABC. 
 
 
 

Basic OTA Building Blocks 
 

Some of the basic OTA building blocks [6] are introduced 
in this section. A brief discussion about these circuits 
follows. 

Voltage amplifiers using OTAs are shown in Fig. 2, along 
with voltage gain and output impedance expressions. The 
basic inverting and non-inverting configurations of Figs. 2a 
and 2b have a voltage gain directly proportional to gm, 
which makes current (voltage) control of the gain via IABC 
straightforward. Furthermore, observe that a differential 
amplifier can be easily obtained by using both input 
terminals of the OTA in Figs. 2a or 2b.  The major 
limitation of these circuits is the relatively high output 
impedance. 

A voltage buffer, such as used in Figs. 2c and 2d, is often 
useful for reducing output impedance.* Although the gain 
characteristics of these circuits are ideally identical, the 
performance of the two circuits is not the same. The 
performance differences are due to differences in the effects 
of parasitics in the circuits. Specifically, the parasitic 
output capacitance of the OTA in Fig. 2c, along with 
instrumentation parasitics, parallel the resistor RL in 
discrete component structures, thus causing a roll-off in the 
frequency response of the circuits. In the circuit of Fig. 2d, 
the parasitic output capacitance of the OTA is connected 
across the null port of an op amp and thus has negligible 
effects when the op amp functions properly. Likewise, 
instrumentation parasitics will typically appear at the low 
impedance output of the op amp, and thus not have a major 
effect on the performance. As with conventional amplifier 
design using resistors and op amp's, the amplifier 
bandwidth of these structures warrants consideration. For 
the circuits of Figs. 2c and 2d, the  major  factor  limiting  



 
Fig. 2 Voltage amplifiers. (a) Basic inverting. (b) Basic 
noninverting. (c) Feedback amplifier. (d) Noninverting 
feedback amplifier. (3 Buffered amplifier. (f) Buffered VCVC 
feedback. (g) All OTA amplifiers. 

 
the bandwidth is generally the finite gain bandwidth 
product of the op amps. If the op amps are modeled by the 
popular single-pole roll-off model, A(s) = GB/s, and the 
OTAs are assumed ideal, it follows that the bandwidth of 
the circuits of Fig. 2c and Fig. 2d is GB, independent of the 
voltage gain of the amplifier. This can be contrasted to the 
bandwidths of GB/K and GB/1 + K for the basic single op 
amp non-inverting and inverting amplifiers of gains K and -
K, respectively. 

Note that the circuits of Figs. 2a and 2b differ only in the 
labeling of the “+” and “-” terminals. In all circuits 
presented in this paper, interchanging the “+” and “-” 
terminals of the OTA will result only in changing the sign 
of the gm coefficient in any equation derived for the original 
circuit. Henceforth, it will be the reader's responsibility to 
determine when such an interchange provides a useful 
circuit. 

The circuits of Figs. 2e and 2f are feedback structures. 
The circuit of Fig. 2e offers gains that can be continuously 
adjusted between positive and negative values with the 
parameter gm. By interchanging the + and - terminals of the 
OTA, very large gains can be obtained as gm R1 approaches 
1 (as Zo approaches infinity). Gain is nonlinearly related to 
gm. Control range via gm is reduced in these structures when 
compared to the amplifiers of Figs. 2a and 2b. If 
components are sized fitly, the gain of these structures can 
be made essentially independent of gm (as in the 
conventional op amp inverting and non-inverting 
configurations) and the output impedances can be made 
reasonably small. 

The amplifier of Fig. 2g is attractive since it contains no 
passive components. Gain adjustment can be attained with 
either gm1 or gm2. The total adjustment range of the gain of 
this structure is double (in dB) that attainable with the 
single OTA structures considered in Figs. 2a and 2b. 
Furthermore, if both OTAs are in the same chip, the 
variations with temperature of the gm’s are cancelled. 

Several standard controlled impedance elements are 
shown in Fig. 3, along with the input impedance expression.  
These controlled impedances can be used in place of 
passive counterparts (when applicable) in active RC 
structures to attain voltage control of the filter 
characteristics or as building blocks in OTA structures. 

The circuit of Fig. 3a is a grounded Voltage Variable 
Resistor (VVR). The circuit of Fig. 3b behaves as a floating 
VVR, provided gm1 and gm2 are matched. If a mismatch 
occurs, the structure can be modeled with a floating VVR 
between terminals 1 and 2 of value gm1, along with a voltage 
dependent current  source of  value  (gm1-gm2) V1 driving  
node 2. 



   
Fig. 3 Controlled impedance elements. (a) Single-ended voltage variable resistor (VVR). (b) Floating VVR. (c) Scaled VVR. (d) 
Voltage variable impedance inverter. (e) Voltage variable floating impedance. (f) Impedance multiplier. (g) Super inductor. (h) 
FDNR. 
 
The circuit of Fig. 3c acts as a scaled VVR.  Higher 
impedances are possible than with the simple structure of 
Fig. 3a, at the expense of the additional resistors. 

A voltage variable impedance inverter is shown in Fig. 3d. 
Note the doubling of the adjustment range of this circuit, as 
with the amplifier of Fig. 2g. Of special interest is the case 
where this circuit is loaded with a capacitor. In this case, a 
synthetic inductor is obtained. The doubling of the 
adjustment range is particularly attractive for the synthetic 
inductor since cutoff frequencies in active filter structures 
generally involve inductor values raised to the 1/2 power. 
By making gm1 = gm2 and adjusting both simultaneously, 
first-order rather than quadratic control of cutoff 
frequencies is possible. 

A floating impedance inverter is shown in Fig. 3e.  Note 
that it is necessary to match gm2 and gm3 for proper 
operation.  The circuit of Fig. 3f serves as an impedance 
multiplier.  That of Fig. 3g behaves as a super inductor and 
that of Fig. 3h as a FDNR. 
 

First-Order Filter Structures 
 
 A voltage variable integrator structure with a differential 
input is shown in Fig. 4a. The integrator serves as the basic 
building block in many filter structures. Two different lossy 
integrators (first-order lowpass  filters)  are shown  in  Figs. 
4b  and  4c. The  



 
Figure 4. Integrator structures. (a) Simple. (b) Lossy. (c) 
Adjustable. 
 
circuit of Fig. 4b has a loss that is fixed by the RC product 
and a gain controllable by gm. The circuit of Fig. 4c offers 
considerably more flexibility. The pole frequency can be 
adjusted by gm2 (interchanging the input terminals of OTA 
2 actually allows the pole to enter the right half plane), and 
the dc gain can be subsequently adjusted by gm1. It should 
be noted that the structure of Fig. 4c contains no resistors 
and can be obtained from the circuit of Fig. 4b by replacing 
the resistor R with the controlled impedance of Fig. 3a. 
Another lossy integrator without adjustable gain but with 
adjustable pole location and a very simple structure is 
shown in Fig. 5a. 

When designing cascaded integrator-based filter 
structures, it may be the case that the input impedance to 
some stages is not infinite. If that be the case, a unity gain 
buffer would be required for coupling, since the output 
impedances of all integrators in Fig. 4 are nonzero. Note, 
however, that no buffer is needed for the cascade of any of 
the integrators of Fig. 4, since the input impedance to each 
circuit is ideally infinite. 

First-order filters can be readily built using OTAS. 
Considerable flexibility in controlling those specific filter 
characteristics that are usually of interest is possible with 
these structures. Several first-order voltage-controlled filters 
are shown in Fig. 5, and a functional plot of the transfer 
characteristics as a function of the transconductance gains is 
shown in Fig. 6. 

The 3dB cutoff frequency of the lowpass filter of Fig. 5a 
is given by the expression 

                      
C2

g
f m

dB3 π
=                              (3a)                                              

Linear adjustment of f3dB with gm  is attainable with this 
circuit while maintaining a unity dc frequency gain.  The 
structure of Fig. 5b has a fixed pole location and adjustable 
dc gain with the transconductance gain gm. If the resistor in 
this circuit is replaced with the controlled resistor of Fig. 
3a, the circuit would have independently adjustable gain and 
break frequency.  The highpass structure of Fig. 5c also has 
a 3dB cutoff frequency given by 

                           
C2

g
f m

dB3 π
=                       (3b) 

 
It can be observed that the characteristic networks for the 

lowpass and highpass structures of Figs. 5a and 5c are 
identical, and thus they have the same pole structures.  
They differ only in where the excitation is applied. 

 
The circuits of Figs. 5d and 5e act as shelving equalizers. 

The response of both circuits can be continuously changed 
from lowpass to allpass to highpass by adjusting gm as can 
be seen from Fig. 6. The basic difference in the two circuits 
is that the former has a fixed pole and adjustable zero, 
whereas the circuit of Fig. 5e has an adjustable pole and 
fixed zero. As for the circuit of Fig. 5b, additional flexibility 
can be obtained if the grounded resistor in the circuit of Fig. 
5d is replaced with the controlled resistor of Fig. 3a. 

 
The circuit of Fig. 5f acts as a lowpass filter with high-

frequency gain determined by the C1: C2 ratio.  Both the 
pole and zero in this circuit are adjustable through the 
parameter gm but the ratio is held constant. This preserves 
the shape in the transfer characteristics and thus represents 
only a frequency shift in the response, as shown in Fig. 6f. 

 
The circuit of Fig. 5g utilizes an additional OTA and 

offers considerable flexibility.  If either gm1 or gm2 fixed, the 
circuit behaves much like the shelving equalizers discussed 
above.  If gm1 and gm2 are adjusted simultaneously, then a 
fixed pole-zero ratio and, hence, shape preserving response 
is possible.  In this case, the circuit can be lowpass, allpass, 
or highpass, depending upon the gm1 : gm2 ratio.  If the “+” 
and “-” terminals of gm1 are interchanged and the 
transconductance gains are adjusted so that gm1 =gm2,  the 
circuit behaves as a phase equalizer. 

 



 
Fig. 5 First-order voltage-controlled filters. (a) Lowpass, fixed dc gain pole adjustable. (b) Lowpass fixed pole, adjustable dc 

gain. (c) Highpass, fixed high-frequency gain, adjustable pole. (d) Shelving equalizer, fixed high-frequency gain, fixed pole, 
adjustable zero. (e) Shelving equalizer, fixed high-frequency gain, fixed zero, adjustable pole. (f) Lowpass filter adjustable pole and 
zero, fixed ration. (g) Shelving equalizer, independently adjustable pole and zero. (h) Lowpass or highpass filter, adjustable zero 
and pole, fixed ratio or independent adjustment. (i) Phase shifter, adjustable with gm. 



The circuit of Fig. 5h also preserves the shape of the 
transfer function, provided gm1 and gm2 are adjusted in such 
a manner that their ratio remains constant.  In this case, the 
shape of the response is determined by the gm1:gm2 and 
Cl:C2 ratio. Depending upon these ratios, the response is 
either lowpass or highpass in nature, as indicated in Fig. 6h. 

 
If gm2R = 1, the circuit of Fig. 5i behaves as a phase 

equalizer, gm1 can be used to adjust the phase shift.  For 
monolithic applications, the resistor R can be replaced with 
a third OTA, using the configuration of Fig. 3a. 

 
 

Second-Order Structures 
 

Second-order filter structures find widespread 
applications directly and in the design of higher-order 
filters. Although the emergence of practical voltage or  
current-controlled first-order filters and amplifiers has been 
slow, even fewer techniques exist for the design of 
controlled second- and higher-order structures.  Switched-
capacitor techniques have been  successfully used to build 
voltage-controlled filter structures by building a voltage-
controlled oscillator and using the output as the required 
clock for the switching of the capacitors.  Although useful 
in some applications, these structures are not continuous 
time in nature, have limited dynamic range, and are limited 
to reasonably low-frequency applications.  Concentration 
here will be on continuous-time voltage controlled 
structures. 

 
One common requirement in the design of voltage 

controlled filter structures is that the filter characteristics be 
adjusted in a manner that essentially results in frequency 
scaling. In all-pole applications, such as the lowpass 
Butterworth and Chebyschev case, as well as the bandpass 
and highpass versions of these approximations, the 
frequency scaling is tantamount to moving all poles a 
prescribed distance in a constant-Q manner. Those familiar 
with active filter structures will recall that pole movement 
in second-order structures through the adjustment of a 
single component is always on a circular path (constant ωo) 
or on a straight line (constant bandwidth) parallel to the 
imaginary axis in the s-plane. The challenges associated 
with constant-Q pole adjustment through the simultaneous 
tuning of two or more components should be obvious. 

 
A seemingly more difficult situation exists when 

considering the design of the popular elliptic filters.  To 
maintain the elliptic characteristics as the cutoff frequency 

is changed, all poles and all zeros of the approximating 
function must be moved simultaneously and with the 
appropriate ratio in a constant-Q manner. 

 
A group of second-order voltage-controlled filter 

structures are discussed in this section. Circuits with 
constant-Q pole adjustment, circuits with constant 
bandwidth ωo, adjustment, and circuits with independent 
pole and zero adjustment are presented. Some circuits with 
simultaneous constant-Q adjustment of both the poles and 
zeros are also presented along with a general biquadratic 
structure. These structures have immediate applications in 
voltage-controlled Butterworth, Chebyschev, and Elliptic 
designs. 

 
A simple second-order filter structure is shown in Fig. 7a 

[17], [19].  This structure is canonical in the sense that only 
four components are needed to obtain second-order transfer 
functions.  The output voltage, Vo, is given by the 
expression 
 

2m1m2m121
2

A2m1mB2m1C21
2

1o gggsCCCs
VggVgsCVCCs

V
++

++
=    (4) 

 
The transfer function for the specific excitations at VA, VB, 
and VC are listed in the Table. Note that for gm1 = gm2 = gm, 
the lowpass, bandpass, highpass, and notch versions of this 
circuit all behave as ωo adjustable circuits with fixed pole 
Q's. The pole Q's are determined by the capacitor ratio, 
which can be accurately maintained in monolithic designs. It 
is interesting to note that the zeros of the notch circuit also 
move in a constant-Q (i.e. along the jw axis) manner with 
the poles, as gm is adjusted. 

Occasionally, it is desirable to have circuits in which ωo 
and Q of the poles can be independently adjusted. Two 
circuits with these characteristics are shown in Fig. 7b [18], 
[19], [24] and Fig. 7c [18], [24]. The output voltages for 
these circuits are, respectively, 
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and 
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Fig. 6 Transfer characteristics for first-order structures of Fig. 5. (a) Circuit of Fig. 5a. (b) Circuit of Fig. 5b. (c) Circuit of Fig. 
5c. (d) Circuit of Fig. 5d. (e) Circuit of Fig. 5e. (f) Circuit of Fig. 5f. (g) Circuit of Fig. 5g. (h) Circuit of Fig. 5h. (i) Circuit of Fig. 
5i. 

 
Table    Transfer functions for biquadratic structure of Fig. 7a. 

 



 
Fig. 7  Second-order filter structures. 

The circuits of Figs. 7b and 7c can be also used to 
implement lowpass, bandpass, highpass, and notch transfer 
functions through the proper selection of the inputs as for 
the circuit of Fig. 7a. 

In the circuit of Fig. 7b, the expressions for ωo and 
Q of the poles of the circuit are given by 
 

                                  
21

2m1m
o CC

gg
=ω                               

(7)             
 
and 
 

                        
2m1

1m2

3m gC
gC

Rg
1Q =                      (8) 

 
The poles can be moved in a constant-Q manner if gm3 is 
fixed, and if gm1 = gm2 = gm  is adjusted; whereas movement 
in a constant ωo manner is attainable if gm3 is adjusted when 
gm1 and gm2 remain constant. The independent adjustment 
of ωo, and Q is apparent.  

For the circuit of Fig. 7c, the expressions for ωo and Q of 
the poles become 
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ωo can be adjusted linearly with gm1 = gm2 = gm and gm3 

constant. Such movement is often termed constant 
bandwidth movement.  If gm1, gm2, and gm3 are adjusted 
simultaneously, constant-Q pole movement is possible. 
Adjusting gm3 (for Q > 1/2) moves the poles along vertical 
lines parallel to the jw axis in the s-plane. 
 

The circuit of Fig. 7d has an output given by 
 

2m1m3m121
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The ωo and Q of the poles are, respectively, 
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Although the transfer function is similar to that above, 
note that since the coefficient of the s term in the numerator 
equals that in the denominator, adjustment of the bandpass 
version of this circuit with gm1 = gm2 = gm will result in a 
constant bandwidth, constant gain response. 

For monolithic structures, it may prove useful to replace 
the resistor in Fig. 7b with the OTA structure of Fig. 3a. 
Likewise, if the bandwidth adjustment with gm3 is not 
needed, it may be desirable to replace the third OTA shown 
in Fig. 7c with a fixed resistor in some applications. 

Phase equalizers are also possible with the structures 
shown in Fig. 7. For example, interchanging the “ + ” and “ 
- ” terminals of the first two OTAs in Fig. 7c, setting VA = 
VB = VC = Vi, and making gm1 = gm2 = gm3 = gm results in a 
second-order gm adjustable phase equalizer. 

 

Fig. 8  Elliptic Filter structure. 
 
 
The circuit of Fig. 8 has both poles and zeros that can be 

adjusted simultaneously in a constant-Q manner.  The 
circuit is similar to those shown in Fig. 7a with the 
exception that the capacitor C2 in the previous circuits has 
been split to allow for adjusting the pole-zero ratio. The 
transfer function of the circuit is given by 
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Fig. 9  General biquadratic structure. 

 
This circuit has applications in higher-order voltage-
controlled elliptic filters.  For higher-order structures 
obtained by cascading these second-order blocks, all gm's 
would be made equal and adjusted simultaneously. 
Buffering between stages using a standard unity gain buffer 
is required to prevent interstage loading.  Modifications of 
the other circuits in Fig. 7 to obtain ωo and Q adjustable 
features is also possible. Although the ratio of the zero 
location to pole location can be controlled with the C2/C3 
ratio in discrete designs, this may pose some problems in 
monolithic structures. One convenient way to control the 
pole-zero ratio is to insert the voltage-controlled amplifier 
of Fig. 2g between the points x and x' in Fig. 8 and use the 
transconductance gain of either of these additional OTAs as 
the control variable. 

The final second-order structure considered here is the 
general biquad of Fig. 9. The output for this circuit is given 
by 
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Fig. 10  Signal conditioner for OTAs. 

 
The potential for tuning the w. and Q for both the poles 
and zeros (when Vi = VA  = VB = VC) to any desired value 
should be apparent. Although somewhat component 
intense, it can be argued that if there is to be capability for 
completely arbitrary location of a pair of poles and a pair of 
zeros via adjustment of the transconductance gain of the 
OTA, then at least 4 degrees of freedom and, hence, 4 
OTAs are required. This circuit uses only one more than 
the minimum! The capability for various types of pole 
and/or zero movement through the simultaneous adjustment 
of two or more of the transconductance gains should also be 
apparent. Many other biquadratic structures, some of 
which offer more flexibility at the expense of additional 
complexity, also exist but are not discussed here. 

Emphasis in this section has been placed entirely upon 
second-order structures in which the desired filter 
characteristics depend directly upon the transconductance 
gain of the OTA. Very simple structures in which the filter 
characteristics are adjustable through the parameter gm 
resulted. As stated in the introduction, gm is readily 
controllable by a dc bias current over a wide range of values, 
thus making these circuits directly applicable to voltage-
controlled applications. Several of the more recent works on 
OTA applications [18]-[24] have followed this approach. 
Most of the earlier works [7]-[16] and the circuits 
presented in the manufacturer's application notes [3]-[5] 
concentrated upon topologies in which the filter 
characteristics are independent or only mildly dependent 
upon the transconductance gain.  Most of these structures 
are very complicated, very component-intense, and require 

tuning algorithms that are unwieldy.  Alternatives to these 
earlier designs using conventional operational amplifiers 
have proven to be much better. 
 
 
 

Practical Considerations 
 

Although all circuits presented up to this point in this 
paper are practical with ideal operational transconductance 
amplifiers, existing discrete OTAs are far from ideal. As 
mentioned in the introduction, the major limiting factor with 
commercially available OTAs is the limited differential 
input voltage swing.  Recent activity in the literature has 
concentrated upon designing OTAs with improved input 
characteristics [27]-[28]. Significant improvements in 
performance over what is currently available with discrete 
OTAs have been demonstrated. An alternative is to use 
voltage attenuators and buffers at the input of existing 
OTAS. This technique is often suggested in the 
manufacturer's application notes and is illustrated in Fig. 
10. This technique can be used to obtain reasonable signal 
swings with all circuits discussed up to this point. 
Although such circuits are useful, a rather high price is paid 
for this modification. First, the circuit requires many more 
components. Second, the finite bandwidth of the op amps 
will limit the frequency response of the OTA structures.  
Finally, the attenuation of the input signal to the OTA 
causes  

 

Fig. 11  Macromodel of bias current port on bipolar 
OTA. 

 
a serious loss in dynamic range.  From a topological point 
of view, some OTA based structures are inherently more 
susceptible to differential voltage limitations than others.  
This parallels the concern for op  amp  based  active  RC   
and    switched-capacitor  



 
Fig. 12  Schemes for obtaining voltage control with the OTA. 

 

 
Fig. 13  Schemes for simultaneous gm  adjustment. 

 
structures that the signal amplitudes at the output of 
internal op amps assume acceptable values.  These 
considerations become more serious for high Q and high 
dynamic range applications. 

A macro model of the bias current (IABC)  input port of a 
typical bipolar OTA is shown in Fig. 11. This actually 
forms part of an internal current mirror that is discussed 
later.  Several schemes for controlling the current (IABC) and, 

thus, the gm of the OTA by an external control voltage, Vc, 

are shown in Fig. 12. The  
 

 
Fig. 14  Single input-multiple output bias current 

generator for monolithic applications. 
 
 

Fig. 15  gm attenuator. 
 

first circuit is the simplest but is very sensitive to small 
changes of Vc as Vc  approaches .6v + V-. In the second 
circuit, the control voltage is referenced to zero but the 
small Vc is sensitive to mismatches between the B-E voltage 
of the transistor and the forward diode voltage drop. In the 
circuit of Fig. 12c, the control voltage is also referenced to 
ground and is not dependent upon the matching or 
cancellation of voltages across external forward biased pn 



junctions.  The zener diode is used to maintain the common 
mode voltage at a reasonable level.  The frequency response 
of the op amp is not of concern here since it is used only in 
the dc control path. It should be noted that the amplifier 
bias current is proportional to Vc for all schemes shown in 
Fig. 12. Since IABC can typically be adjusted over several 
decades, all schemes will be very sensitive to small changes 
in Vc toward the low current end of the IABC range.  
Logarithmic amplifiers are often used to control IABC with 
an external control voltage if the wide adjustment range of 
IABC is to be effectively utilized. 

Many of the filter circuits discussed in the previous 
sections of this paper require the simultaneous adjustment 
of matched gm's. Several schemes for achieving this are 
shown in Fig. 13.  In the first circuit, it is easy to adjust the 
gm's by trimming the resistors for a fixed gm. The circuit is 
quite sensitive to the slight differences in the voltage Vd of 
Fig. 11a for small values of IABC. The circuit of Fig. 13b 
again has Vc referenced to ground and is essentially 
independent of the matching of Vd for the individual OTAs. 
The scheme of Fig. 13c is useful if an external single 
package pnp current mirror with n outputs is available. A 
discrete component version of this mirror would not be 
practical. 

For integrated circuit applications, the amplifier bias 
currents of several OTAs are particularly easy to match and 
control. For monolithic applications, the simultaneous 
adjustment of the gain of a large number of OTAs with a 
single dc bias current can be easily attained by using a single 
input-multiple output current mirror such as is shown in 
Fig. 14. This structure actually replaces the bias current 
mirrors on each of the OTAS. The transconductance gains 
can be ratioed, if desired, by correspondingly ratioing the 
emitter areas (or width length ratio for MOS structures) in 
the outputs of the current mirror. 

With conventional operational amplifiers, the slew rate, 
input impedance, output impedance, and maximum output 
current are essentially fixed at the design stage. For OTAS, 
it is generally the case that these parameters are either 
proportional or inversely proportional to IABC.  Thus 
adjusting gm via IABC causes all of these parasitic parameters 
to change accordingly. Although the user should be 
cognizant of the changes in these parameters, the problems 
they present are manageable. The output capacitance of an 
OTA does cause concern at low output currents and high 
frequencies. 

Much as in the design of conventional op amp based 
circuits, the designer must allow for a dc bias current path 
for both input terminals of the OTA.  Although the 
amplifier of Fig. 15 serves as an effective gm attenuator, 
which will prove useful in some applications, the circuit is 
useless since the required input bias current will cause an 
accumulation of charge on the capacitors and eventual 
saturation of the OTA. The reader should be cautioned that 

more complicated circuits with the same problem are 
suggested in the literature [17]. 

Numerous nonlinear applications of OTA structures 
exist. Suffice it to say that since the amplifier bias current, 
IABC can be considered as a third signal input, simple 
multipliers, modulators, and a host of other nonlinear 
circuits are possible. The reader is referred to the 
application notes for a discussion of some of the nonlinear 
applications. Some of the structures that use only OTAs 
and capacitors show promise for monolithic applications in 
MOS or bipolar processes. The circuits should offer high-
frequency continuous-time capabilities. Either external 
voltage-control or an internal reference circuit to 
compensate for process and temperature variations will be 
necessary to make these circuits practical in demanding 
applications. 

Finally, it should be noted that some of the filter 
structures presented earlier in this paper have a non-infinite 
input impedance, and that the output impedance is 
generally quite high. Cascading of such structures will 
require interstage buffer amplifiers, which will tend to 
degrade the bandwidth of the overall filter structures. 
Output buffers are also generally required to drive external 
loads. 

 
Conclusions 

 
A group of voltage-controlled circuits using the OTA as 

the basic active element have been presented.  The 
characteristics of these circuits are adjusted with the 
externally accessible dc amplifier bias current. Most of 
these circuits utilize a very small number of components. 
Applications include amplifiers, controlled impedances, and 
filters. Higher-order continuous-time voltage-controlled 
filters such as the common Butterworth, Chebyschev, and 
Elliptic types can be obtained.  In addition to the voltage-
control characteristics, the OTA based circuits show 
promise for high-frequency applications where 
conventional op amp based circuits become bandwidth 
limited. 

The major factor limiting the performance of OTA based 
filters using commercially available OTAs is the severely 
limited differential input voltage capability inherent with 
conventional differential amplifier input stages. Recent 
research results suggested significant improvements in the 
input characteristics of OTAs can be attained [27]-[28]. 
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