Types of Integrated Filters

Integrated Filters
Digital Filters Analog Filters
(Binary valued) (Continuous or multivalued)
Analog Analog
Sampled-Data Continuous-Time
Filters Filters




Where to divide Analog and Digital?
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Analog-Digital Comparison

Low SNR: Analog / High SNR: Digital
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Analog-Digital Comparison

Low SNR: Analog / High SNR: Digital Practical Interpretation of Cost
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Circuit Issues for Filters

Programmability / Tunability: flexibility and complexity

Available for digital (clocks/ crystals) as well as
some analog (e.g. Floating-Gate) filters

High Signal-to-Noise Ratio (resolution):
Ratio of the largest signal and the smallest signal

Largest signal: Harmonic Distortion (continuous-time filters), Range limitations
Smallest Signal: Noise

Insensitivity to environmental fluctuations:
POW@I‘—Supplyi Power Supply Rejection Ratio (PSRR)

Temperature, etc N N
. problem for digital filters,

but can be the cause of several
problems to other analog circuits

Typically, sampling in amplitude / time results in,
» the more complexity is needed ( S/H blocks, anti-aliasing filters),
e more power / lower-frequency / area
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* Find the transfer function for a given filter
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Or an approximation,
into simple parts that can be implemented.

e Implement the transfer function in
a particular circuit technology



Design of Analog Filters

* Find the transfer function for a given filter

e “Partition” the transfer function,
Or an approximation,
into simple parts that can be implemented.

e Implement the transfer function in
a particular circuit technology

H(s) or H(z)
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Design of Analog Filters

As basic building blocks we have
* integrators, delay elements
* first-order (low-pass / bandpass)
e second order functions
(low-pass / bandpass / highpass)

The “circuit” design question is
how to make these functions
what inputs / outputs / internal variables
should be voltages / currents, etc.

H(s) or H(z)

l

H,(s) Hy(s) Hy(s)

l

V] —" —
GND Vout[n]




Design of Analog Filters

Design style
constrains
choice of

transfer function

H(s) or H(z)

l

H, (s) H,(s) H;(s)

l
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partition



Choosing H(s) or H(z) for a filter

IH(s)!

Passband

Ideal lowpass filter

® we can get other filters from lowpass

Gain in db = 20 log,,( amplitude )
= 10 log,,(signal power)

frequency



H(s) or H(z) for a lowpass filter
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H(s) or H(z) for a lowpass filter
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H(s) or H(z) for a Highpass filter

log IH(s)l Highpass
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H(s) or H(z) for a Highpass filter
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Four Canonical Cont-Time
Filters

Classic Analog Filters (IIR digital filters):

Butterworth: Maximally flat in passband...moderate rolloff
Chebyshev : Faster rolloff by allowing ripples in passband or stopband
Elliptic: Fastest rollff by appowing ripples in both passband and stopband

Bessel: Near linear phase, slow rolloff



Four Canonical Cont-Time
Filters

Classic Analog Filters (IIR digital filters):

Butterworth: Maximally flat in passband...moderate rolloff
Chebyshev : Faster rolloff by allowing ripples in passband or stopband
Elliptic: Fastest rollff by appowing ripples in both passband and stopband

Bessel: Near linear phase, slow rolloff

Other FIR (digital) filters....
Other filter design (H(s) or H(z)) techniques: Optimization approaches

Should we choose H(s) or H(z) for our representation?
Partially due to particular circuit tradeoffs

(tunability? tools? continuous tunability? Accuracy? power consumption?)



What happens if we just cascade first
order stages?

T(s) = (1 +jsT)N



What happens if we just cascade first
order stages?
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Butterworth Filter Design

Transfer Function: (low-pass) Definition of e:
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Butterworth Filter Design

Transfer Function: (low-pass) Definition of e:
1 1
T(s) = T, = _
1+ j(-1)N+1 g2 NgN pb J l+e (f,t=2m)
ITGo)l = 1 T,=1/V2 fore=1

V 1+ 2N

Need to solve to meet the specification of T at f : Filter Order (N)

To meet specifications, one chooses
2 2 2N ) = ’
TSb ( 1 tTe (be / fpb ) ) 1 the next largest integer

Pole locations: (e =1)

1/t, = (1/7)(sin( @k-D)w2N) ) +j cos( k-Hw2N) ) ), k=1...N
1
Q451 )(1+5T,) ... (1 +51y)

T(Gw) =



Filter gain

Butterworth Filter Design

Specs: € =1, fpb =le4,
be =1 .564, st = 16—2
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Chebyshev Filter Design

Transfer Function(low-pass) Definition of e:
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Chebyshev Filter Design

Transfer Function(low-pass) Definition of e:
IT(jo)l = I wr>1 T, = :
1 + €2cos’( N cos!( wt) ) P VvV 1 +¢2
= wt<l _
vV 1+ g2cosh2( N cosh”'( wt)) £be T=2n)

T,=1/V2 fore=1

Need to solve to meet the specification of T at f : Filter Order (N)
( 1+ g2cosh?( N cosh (fy, /f,)) ) Ty2=1

Pole locations:

1/t, = (1/7)(sin( @k-Dw2N) ) sinh( (1/N) sinh-i(1/ €) )
+ j cos( (2k-Da/(2N) ) cosh( (1/N) sinh-(1/ ) ) )

Where k goes from 1, 2, ....N



Filter gain
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Chebyshev Filter Design

Sub-Filter gain

Specs: € =1, fpb =le4,
f,=15e4, T, = le-2
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Transtformations between s and z

Simple Transformation

Z-l _ e-ST

T = sampling period



Transtformations between s and z

Simple Transformation

Z-l _ e-ST

T = sampling period

Bilinear transform

T 1+71 T 1+4+esT

SNLl'Z_l ~ 1 l_e_ST

1 1-(1-ST+05%sT)2-...)
T 1+1-sT+05%sT)%-...
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General Filter Topology
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General Filter Topology

N*N parameters

N poles, N zeros for N-th order filter

Problem 1s underspecified...therefore can optimize
for SNR, complexity, etc...



Partitioning H(s) for Circuit
Implementation

“Partition” the transfer function into simple parts

o Factorization into first order and second order terms
. Nearest neighbor feedback (~LC ladder filter network)
o Addition of factors
(maybe out of an approximation of an FIR filter)
o Additional feedback / feedforward terms

Similar for either H(s) or H(z)



Typical Filter Topologies

Cascade of First and Second-Order Sections
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Typical Filter Topologies

Cascade of First and Second-Order Sections
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Nearest Nei gthI' Feedback (Inspired by LC ladder network filters)
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Conclusions

Basic directions for integrated circuit filters

e Continuous or Discrete: Time and/or Amplitude
* High level specifications of filters

e Obtaining a filter function (H(s) or H(z))

* Implementing the filter function into basic blocks

(first and second-order filter sections, integrators, delays, etc.)



