
Types of D/A Converters 

DAC Type	

 Advantage	

 Disadvantage	



Current Scaling	

 Fast, insensitive to switch 
parasitics	



Large element spread, 
nonmonotonic	



Voltage Scaling	

 Monotonic, equal resistors	

 Large area, sensitive to parasitic 
capacitance	



Charge Scaling	

 Fast, good accuracy	

 Large element spread, 
nonmonotonic	





Current Scaling D/As 
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The output voltage can be expressed as 

     Vout = Rf(I1 + I2 + I3 + … + IN)	



where the currents I1, I2, I3, ... 	


       are binary weighted currents.	





D/As built from R-2R Ladders 
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The output voltage can be expressed as 

     Vout = Rf(I1 + I2 + I3 + … + IN)	



where the currents I1, I2, I3, ... 	


       are binary weighted currents.	



“The resistance seen to the 	


  right of any of the vertical 	


   2R resistors is 2R.”  
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Not monotonic  



Current Scaling D/As 
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The output voltage can be expressed as 

     Vout = Rf(I1 + I2 + I3 + … + IN)	



where the currents I1, I2, I3, ... 	


       are binary weighted currents.	



Fast (no moving nodes)	


    and not monotonic  
      (mismatch) 
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Voltage Scaling D/As 
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Figure 10.2-7 - (a.) Implementation of a 3-bit voltage scaling DAC.  (b.)  Input-output 
characteristics of Fig. 10.2-7(a.)
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•  Guaranteed monotonic, 	


•  Compatible with CMOS technology, 	


•  Large area if N is large, 	


•  Sensitive to parasitics, 	


•  Requires a buffer, 	


•  Large current can flow through the resistor string.  
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Alternate Approach 

Typical Approach 



Charge Based D/A Converters 
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No moving nodes 	


       -  insensitive to parasitics	


            (parasitic-insensitive switched capacitor circuitry)	


       -  fast	



Can not eliminate charge feedthrough	
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Based on capacitor matching (not monotonic) 
Charge feedthrough and parasitic issues 
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Improving D/A Performance 

•  Combination of similarly scaled subDACs	


	

Divider approach (scale the analog output of the subDACs)	


	

Subranging approach (scale the reference voltage of the subDACs)	



•  Combination of differently scaled subDACs	



Divide the total resolution N into k smaller sub-DACs.	



•  Smaller total area.	


•  More resolution (reduced largest to smallest component spread)	



So how do we do this? 
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Subranging Converters 
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Charge DAC 
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D/A Based on Two Charge Amps 
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•  MSB subDAC is not dependent upon the accuracy  
               of the scaling factor for the LSB subDAC.	


•  Insensitive to parasitics, fast	


•  Limited to op amp dynamics	





Combining Unique SubDACs 
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MSB: Charge Scaling 
      (high # of bits) 
LSB: Voltage Scaling 
      (monotonic) 

LSB: Charge Scaling 
    (high # of bits) 
MSB: Voltage Scaling 
    (monotonic) 



Summary of D/A Converters 
DAC  Figure Primary Advantage Primary Disadvantage 

Current-scaling, binary 
weighted resistors 

10.2-3 Fast, insensitive to parasitic capacitance Large element spread, nonmonotonic 

Current-scaling, R-2R 
ladder 

10.2-4 Small element spread, increased accuracy Nonmonotonic, limited to resistor accuracy 

Current-scaling, active 
devices 

10.2-5 Fast, insensitive to switch parasitics Large element spread, large area 

Voltage-scaling 10.2-7 Monotonic, equal resistors Large area, sensitive to  parasitic 
capacitance 

Charge-scaling, 
binary weighted capacitors 

10.2-10 Best accuracy Large area, sensitive to parasitic 
capacitance 

Binary weighted, charge 
amplifier 

10.2-12 Best accuracy, fast Large element spread, large area 

Current-scaling subDACs 
using current division 

10.3-3 Minimizes area, reduces element spread 
which enhances accuracy 

Sensitive to parasitic capacitance, divider 
must have ±0.5LSB accuracy 

Charge-scaling subDACs 
using charge division 

10.3-4 Minimizes area, reduces element spread 
which enhances accuracy 

Sensitive to parasitic capacitance, slower, 
divider must have ±0.5LSB accuracy 

Binary weighted charge 
amplifier subDACs 

10.3-6 Fast, minimizes area, reduces element 
spread which enhances accuracy 

Requires more op amps, divider must have 
±0.5LSB accuracy 

Voltage-scaling (MSBs), 
charge-scaling (LSBs) 

10.3-7 Monotonic in MSBs, minimum area, 
reduced element spread 

Must trim or calibrate resistors for absolute 
accuracy 

Charge-scaling (MSBs), 
voltage-scaling (LSBs) 

10.3-8 Monotonic in LSBs, minimum area, 
reduced element spread 

Must trim or calibrate resistors for absolute 
accuracy 

Serial, charge redistribution 10.4-1 Simple, minimum area Slow, requires complex external circuits 

Pipeline, algorithmic 10.4-3 Repeated blocks, output at each clock after 
N clocks  

Large area for large number of bits 

Serial, iterative algorithmic 10.4-4 Simple, one precise set of components Slow, requires additional logic circuitry 


