\qquad Grade $=$
/100

ECE 2040 Midterm Exam 3
Spring 2019

Each question is worth 3 points.
All of your answers need to be on this sheet.
Only the final answers, as indicated by the question, will be considered correct for each question.
You will only turn in this single sheet. You can take the rest of the exam with you. We will not keep the rest of the exam materials if you leave them.

Choose the best possible answer available in all cases.
\qquad
2. \qquad
3. \qquad 14. \qquad
15. \qquad
16. \qquad
6. \qquad 17. \qquad
7. \qquad 18. \qquad
19. \qquad
20. \qquad
10. \qquad 21. \qquad
11. \qquad 22. \qquad
31. \qquad
32. \qquad
23. \qquad
24. \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
33. \qquad

Which of the following circuits,

(a)

(d)

(b)

(e)
could produce the following transfer functions. Choose the best answers in all cases.
$\underset{\text { Question \#1: }}{ } H(s)=\frac{s \tau}{1+s \tau}$

Question \#2:

$$
H(s)=\frac{\tau s}{1+s \tau / Q+s^{2} \tau^{2}}
$$

Question \#3: $H(s)=\frac{\tau^{2} s^{2}}{1+s \tau / Q+s^{2} \tau^{2}}$
Question \#4: $H(s)=\frac{1}{1+s \tau / Q+s^{2} \tau^{2}}$
Question \#5: $H(s)=\frac{1}{1+s \tau}$

$$
H(s)=\frac{1}{1+s \tau}
$$

Using the circuits above, identify the type of filtering function each produces. Choose the best answer in all cases.
Question \#6: Second-Order High-Pass Filter
Question \#7: First-Order Low-Pass Filter
Question \#8: Bandpass Filter (Second-Order Filter)
Question \#9: Second-Order Low-Pass Filter
Question \#10: First-Order High-Pass Filter

Which of the following circuits,

(a)

(d)

(b)

(e)
could produce the following frequency magnitude responses. Choose the best answers in all cases.

Question \#11:

Question \#14:

Question \#12:

Question \#13:

Question \#15:

Which of the following circuits,

(a)

(d)

(b)

(e)
could produce the following frequency phase responses. Choose the best answers in all cases.

Question \#16:

Question \#19:

Question \#17:

Question \#18:

Question \#20:

Which of the following circuits,

(a)

(b)

(c)

(d)

(e)
could produce the following frequency magnitude responses. Choose the best answers in all cases.

Question \#21:

Question \#22:

Question \#23:

Question \#25:

Questions 26-33 relate to the circuit below $(\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mathrm{nF})$.

26. What is the relationship for an input signal at $\mathrm{V}_{\text {out }}$ to V_{1} ?
a. $\mathrm{V}_{1}-\mathrm{V}_{\text {out }}$
b. $V_{1}=-\mathrm{s}(1 \mu \mathrm{~s}) \mathrm{V}_{\text {out }}$
c. $\mathrm{V}_{1}=-\mathrm{V}_{\text {out }}(\mathrm{s}(1 \mu \mathrm{~s})$
d. $\mathrm{V}_{1}=-\mathrm{V}_{\text {out }} /(1+\mathrm{s}(1 \mu \mathrm{~s}))^{2}$
e. $\mathrm{V}_{1}=-\mathrm{V}_{\text {out }} /(1+\mathrm{s}(1 \mu \mathrm{~s})$
30. What are the roots of this transfer function:
a. One real root
b. Two different complex roots
c. Two identical real roots
d. Two different real roots
e. Two different imaginary roots
27. What is operation for an input signal at $\mathrm{V}_{\text {out }}$ to V_{1} ?
a. Gain
b. Attenuation
c. Integration
d. Low-Pass Filtering
e. Differentiation
29. What is the magnitude gain of this circuit at 160 kHz ?
a. 4
b. 2
c. 1
d. 0.5
e. 0.25
28. What is the input impedance of the circuit right of the $\mathrm{V}_{\text {out }}$ point?
a. Resistor: $1 \mathrm{k} \Omega$
b. Resistor: $2 \mathrm{k} \Omega$
c. Series Resistor ($1 \mathrm{k} \Omega$) and Capacitor (1 nF)
d. Capacitor (1 nF)
e. Inductor (1 mH)
31. What is the magnitude of the output impedance $\left(\mathrm{V}_{\text {out }}\right)$ of this circuit at 160 kHz ?
a. $1 / 4 \mathrm{k} \Omega$
b. $1 / 2 \mathrm{k} \Omega$
c. $1 \mathrm{k} \Omega$
d. $2 \mathrm{k} \Omega$
e. $4 \mathrm{k} \Omega$

32: The filter function of this circuit is:
a. First-Order High-Pass Filter
b. Bandpass Filter (Second-Order Filter)
c. Second-Order High-Pass Filter
d. First-Order Low-Pass Filter
e. Second-Order Low-Pass Filter
33. The transfer function of this circuit from $V_{\text {in }}$ to $V_{\text {out }}$ (within a gain factor) is best described by
${ }_{\text {a. }} H(s)=\frac{s \tau}{1+s \tau}$
b. $H(s)=\frac{\tau s}{1+s \tau / Q+s^{2} \tau^{2}}$
c. $H(s)=\frac{\tau^{2} s^{2}}{1+s \tau / Q+s^{2} \tau^{2}}$
d. $H(s)=\frac{1}{1+s \tau / Q+s^{2} \tau^{2}}$
$H(s)=\frac{1}{1+s \tau}$

Grade $=$
$/ 100$

ECE 2040 Midterm Exam 3
Spring 2019

Each question is worth 3 points.
All of your answers need to be on this sheet.
Only the final answers, as indicated by the question, will be considered correct for each question.
You will only turn in this single sheet. You can take the rest of the exam with you. We will not keep the rest of the exam materials if you leave them.

Choose the best possible answer available in all cases.

1. \qquad
2. \qquad 23. \qquad
3. \qquad
4. \qquad 24. \qquad
5.
6. \qquad 25. \qquad
7. \qquad 15. \qquad 26. \qquad
8. \qquad
9. \qquad 27. \qquad
10. \qquad
11. \qquad 28. \qquad Inductor; Gyrator Circuit
12. \underline{D}

Gain $=|\mathrm{j} \mathrm{Q}|=1 / 2$
8. \qquad 19. \qquad 30. \qquad
9. \qquad 20. \qquad 31. \qquad
(Two R in parallel, L and C cancel at resonance)
R into Op-Amp is to GND so in parallel with the other R.
10. \qquad
21. \qquad
32. \qquad
11. \qquad 22. \qquad 33. \qquad

