First-Order Dynamical Circuits

Typically an $\mathrm{R}+\mathrm{C}$ or L
Need to find equivalent $\mathrm{R}, \mathrm{C}, \mathrm{L}$
First order \rightarrow one state variable
\rightarrow storage (e.g. Q) point.
$\underline{R+C}$ Prototype (lowpass)

$$
\underline{\mathrm{R}+\mathrm{L} \text { Prototype (lowpass) }}
$$

$$
\begin{gathered}
V_{\text {in }}=V_{R}+V_{\text {out }} \\
\frac{V_{R}}{R}=C \frac{d V_{\text {out }}}{d t} \\
\tau=R C \rightarrow V_{1}=\tau \frac{d V_{\text {out }}}{d t}
\end{gathered}
$$

$$
\tau \frac{d V_{o u t}}{d t}+V_{o u t}=V_{i n}
$$

$1^{\text {st }}$-Order High-Pass Circuits

Typically an $\mathrm{R}+\mathrm{C}$ or L
Need to find equivalent R, C, L
First order \rightarrow one state variable
\rightarrow storage (e.g. Q) point.
$\underline{\mathrm{R}+\mathrm{C} \text { Prototype (lowpass) }}$

$$
\begin{gathered}
V_{\text {in }}=V_{C}+V_{\text {out }} \\
\frac{V_{\text {out }}}{R}=C \frac{d\left(V_{\text {in }}-V_{\text {out }}\right)}{d t}
\end{gathered}
$$

$\underline{R+L}$ Prototype (lowpass)

$$
\begin{gathered}
I=\frac{V_{\text {in }}-V_{\text {out }}}{R} \\
V_{\text {out }}=L \frac{d I}{d t}=\frac{L}{R} \frac{d\left(V_{\text {in }}-V_{\text {out }}\right)}{d t}
\end{gathered}
$$

$$
\begin{aligned}
\tau=R C \rightarrow V_{\text {out }}=\tau & \frac{d\left(V_{\text {in }}-V_{\text {out }}\right)}{d t} \\
& \tau \frac{d V_{\text {out }}}{d t}+V_{\text {out }}=\tau \frac{d V_{\text {in }}}{d t}
\end{aligned}
$$

$$
\tau=\frac{L}{R}
$$

Op-Amp Basics

$$
\mathrm{V}_{\text {out }}=\mathrm{A}_{\mathrm{v}}\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)
$$

Typical A_{v} :
$300-1000000 \rightarrow$ infinite

Inputs equal $\left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)$, and no connection between them ????

Core Op-Amp Circuits

Voltage follower

Non-Inverting Amplifier

$$
\frac{V_{\text {out }}-V_{\text {in }}}{R_{2}}=\frac{V_{\text {in }}}{R_{1}}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{2}}{R_{1}}
$$

Inverting Amplifier Configuration

$$
\begin{aligned}
& \frac{V_{\text {in }}}{R_{1}}=\frac{-V_{\text {out }}}{R_{2}} \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}
\end{aligned}
$$

Instrumentation Amplifier

Difference Configuration

$V_{2}(t)=0 V, V_{\text {out }}=-\frac{R_{2}}{R_{1}} V_{1}(t)$
$V_{1}(t)=0 V, V_{\text {out }}=$
$\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{2}(t)=\frac{R_{2}}{R_{1}} V_{2}(t)$
$V_{\text {out }}=\frac{R_{2}}{R_{1}}\left(V_{2}(t)-V_{1}(t)\right)$

Symmetric Circuit Difference Configuration

$$
\begin{aligned}
& \quad\left(\mathrm{R}_{3}=\mathrm{R}_{3} / 2+\mathrm{R}_{3} / 2\right) \\
& \text { Symmetry Point }=0 \mathrm{~V}
\end{aligned} \quad V_{\text {out }}=\frac{R_{2}}{R_{1}}\left(V_{b}(t)-V_{a}(t)\right)
$$

(diff circuit)
$V_{b}-V_{a}=\left(1+\frac{2 R_{2}}{R_{3}}\right)\left(V_{2}-V_{1}\right) \quad \frac{R_{2}}{R_{1}}\left(1+\frac{2 R_{2}}{R_{3}}\right)$

$$
\begin{array}{cc}
\frac{V_{1}-V_{x}}{R_{1}}=\frac{V_{x}-V_{\text {out }}}{R_{2}} \longrightarrow & \frac{V_{1}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}}=\frac{V_{x}}{R_{1} / / R_{2}} \\
V_{y}=\frac{R_{2}}{\left(R_{1}+R_{2}\right)} V_{2} & V_{x}=\left(R_{1} / / R_{2}\right)\left(\frac{V_{1}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}}\right) \\
V_{\text {out }}=-A_{v} V_{a}=A_{v}\left(V_{y}-V_{x}\right) \\
\frac{V_{\text {out }}}{A_{v}}=V_{y}-V_{x}=\frac{R_{2}}{R_{1}+R_{2}} V_{2}-\frac{R_{2}}{R_{1}+R_{2}} V_{1}-\frac{R_{1}}{R_{1}+R_{2}} V_{\text {out }} \\
V_{\text {out }}\left(1+\frac{R_{1}+R_{2}}{A_{v} R_{1}}\right)=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right) & R_{1}=10 k \Omega \\
V_{\text {out }} \approx-\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right) & \xrightarrow[2]{ } \quad V_{\text {out }} \approx-10\left(V_{2}-V_{1}\right)
\end{array}
$$

How to handle general linear differential equations with arbitrary inputs (e.g. signals)?

$$
\begin{gathered}
\frac{d^{4} y}{d t^{4}}+3 \frac{d^{3} y}{d t^{3}}+7 \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+25 y=x_{i n}(t) \\
\quad \text { Change } \mathrm{d} / \mathrm{dt} \rightarrow \mathrm{~s} \text { (Heavyside) } \\
s^{4} y+3 s^{3} y+7 s^{2} y+4 s y+25 y=x_{i n}(t)
\end{gathered}
$$

and solve in some different ways
Laplace Transform (should be Heavyside Transform)

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

$$
s=\sigma+j \omega \quad \begin{aligned}
& \text { Complex exponential } \\
& \text { Basis functions }
\end{aligned}
$$

$$
f(t) \rightarrow F(s) \quad F(s) \rightarrow f(t)
$$

Laplace Transform Table

$$
\begin{aligned}
& \text { Time Domain (} \mathrm{t} \text {) Laplace Domain (} \mathrm{s} \text {) } \\
& \frac{d f(t)}{d t} \\
& \int f(t) d t \\
& u(t) \\
& e^{-a t} u(t) \\
& \sin \left(\omega_{1} t\right) u(t) \\
& \cos \left(\omega_{1} t\right) u(t) \\
& \begin{array}{l:l}
f(t \rightarrow \infty) & \lim _{t \rightarrow 0} s F(s) \\
f(t \rightarrow 0) & \lim _{t \rightarrow \infty} s F(s)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\tau \frac{d V}{d t}+V(t)=V_{i n}(t) \\
s \tau V(s)+V(s)=V_{i n}(s) \\
V(s)=\frac{1}{s \tau+1} V_{i n}(s) \\
V_{i n}(t)=u(t) \rightarrow V_{i n}(s)=\frac{1}{s} \\
V(s)=\frac{1}{s \tau+1} \frac{1}{s}=\frac{1}{s}-\frac{\tau}{s \tau+1} \\
V(s)=\frac{1}{s}-\frac{1}{s+1 / \tau} \\
V(t)=u(t)-e^{-t / \tau} u(t)=\left(1-e^{-t / \tau}\right) \\
V\left(t \rightarrow 0^{+}\right)=\lim _{s \rightarrow \infty} s\left(\frac{1}{s \tau+1} \frac{1}{s}\right) \\
=\lim _{s \rightarrow \infty} \frac{1}{s \tau+1}=0
\end{gathered} \begin{array}{r}
V_{i n}(t)=\sin (\omega t) \quad s=\sigma+j \omega \rightarrow j \omega \\
V(s)=\frac{1}{s \tau+1} \quad \frac{V(j \omega)}{V_{i n}(j)}=\frac{1}{j \omega \tau+1} \\
V(t \rightarrow \infty)=\lim _{s \rightarrow 0} s\left(\frac{1}{s \tau+1} \frac{1}{s}\right) \\
=\lim _{s \rightarrow 0} \frac{1}{s \tau+1}=1
\end{array}
$$

$$
\begin{array}{cc}
V_{\text {in }}(t) & =u(t) \rightarrow V_{i n}(s)=\frac{1}{s} \\
V(s) & =\frac{1}{s \tau+2} \frac{1}{s \tau+1} \frac{1}{s} \\
V(s)=A \frac{\tau}{s \tau+2}+B \frac{\tau}{s \tau+1}+C \frac{1}{s} \\
\tau^{2} \frac{d^{2} V}{d t^{2}}+3 \tau \frac{d V}{d t}+2 V(t)=V_{\text {in }}(t) & V(s)=\frac{1}{2} \frac{1}{s+2 / \tau}-\frac{1}{s+1 / \tau}+\frac{1}{2} \frac{1}{s} \\
s^{2} \tau^{2} V(s)+3 s \tau V(s)+2 V(s)=V_{\text {in }}(s) & V_{\text {out }}(t)=\left(\frac{1}{2}\left(1+e^{-2 t / \tau}\right)-e^{-t / \tau}\right) u(t) \\
V(s)=\frac{1}{s^{2} \tau^{2}+3 s \tau+2} V_{i n}(s) & \frac{V(s)}{V_{i n}(s)}=\frac{1}{s^{2} \tau^{2}+3 s \tau+2} \\
V(s)=\frac{V_{i n}(t)=\sin (\omega t)}{(s \tau+2)(s \tau+1)} V_{\text {in }}(s) & s=\sigma+j \omega \rightarrow j \omega \\
V_{\text {in }}(t)=\frac{V(j \omega)}{\left(\left(2-\omega^{2} \tau^{2}\right)^{2}+9 \omega^{2} \tau^{2}\right)^{1 / 2}}=\frac{\sin ^{1 / 2}\left(\omega t-\tan ^{-1}\left(\frac{3 \omega \tau}{2-\omega^{2} \tau^{2}}\right)\right)}{(j \omega)^{2} \tau^{2}+3(j \omega) \tau+2} \\
V_{\text {in }}(j \omega) & 1
\end{array}
$$

Laplace form of Circuit elements
$\xrightarrow[+V_{V}]{\mathrm{I}} \overbrace{V}^{\mathrm{R}} \underset{V=R I}{\text { Resistor }} \longrightarrow \mathrm{V}(\mathrm{s})=\mathrm{RI}(\mathrm{s})$
$\xrightarrow[+]{\mathrm{I}} \overbrace{\mathrm{V}}^{\mathrm{C}}-I=C \frac{d V}{d t} \longrightarrow \mathrm{I}(\mathrm{s})=\mathrm{s} \mathrm{C} \mathrm{V}(\mathrm{s})$

Voltage Divider:

$$
\begin{aligned}
V_{\text {out }}(s) & =V_{\text {in }}(s) \frac{1 / s C}{R+1 / s C} \\
& =V_{\text {in }}(s) \frac{1}{1+s R C} \\
& =V_{\text {in }}(s) \frac{1}{1+s \tau}
\end{aligned}
$$

$$
H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{1}{1+s \tau}
$$

Heavyside Step Function

$V_{\text {out }}(t)=\left(1-e^{-t / \tau}\right) u(t)$

Laplace Transform \rightarrow Fourier Transform

$$
\begin{array}{cl}
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t & F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
s=\sigma+j \omega & \sigma=0, s \rightarrow j \omega \quad j=\sqrt{-1}
\end{array}
$$

$$
f(t) \rightarrow F(s) \quad F(s) \rightarrow f(t)
$$

Transform: reversible
$1^{\text {st }}$ order example

$$
s \rightarrow j \omega \quad \omega=2 \pi f
$$

$$
H(j \omega)=\frac{V_{\text {out }}(j \omega)}{V_{\text {in }}(j \omega)}=\frac{1}{1+j \omega \tau}|a+j b|=\sqrt{a^{2}+b^{2}}
$$

$$
H(s)=\frac{V_{o u t}(s)}{V_{i n}(s)}=\frac{1}{1+s \tau}
$$

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} \tau^{2}}}
$$

Quantum Physics: Momentum relates to Fourier Transform of position

$$
\text { Phase }=\tan ^{-1}(\omega \tau)
$$

First-Order Low-Pass Filter
$H(s)=\frac{1}{1+s \tau}$

First-Order High-Pass Filter
$H(s)=\frac{s \tau}{1+s \tau}$

First-Order ODE: Frequency Response $\sigma=0, s \rightarrow j \omega$

$$
V_{\text {out }}(s)=\frac{\tau}{1+s \tau}=\frac{1}{\frac{1}{\tau}+s}
$$

$$
V_{\text {out }}(t)=e^{-t / \tau} u(t)
$$

$V_{\text {in }}(t)$

$$
\begin{array}{c|c}
\mathrm{V}_{1}: \frac{V_{\text {in }}-V_{1}}{R_{1}}+\frac{V_{\text {out }}-V_{1}}{R_{2}}=s C_{1} V_{1} & \rightarrow \\
s C_{1} V_{1}+\frac{V_{1}}{R_{1} / / R_{2}}=\frac{V_{\text {in }}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}} & \left.s R_{2} C_{2} V_{\text {out }}+V_{\text {out }}\right)+\frac{s R_{2} C_{2} V_{\text {out }}+V_{\text {out }}}{R_{1} / / R_{2}}=\frac{V_{\text {in }}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}} \\
\mathrm{~V}_{\text {out }}: \frac{V_{\text {out }}-V_{2}}{R_{2}}+s C_{2} V_{\text {out }}=0 & \frac{V_{\text {out }}}{V_{\text {oun }}}=\frac{\left.V_{\text {out }}\right)+s\left(R_{1}+R_{2}\right) C_{2} V_{\text {out }}+V_{\text {out }}=V_{\text {in }}}{s^{2} R_{1} C_{1} R_{2} C_{2}+s\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)+1} \\
s R_{2} C_{2} V_{\text {out }}+V_{\text {out }}=V_{1} & \tau=\sqrt{R_{1} C_{1} R_{2} C_{2}} \quad \mathrm{Q}<=1 / 2
\end{array}
$$

Specific case: $R=R_{1}=R_{2}, C=C_{1}=C_{2} \quad(Q=1 / 3)$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{s^{2} \tau^{2}+3 s \tau+1}=\frac{1}{(s \tau+0.382)(s \tau+2.618)} \quad \tau=R C
$$

1 V step input $(0 \rightarrow 1 \mathrm{~V})$

$$
V_{\text {out }}=\frac{1}{s(s \tau+0.382)(s \tau+2.618)}=\frac{1 V}{s}+\frac{B}{s \tau+0.382}+\frac{C}{s \tau+2.618}
$$

$$
\begin{array}{r}
u(t) \longrightarrow \frac{1}{s} V_{\text {in }}(s)=\frac{1 V}{s} \quad B=\frac{1}{s(s \tau+2.618)} \text { for } s \tau=-0.382 \quad C=\frac{1}{s(s \tau+0.382)} \text { for } s \tau=-2.618 \\
V_{\text {out }}(s)=\frac{1 V}{s}-\frac{1.171 \tau}{s \tau+0.382}+\frac{0.171 \tau}{s \tau+2.618} \\
V_{\text {out }}(t)=\left(1-1.171 e^{-0.382 t / \tau}+0.171 e^{-2.618 t / \tau}\right) u(t)
\end{array}
$$

$s C_{1}\left(V_{\text {in }}-V_{1}\right)=s C_{2}\left(V_{1}-V_{\text {out }}\right)$

$$
V_{\text {out }}=-A_{v} V_{1}
$$

$$
s C_{1} V_{\text {in }}=-\left(s C_{2}+s \frac{C_{1}+C_{2}}{A_{v}}\right) V_{\text {out }}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{s C_{2}+s \frac{C_{1}+C_{2}}{A_{v}}}{s C_{1}}
$$

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{C_{2}+\frac{C_{1}+C_{2}}{A v}}{C_{1}} \text { unless } s=0 .
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}(\mathrm{t})-\mathrm{Cl}_{\frac{C_{1}}{C_{2}}<10,000}^{+} \\
& s C_{1}\left(V_{\text {in }}-V_{1}\right)=\frac{V_{1}-V_{\text {out }}}{R}+s C_{2}\left(V_{1}-V_{\text {out }}\right) \\
& s C_{1} V_{\text {in }}=-V_{\text {out }}\left(s C_{2}+\frac{1}{R}+\frac{s\left(C_{1}+C_{2}\right)+\frac{1}{R}}{A_{v}}\right) \\
& s C_{1} V_{\text {in }}=-V_{\text {out }}\left(s\left(C_{2}+\frac{\left.C_{1}+C_{2}\right)}{A_{v}}\right)+\frac{1}{R}\left(1+\frac{1}{A_{v}}\right)\right) \\
& \frac{C_{1}}{C_{2}}<100 \quad \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{s C_{1} R}{s C_{2} R+1} \quad \begin{array}{c}
1^{\text {st }} \text {-order } \\
\text { HPF }
\end{array} \\
& \mathrm{V}_{\mathrm{in}}(\mathrm{t})
\end{aligned}
$$

Op-Amp with Capacitive Feedback

$$
\begin{gathered}
C_{1} \frac{d V_{\text {in }}}{d t}=-C_{2} \frac{d V_{o u t}}{d t} \\
V_{o u t}(t)=-\frac{C_{1}}{C_{2}} V_{\text {in }}(t)+V_{o f f s e t}
\end{gathered}
$$

Heavyside Step Function

$$
\stackrel{1}{\stackrel{\sim}{*}} \stackrel{ }{ } u(t)
$$

$$
\frac{V_{o u t}}{V_{i n}}=-\frac{s}{s} A_{v} \frac{1-s \frac{\tau}{A_{v}}}{1+s \tau}
$$

$1{ }^{\text {st }}$ Order Transfer Function

Differential inverting capacitor-based amplifier
(R. Harrison: Front-End Neural Amplifier)

$$
\begin{gathered}
\mathrm{Z}_{1}=1 / \mathrm{sC}_{1} \quad \begin{array}{c}
\mathrm{Z}_{2}=\mathrm{R}_{\text {large }} / /\left(1 / \mathrm{sC}_{1}\right) \\
\text { (fnput) }
\end{array} \\
V_{\text {out }}=-\frac{C_{1}}{C_{2}} \frac{s \tau}{1+s \tau}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right) \\
\tau=R_{\text {large }} C_{2} \quad(<1 \mathrm{~Hz}) \\
\mathrm{R}_{\text {large }} \text { sets biasing (no } \mathrm{Q} \text { issues) }
\end{gathered}
$$

For higher frequencies: $\quad V_{o u t}=-\frac{C_{1}}{C_{2}}\left(V_{i n}^{+}-V_{i n}^{-}\right)$

