General Instructions instructions:

- Exam is closed book / closed notes other than the one-page of handwritten notes.
- Questions are worth 4 points unless otherwise stated.
- Only the final answers, as indicated by the question, will be considered correct for each question.
- Choose the best possible answer available in all cases.

Honorlock instructions:

- The only notes allowed is a one-page of handwritten notes plus the one page of notes from Exam 1. Front and back of the sheet are allowed. Sheet should be shown to the camera.
- Restroom breaks are not encouraged, although if necessary, it is allowed when asking the proctoring system. Timing will be recorded.
- Blank scratch paper is allowed, and needs to be shown to the proctor.
- Music is allowed assuming it is at a low volume and not conveying any exam answers.
- Individuals should be allowed to work using their scratch piece of paper (should not be a violation). The initial scan should include the space around the desk where the individual will be writing so there are no issues when writing on their scratch piece of paper.

Question 1: (True/False) The circuit has the resulting H(s) transfer function.

Question 2: (True/False) The circuit has the resulting $\mathrm{H}(\mathrm{s})$ transfer function.

Question 3: (True/False) The circuit has the resulting $\mathrm{H}(\mathrm{s})$ transfer function for $\mathrm{R}_{1}=\mathrm{R}_{2}$.

Question 4: (True/False) The circuit has the resulting phase response as shown.

Question 5: (True/False) The circuit has the resulting phase response as shown.

Question 6: (True/False) The circuit has the resulting frequency response shown for $\mathrm{C}_{1}=\mathrm{C}_{2}$.

Question 7: (True/False) The circuit has the resulting frequency response shown for $\mathrm{R}_{1}=\mathrm{R}_{2}$.

Question 8: (True/False) The circuit has the resulting frequency response shown for $\mathrm{R}_{1}=\mathrm{R}_{2}$.

Question 9: (True/False) The circuit is a first-order low-pass filter.

Question 10: (True/False) The circuit is a first-order high-pass filter.

The following four questions refer to this circuit figure.

Question 11: Assume the Op-amp is ideal with infinite gain. $\mathrm{R}_{1}=300 \mathrm{k} \Omega, \mathrm{R}_{2}=300 \mathrm{k} \Omega, \mathrm{R}_{3}=150 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=3 \mathrm{M} \Omega$. L $=6 \mathrm{mH}$. The value of the largest (or only) timeconstant:
a. 2 ns
b. 20 ns
c. 200 ns
d. $2 \mu \mathrm{~s}$
e. $20 \mu \mathrm{~s}$

Question 12: Assume the Op-amp is ideal with infinite gain. $\mathrm{R}_{1}=300 \mathrm{k} \Omega, \mathrm{R}_{2}=300 \mathrm{k} \Omega, \mathrm{R}_{3}=150 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=3 \mathrm{M} \Omega$. L $=6 \mathrm{mH}$. What is the magnitude of the constant gain region for this circuit?
a. 1
b. 2
c. 5
d. 10
e. 20

Question 13: (True/False) Assume the Op-amp is ideal with infinite gain. This circuit is a first-order low-pass filter.

Question 14: Assume the Op-amp is ideal with infinite gain. $\mathrm{R}_{1}=300 \mathrm{k} \Omega, \mathrm{R}_{2}=300 \mathrm{k} \Omega, \mathrm{R}_{3}=150 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=3 \mathrm{M} \Omega$. L $=6 \mathrm{mH}$. A 2 V input step after starting 0 V at $\mathrm{t}=0$ would result in the output response:
a. $V_{\text {out }}(t)=10 e^{-t /(20 n s)} u(t)$
b. $V_{o u t}(t)=-10 e^{-t /(2 n s)} u(t)$
c. $V_{\text {out }}(t)=10\left(1-e^{-t /(2 n s)}\right) u(t)$
d.

$$
V_{o u t}(t)=-10\left(1-e^{-t /(20 n s)}\right) u(t)
$$

e.

$$
V_{\text {out }}(t)=10\left(1-e^{-t /(200 n s)}\right) u(t)
$$

The following six questions refer to this circuit figure.
Question 15: (True/False) Assuming R is infinite, the circuit could be minimally reduced for arbitrary inputs to a first-order differential equation.

Question 16: Assuming R is infinite with $C_{1}=2 p F, C_{2}=1 \mathrm{pF}$, and $\mathrm{A}_{\mathrm{v}}=10,000$, in the region for nearly constant gain for this circuit for a change in $V_{i n}$, resulting in a change in $V_{\text {out, }}$, that gain would be
a. -2
b. -1
c. -0.5
d. 0.5
e. 2

Question 17: (True/False): $\mathrm{V}_{\text {out }}$ could be 2 V for a constant $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$.
Question 18: Assuming $\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{C}_{1}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{A}_{\mathrm{v}}=10,000$, what is the largest timeconstant or single timeconstant (if only one) for this circuit?
a. $1 \mu \mathrm{~s}$
b. $10 \mu \mathrm{~s}$
c. $100 \mu \mathrm{~s}$
d. 1 ms
e. 10 ms

Question 19: (True/False) Assuming $R=1 \mathrm{M} \Omega$, the circuit could be minimally reduced for arbitrary inputs to a firstorder differential equation.

Question 20: (True/False): Assuming $R=1 \mathrm{M} \Omega, \mathrm{V}_{\text {out }}$ could be 2 V for a constant $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$.

The following five questions refer to this circuit figure.
Question 21: (True/False) The circuit could be minimally reduced for arbitrary inputs to a second-order differential equation.

Question 22: For an input, $\mathrm{V}_{\text {in }}(\mathrm{t})=4 \mathrm{Vu}(\mathrm{t})$, where $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$, what is the output voltage, $\mathrm{V}_{\text {out }}$, for $\mathrm{t}=-1 \mathrm{~ms}$?
a. 0 V
b. 1 V
c. 2 V
d. 3 V
e. 4 V

Question 23: For an input, $\mathrm{V}_{\mathrm{in}}(\mathrm{t})=4 \mathrm{~V} u(\mathrm{t})$, where $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$, what is the output voltage, $\mathrm{V}_{\text {out }}$, at steady state?
a. 0 V
b. 1 V
c. 2 V
d. 3 V
e. 4 V

Question 24: For an input, $\mathrm{V}_{\mathrm{in}}(\mathrm{t})=4 \mathrm{~V} u(\mathrm{t})$, where $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$, what is the output voltage, $\mathrm{V}_{\text {out }}$, just after $\mathrm{t}=0$?
a. 0 V
b. 1 V
c. 2 V
d. 3 V
e. 4 V

Question 25: For an input, $\mathrm{V}_{\mathrm{in}}(\mathrm{t})=4 \mathrm{~V} u(\mathrm{t})$, where $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$, what is the largest timeconstant to converge to steady state?
a. 1 ms
b. 2 ms
c. 3 ms
d. 4 ms
e. 6 ms

