## Course on Linear Circuits

## Jennifer Hasler

## Course Website:

- http://hasler.ece.gatech.edu/Courses/ECE2040/index.html
- Priority for open materials
- Short Lecture (YouTube) Nuggets

Mixture of objective \& subjective

- Objective $\rightarrow$ Exams
- Subjective $\rightarrow$ Labs (often groups of 2)

Other rules

- No recording / pictures allowed in class
- Groups start in a self-organized manner
- Read the Syllabus


## My Research Interests:

- Floating-Gate Devices \& Circuits, Nonvolatile
- Wearable computing, always-on computing, etc.
- Circuits for Machine Learning, AI, Neuroscience
- Configurable, CAD tools
- Sensory interfaces


A few points of my history:

- Began as faculty at GT in 1997
- Ph.D. in Computation and Neural Systems (Caltech, 1997)
- Grew up in FL and AZ, B.S.E. \& M.S. ASU (1991)
- First startup, GTronix (2002-2010), acquired by TI
- MDiv, Emory University 2020


## Circuit Measurement Anywhere



## Laboratory measurements anywhere:

- Laboratory experiments can be done anywhere
- Electronics everywhere, so relatively inexpensive labs
- Utilize an acquisition system (e.g. scope/function generator)

Class laboratory concepts:

- Need a data acquisition system
- Work on experiments before a class session
- Focus on understanding material deeply


## Circuit Graph Concepts

$$
\frac{\text { Wire }}{\substack{\text { (only connection, } \\ \text { no } \mathrm{R}, \mathrm{~L}, \mathrm{C} \text { ) }}}
$$

Flattened 2-Dim graph
Often: DC path to GND
( $\rightarrow$ no charge storage)
Kirchoff's Current Law (KCL)


Kirchoff's Voltage Law (KVL)


Dependent Sources

## Circuit Graph Concepts



$$
\xrightarrow[+]{\mathrm{I}} \underset{\mathrm{~V}^{\mathrm{R}}}{\mathrm{R}} \underbrace{\text { Resistor }}_{-} V=R I
$$

$$
\xrightarrow[+]{\mathrm{I}_{\mathrm{V}}} \quad \stackrel{-}{\mathrm{C}} \begin{array}{r}
\text { Capacitor } \\
I=C \frac{d V}{d t} \\
Q=C V
\end{array}
$$



## Example: Resistive Voltage Divider


$V_{\text {in }}=V_{1}+V_{\text {out }} \quad V_{\text {in }}=\frac{R_{1}}{R_{2}} V_{\text {out }}+V_{\text {out }}$

$$
I=\frac{V_{1}}{R_{1}}=\frac{V_{\text {out }}}{R_{2}} \quad V_{\text {out }}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}
$$

Capacitive Divider? $\quad V_{\text {in }}=V_{1}+V_{\text {out }}$


## Example: RC First-Order Low-Pass Filter


$V_{\text {in }}=V_{1}+V_{\text {out }} \tau=R C \rightarrow V_{1}=\tau \frac{d V_{\text {out }}}{d t}$
$\frac{V_{1}}{R}=C \frac{d V_{\text {out }}}{d t}$

$$
\tau \frac{d V_{o u t}}{d t}+V_{o u t}=V_{\text {in }}
$$

Resistors: Serial \& Parallel


Inductors: Serial \& Parallel


Capacitors: Serial \& Parallel


## Parallel-Series Simplification




$$
\tau=0.5 \mu \mathrm{~s} \quad \tau \frac{d V_{2}}{d t}+V_{2}=\frac{1}{4} V_{1}
$$

$$
\begin{gathered}
V_{1}=\left(L_{1}+\left(L_{2} / / L_{3}\right) \frac{d I}{d t}+V_{3}\right. \\
\mathrm{V}_{3}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \\
V_{1}=\frac{L_{1}+\left(L_{2} / / L_{3}\right)}{R_{1}+R_{2}} \frac{d V_{3}}{d t}+V_{3} \\
\tau=\frac{L_{1}+\left(L_{2} / / L_{3}\right)}{R_{1}+R_{2}} \\
\tau \frac{d V_{3}}{d t}+V_{3}=V_{1} \\
V_{2}=V_{3} \frac{R_{2}}{R_{1}+R_{2}} \\
\tau \frac{d V_{2}}{d t}+V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V_{1}
\end{gathered}
$$

## An Example Circuit Solution



How to think through such a circuit?

- Parallel Combination of Resistors for $\mathrm{V}_{1}$
- Resistive voltage divider for $\mathrm{V}_{1}$
- Current divider from the voltage-controlled I source

$$
\begin{gathered}
V_{1}=V_{\text {in }} \frac{R_{2} / / R_{\pi}}{R_{1}+R_{2} / / R_{\pi}} \\
V_{\text {out }}=G_{1} V_{1}\left(R_{o} / / R_{c}\right) \\
V_{\text {out }}=V_{\text {in }} \frac{G_{1}\left(R_{o} / / R_{c}\right)\left(R_{2} / / R_{\pi}\right)}{R_{1}+R_{2} / / R_{\pi}}
\end{gathered}
$$



KCL @ $\mathrm{V}_{2}$ :

$$
G_{s} V_{1}+\frac{V_{1}-V_{2}}{R_{1}}=\frac{V_{2}}{R_{2}}
$$

$\left(G_{s}+\frac{1}{R_{1}}\right) V_{1}=\frac{V_{2}}{R_{1}}+\frac{V_{2}}{R_{2}}$
$\left(G_{s}+\frac{1}{R_{1}}\right) V_{1}=\frac{V_{2}}{R_{1} / / R_{2}}$

$$
\begin{aligned}
& V_{2}=\left(R_{1} / / R_{2}\right)\left(G_{s}+\frac{1}{R_{1}}\right) V_{1} \\
& \mathrm{R}_{1}=200 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=20 \mathrm{k} \Omega \\
& G_{s} \gg \frac{1}{R_{1}} \quad \mathrm{G}_{\mathrm{s}}=1 / 100 \Omega \\
& V_{2}=G_{s} R_{2} V_{1} \quad R_{1} / / R_{2} \rightarrow R_{2} \\
& \mathrm{~V}_{2}=200 \mathrm{~V}_{1}
\end{aligned}
$$

## Node Voltage Solutions: KCL at nodes



Node 1:

$$
\begin{gathered}
\left(V_{1}-e_{1}\right) G_{1}+\left(e_{2}-e_{1}\right) G_{5}+\left(0-e_{1}\right) G_{2}=0 \\
V_{1} G_{1}+e_{2} G_{5}-e_{1}\left(G_{1}+G_{2}+G_{5}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Node 2: } \\
& \left(V_{2}-e_{2}\right) G_{3}+\left(e_{1}-e_{2}\right) G_{5}+\left(0-e_{2}\right) G_{4}=0
\end{aligned}
$$

$$
\mathbf{G}=\left[\begin{array}{cc}
\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{5} & -\mathrm{G}_{5} \\
-\mathrm{G}_{5} & \mathrm{G}_{3}+\mathrm{G}_{4}+\mathrm{G}_{5}
\end{array}\right]
$$

$$
V_{2} G_{3}+e_{1} G_{5}-e_{2}\left(G_{3}+G_{4}+G_{5}\right)=0
$$

G Matrix is symmetric, positive definite
Diagonal terms = sum of conductances on the node
Off Diagonal terms $=-$ sum of resistances between nodes

$$
\mathbf{i}=\left[\begin{array}{l}
\mathrm{G}_{1} \mathrm{~V}_{1} \\
\mathrm{G}_{3} \mathrm{~V}_{2}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
\mathrm{e}_{1} \\
\mathrm{e}_{2}
\end{array}\right]
$$

Solve: $\mathbf{G} \mathbf{v}=\mathbf{i}$


Mesh 1:

$$
\begin{aligned}
& -V_{1}+I_{1} R_{1}+\left(I_{1}-I_{3}\right) R_{2}=0 \\
& -V_{1}+\left(R_{1}+R_{2}\right) I_{1}-R_{2} I_{3}=0
\end{aligned}
$$

Mesh 2:

$$
\begin{aligned}
& -V_{2}+R_{3} I_{2}+R_{4}\left(I_{3}+I_{2}\right)=0 \\
& -V_{2}+R_{4} I_{3}+\left(R_{3}+R_{4}\right) I_{2}=0
\end{aligned}
$$

Mesh 3:

$$
\begin{aligned}
& R_{2}\left(I_{3}-I_{1}\right)+R_{5} I_{3}+R_{4}\left(I_{3}+I_{2}\right)=0 \\
& -R_{2} I_{1}+\left(R_{2}+R_{4}+R_{5}\right) I_{3}+R_{4} I_{2}=0
\end{aligned}
$$

$\mathbf{R}=\left[\begin{array}{ccc}\mathrm{R}_{1}+\mathrm{R}_{2} & 0 & -\mathrm{R}_{2} \\ 0 & \mathrm{R}_{3}+\mathrm{R}_{4} & -\mathrm{R}_{4} \\ -\mathrm{R}_{2} & -\mathrm{R}_{4} & \mathrm{R}_{2}+\mathrm{R}_{4}+\mathrm{R}_{5}\end{array}\right]$

$$
\mathbf{i}=\left[\begin{array}{c}
\mathrm{I}_{1} \\
-\mathrm{I}_{2} \\
\mathrm{I}_{3}
\end{array}\right] \begin{aligned}
& \text { (mesh } \\
& \text { currents } \\
& \text { in same } \\
& \text { direction }
\end{aligned} \quad \mathbf{v}=\left[\begin{array}{c}
\mathrm{V}_{1} \\
-\mathrm{V}_{2} \\
0
\end{array}\right]
$$

Solve: $\mathbf{R} \mathbf{i}=\mathbf{v}$
$\mathbf{R}$ Matrix is symmetric, positive definite Diagonal terms = sum of mesh Resistances Off Diagonal terms $=-$ sum of resistances between meshes


$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} & -\frac{1}{R_{2}} & 0 \\
-\frac{1}{R_{2}} & \frac{1}{R_{2}}+\frac{1}{R_{4}} & -\frac{1}{R_{4}}-G_{m} \\
0 & -\frac{1}{R_{4}} & \frac{1}{R_{4}}+\frac{1}{R_{5}}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{V_{a}}{R_{1}} \\
0 \\
I_{a}
\end{array}\right]} \\
& \mathrm{R}_{1}=1 \mathrm{M} \Omega \\
& \mathrm{R}_{4}=1 \mathrm{M} \Omega \\
& \mathrm{R}_{2}=1 \mathrm{M} \Omega \\
& \mathrm{R}_{5}=2 \mathrm{M} \Omega
\end{aligned} \quad \mathrm{~V}_{\mathrm{a}}=1 \mathrm{~V} .
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2.5 & -1 & 0 \\
-1 & 2 & -101 \\
0 & -1 & 1.5
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
-12.2 m V \\
-1.03 V \\
-20.3 m V
\end{array}\right]}
\end{gathered}
$$



$$
\begin{array}{cc}
I_{4}=-I_{a} & I_{3}-I_{2}=G m R_{5}\left(I_{3}-I_{4}\right) \\
& I_{2}+\left(G m R_{5}-1\right) I_{3}-\left(G m R_{5}\right) I_{4}=0
\end{array}
$$

$$
\left[\begin{array}{cccc}
R_{1}+R_{3} & -R_{3} & 0 & 0 \\
-R_{3} & R_{2}+R_{3} & R_{4}+R_{5} & -R_{5} \\
\hline 0 & 1 & G m R_{5}-1 & \left.-G m R_{5}|\uparrow| \begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
I_{3} \\
0
\end{array}\right. \\
\hline 0 & 0 & \uparrow & 0
\end{array}\right.
$$

Dependent Source Constraint Supermesh

| $\mathrm{R}_{1}=1 \mathrm{M} \Omega$ | $\mathrm{R}_{4}=1 \mathrm{M} \Omega$ |
| :--- | :--- |
| $\mathrm{R}_{2}=1 \mathrm{M} \Omega$ | $\mathrm{R}_{5}=2 \mathrm{M} \Omega$ |
| $\mathrm{R}_{3}=2 \mathrm{M} \Omega$ | $\mathrm{G}_{\mathrm{m}}=1 / 10 \mathrm{k} \Omega$ |\(\quad\left[\begin{array}{cccc}3 \& -2 \& 0 \& 0 <br>

-2 \& 3 \& 3 \& -2 <br>
0 \& 1 \& 199 \& -200 <br>
0 \& 0 \& 0 \& 1\end{array}\right]\left[$$
\begin{array}{l}I_{1} \\
I_{2} \\
I_{3} \\
I_{4}\end{array}
$$\right]=\left[$$
\begin{array}{c}V_{a} \\
0 \\
0 \\
-I_{a}\end{array}
$$\right]\)

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
73.7 n A \\
389 n A \\
1.007 \mu A \\
1 \mu A
\end{array}\right]
$$

$\mathrm{I}_{1}$ through $\mathrm{I}_{4}: \mu \mathrm{A}$ units


$\frac{V_{\text {in }}-V}{R_{1}}=\frac{V-V_{\text {out }}}{R_{2}}=\frac{V_{\text {out }}+A_{v} V}{R_{s}}+\frac{V_{\text {out }}}{R_{L}}$
If $\mathrm{R}_{\mathrm{s}}=0, \mathrm{~V}_{\text {out }}=-\mathrm{A}_{\mathrm{v}} \mathrm{V}$
$\frac{R_{2}}{R_{1}}\left(V_{\text {in }}+\frac{V_{\text {out }}}{A_{v}}\right)=-\left(\frac{1}{A_{v}}+1\right) V_{\text {out }}$
$V_{\text {out }}\left(1+\frac{1}{A_{v}}\left(1+\frac{R_{2}}{R_{1}}\right)\right)=-\frac{R_{2}}{R_{1}} V_{\text {in }}$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}} \frac{1}{1+\frac{1}{A_{v}}\left(1+\frac{R_{2}}{R_{1}}\right)}
$$

$$
\begin{gathered}
V\left(-\frac{A_{v}}{R_{s}}+\frac{1}{R_{2}}\right)=\frac{V_{\text {out }}}{R_{s} / / R_{2} / / R_{L}} \\
\mathrm{R}_{\mathrm{s}} \ll \mathrm{R}_{2}, \mathrm{R}_{\mathrm{L}} \\
-\mathrm{V} \mathrm{~A}_{\mathrm{v}} / \mathrm{R}_{\mathrm{s}}=\mathrm{V}_{\text {out }} / \mathrm{R}_{\mathrm{s}} \\
\mathrm{~V}_{\text {out }}=-\mathrm{A}_{\mathrm{v}} \mathrm{~V}
\end{gathered}
$$

$$
\mathrm{R}_{1}=10 \mathrm{k} \Omega \quad \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega
$$

$$
\mathrm{R}_{2}=100 \mathrm{k} \Omega \quad \mathrm{~A}_{\mathrm{v}}=100,000
$$



$$
\mathrm{V}_{\text {out }}=-\mathrm{V}_{\text {in }}(9.999) \sim-10 \mathrm{~V}_{\text {in }}
$$

## State Holding Divider Circuits <br> 

$\begin{aligned} & \text { Maybe like } \\ & \text { Conductances: }\end{aligned} \quad V_{\text {out }}=V_{\text {in }} \frac{C_{1}}{C_{1}+C_{2}}$ ?

$$
\begin{aligned}
& V_{\text {in }}=0, V_{\text {out }}=\frac{Q}{C_{1}+C_{2}} \\
& Q_{1}=C_{1}\left(V_{\text {in }}-V_{\text {out }}\right) \\
& Q_{2}=C_{2} V_{\text {out }}
\end{aligned}
$$

Total charge $\left(\mathrm{Q}-\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)$ at $\mathrm{V}_{\text {out }}$ is fixed
Negative $\overline{\text { Positive }}$
Plate Plate
$V_{o u t}=V_{\text {in }} \frac{C_{1}}{C_{1}+C_{2}}+V_{\text {offset }}$

Similar case with Inductors
(current divider, offset I):

$I_{\text {out }}=I_{\text {in }} \frac{L_{1}}{L_{1}+L_{2}}+I_{\text {offset }}$

Resistive Current Divider

$$
\begin{aligned}
& I_{\text {out }}=\frac{V_{\text {out }}}{R_{2}}=I_{\text {in }} \frac{R_{1} / / R_{2}}{R_{2}} \\
& a / / b=\frac{1}{\frac{1}{a}+\frac{1}{b}} \\
& V_{\text {out }}=I_{\text {in }}\left(R_{1} / / R_{2}\right) \\
& V_{\text {out }}=V_{\text {in }} \frac{{ }^{\frac{1}{b}}}{} \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$



## Using Thevenin-Norton Equivalents





Norton-Thevenin at $\mathrm{V}_{1}$

$$
\mathrm{I}_{\mathrm{eff}}: \mathrm{V}_{2}=\mathrm{GND}\left(\text { measure I @ } \mathrm{V}_{2}\right)
$$

$$
\begin{aligned}
V_{e f f} & =-I_{1} R_{1}=-1 V \\
R_{e f f} & =R_{1}+R_{2}=2 M \Omega
\end{aligned}
$$

$$
I_{1}+V_{1}\left(G_{s}+\frac{1}{R_{1}+R_{2}}\right) \approx I_{1}+V_{1} G_{s}=0
$$

$$
V_{1}=-I_{1} / G_{s}=-1 m V
$$

$$
-\mathrm{I}_{1} \mathrm{R}_{1} \underbrace{+}_{\mathrm{GND}}
$$

$$
I_{e f f} \approx 1 \mu A
$$

$$
\mathrm{R}_{\mathrm{eff}} \mathrm{I}_{1}=0
$$



$$
I_{e f f}=-0.5 \mu A
$$

$$
R=\frac{V_{2}}{I}=\frac{V_{2}}{V_{1}} \frac{V_{1}}{I}
$$

$G_{s}=0 \quad \underbrace{\mathrm{R}_{\mathrm{G}}+\mathrm{R}_{\mathrm{L}}}_{-\mathrm{I}_{1} \mathrm{R}_{1} \underbrace{+}_{\text {GND }}} \mathrm{R}_{\mathrm{GND}}^{2} \mathrm{~V}_{2}=-20 \mathrm{mV}$

$$
V_{1}\left(G_{s}+\frac{1}{R_{1}+R_{2}}\right)=\frac{V_{2}}{R_{2}}
$$

$$
\mathrm{I}_{1} \underbrace{\downarrow}_{\mathrm{GND}} \sum_{\sum_{\mathrm{GND}}\left(\mathrm{G}_{\mathrm{S}} \mathrm{R}_{2}\right) \mathrm{R}_{1}} \begin{aligned}
& V_{1}=V_{2} \frac{1}{G_{s} R_{2}} \\
& R=\left(G_{s} R_{2}\right) R_{1} \quad(1 \mathrm{G} \Omega)
\end{aligned}
$$

$G_{s}=1 / 1 k \Omega$


no Thevenin voltage source

$$
\begin{array}{rlrl}
G_{m 2} & =1 / 2 k \Omega & G_{m 2} & =1 / 20 k \Omega \\
G_{s} & =1 / 1 k \Omega & G_{s} & =1 / 10 k \Omega \\
G_{m 1} & =1 / 200 k \Omega & G_{m 1}=1 / 10 M S \\
\mathrm{R}_{1} & =1 \mathrm{M} \Omega & \mathrm{R}_{1}=10 \mathrm{M} \Omega \\
\text { Resistor: } 400 \mathrm{k} \Omega & & \text { Resistor: } 20 \mathrm{M} \Omega
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{R}_{1}=2 \mathrm{k} \Omega \\
\mathrm{R}_{2}=2 \mathrm{k} \Omega \\
\mathrm{R}_{3}=4 \mathrm{k} \Omega
\end{array}
$$



Case II: $\mathrm{V}_{1}=-\mathrm{V}_{2}=\mathrm{V}_{\text {in }}$
$-\left(G_{m 1}+G_{m 2}\right) V_{\text {in }}=\frac{V_{\text {out }}}{R_{1} / / R_{2}}$ $\frac{V_{\text {out }}}{V_{\text {in }}}=-\left(G_{m 1}+G_{m 2}\right)\left(R_{1} / / R_{2}\right)$

Solve using superposition:
Case I: $2.5 \mathrm{~V} \& 5 \mathrm{~V}$ source, Case II: $\mathrm{V}_{\text {in }}$ source
Case I: $\mathrm{V}_{1}=\mathrm{V}_{2}=2.5 \mathrm{~V}$

$$
\begin{aligned}
& \frac{V_{\text {out }}}{R_{1}}=\left(G_{m 2}-G_{m 1}\right) 2.5 V+\frac{5 V-V_{\text {out }}}{R_{2}} \\
& V_{\text {out }}=\left(R_{1} / / R_{2}\right)\left(\left(G_{m 2}-G_{m 1}\right) 2.5 V+5 V / R_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{1}=100 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=200 \mathrm{k} \Omega \\
& \mathrm{G}_{\mathrm{m} 1}=1 \mathrm{k} \Omega \\
& \mathrm{G}_{\mathrm{m} 2}=1 \mathrm{k} \Omega
\end{aligned}
$$

Case I: $\mathrm{V}_{\text {out }}=1.67 \mathrm{~V}$
Case II: $\mathrm{V}_{\text {out }}=-133 \mathrm{~V}_{\text {in }}$

CMOS Inverter



One port for A :
A into zero load $\rightarrow \mathrm{V}$
Superposition:

$$
\begin{aligned}
V_{A} & =\frac{R_{1} / / R_{2} / / R_{3}}{R_{1}} 5 V \\
V_{A} & =\frac{R_{1} / / R_{2} / / R_{3}}{R_{2}} V_{i n}
\end{aligned}
$$



$$
\begin{aligned}
& \mathrm{KCL} \text { at } \mathrm{V}_{2} \\
& G_{m} V_{1}=\frac{V_{A}-V_{1}}{R_{e}} \\
& \left(1+G_{m} R_{e}\right) V_{1}=V_{A} \\
& \quad\left(21 \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{A}}\right)
\end{aligned}
$$

$$
V_{e q}=\left(R_{1} / / R_{2} / / R_{3}\right)\left(\frac{V_{i n}}{R_{3}}+\frac{5 V}{R_{1}}\right)
$$

KCL at $\mathrm{V}_{\text {out }}$

$$
\left(=0.091 \mathrm{~V}_{\mathrm{in}}+2.25 \mathrm{~V}\right)
$$

$$
V_{\text {out }}=G_{m} R_{c} V_{1}
$$

$$
\left(\mathrm{V}_{\text {out }}=200 \mathrm{~V}_{1}\right)
$$

$$
R_{e q}=R_{1} / / R_{2} / / R_{3}
$$

$$
\left(\mathrm{V}_{\text {out }}=9.52 \mathrm{~V}_{\mathrm{A}}\right)
$$



Superposition:
A linear function, $f()$,

$$
f(A x+B y)=A f(x)+B f(y)
$$

Can turn each source on separately, add the results
$\mathrm{V}_{1}$ on, $\mathrm{V}_{2}=0$ : (Resistive Divider) $\quad \mathrm{V}_{2}$ on, $\mathrm{V}_{1}=0$ :

$$
\begin{array}{cc}
e_{1}=\frac{R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right)}{R_{1}+R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right)} \mathrm{V} 1 & e_{2}=\frac{R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right)}{R_{3}+R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right)} \mathrm{V} 2 \\
e_{2}=e_{1} \frac{R_{3} / / R_{4}}{R_{5}+R_{3} / / R_{4}} & e_{1}=e_{2} \frac{R_{1} / / R_{2}}{R_{5}+R_{1} / / R_{2}}
\end{array}
$$

$$
e_{1}=\frac{R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right) \mathrm{V} 1}{R_{1}+R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right)}+\frac{R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right)}{R_{3}+R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right)} \frac{R_{1} / / R_{2}}{R_{5}+R_{1} / / R_{2}} \mathrm{~V} 2
$$

$$
e_{2}=\frac{R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right) \mathrm{V} 2}{R_{3}+R_{4} / /\left(R_{5}+R_{1} / / R_{2}\right)}+\frac{R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right)}{R_{1}+R_{2} / /\left(R_{5}+R_{3} / / R_{4}\right)} \frac{R_{3} / / R_{4}}{R_{5}+R_{3} / / R_{4}} \mathrm{~V} 1
$$

## $\mathrm{V}_{\text {measure }}$



$$
V_{\text {measure }}=\frac{G_{1} V_{1}+G_{2} V_{2}+G_{3} V_{3}}{G_{1}+G_{2}+G_{3}+G_{4}}
$$


$V_{\text {measure }}=\frac{G_{1}}{G_{1}+G_{2}+G_{3}+G_{4}} V_{1} \quad V_{\text {measure }}=\frac{G_{2}}{G_{1}+G_{2}+G_{3}+G_{4}} V_{2} \quad V_{\text {measure }}=\frac{G_{3}}{G_{1}+G_{2}+G_{3}+G_{4}} V_{3}$

$$
V_{\text {measure }}=\frac{1}{2} V_{1}+\frac{1}{4} V_{2}+\frac{1}{8} V_{3}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=2 \mathrm{~V} \text {, what is } \mathrm{V}_{\text {measure }} ?
$$

$$
1.75 \mathrm{~V}
$$







## Symmetric Resistive Circuits



Voltage Divider: $\mathrm{V}=\mathrm{V}_{1}=\mathrm{V}_{2}=(2 / 3) \mathrm{V}_{\mathrm{c}}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=\operatorname{average}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)^{\prime} / 2 \\
& (\mathrm{Va}+\mathrm{Vb}) / 2
\end{aligned}
$$

Voltage Divider: $\mathrm{V}=\mathrm{V}_{1}=-\mathrm{V}_{2}=(2 / 5) \mathrm{V}_{\mathrm{d}}$

$$
\begin{aligned}
V_{d}= & \left(V_{1}-V_{2}\right)^{\prime} / 2 \\
& \left(V_{a}-V b\right) / 2
\end{aligned}
$$




## Diff Mode Half Circuit



$$
\begin{aligned}
V_{b}= & -G_{m} R_{1} V_{d} \\
& =-40 \mathrm{~V}_{\mathrm{d}}
\end{aligned}
$$

Common Mode Half Circuit


$$
\frac{V}{2 R_{o}}=G_{m} V_{c}-G_{s} V \quad \frac{V}{2 R_{o}}=-\frac{V_{b}}{R}
$$

$$
V\left(G_{s}+\frac{1}{2 R_{o}}\right)=G_{m} V_{c} \quad V_{b}=-\frac{R}{2 R_{o}} V
$$

$$
V=\frac{2 R_{o} G_{m}}{2 R_{o} G_{s}+1} V_{c}
$$

$$
=-\frac{R}{4 R_{o}} V_{c}
$$

$$
=-0.0001 V_{c}
$$



$$
\begin{gathered}
I_{d a}=G_{m 2} V_{1}=\left(G_{m 2} R_{2}\right) I_{d} \\
I_{d a}=100 I_{d}
\end{gathered}
$$

$$
I_{c}=G_{m 1} V_{a}+\frac{V_{1}}{R_{2}} \quad G_{m 2} V_{1}=\frac{V_{a}}{2 R_{1}}+G_{s} V_{a} \quad I_{c a}=\frac{V_{a}}{2 R_{1}}
$$

$$
\begin{gathered}
I_{c}=V_{a}\left(G_{m 1}+\frac{G_{s}}{G_{m 2}} \frac{1}{R_{2}}\right) \longleftarrow G_{m 2} V_{1} \approx G_{s} V_{a} \\
I_{c} \approx G_{m 1} V_{a} \longrightarrow \quad I_{c a}=0.0001 I_{c} \\
\end{gathered}
$$

$$
\mathrm{I}_{1}=20.1 \mu \mathrm{~A} \text { and } \mathrm{I}_{2}=19.9 \mu \mathrm{~A} \rightarrow \mathrm{I}_{\mathrm{c}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{d}}=100 \mathrm{nA} \rightarrow \mathrm{I}_{\mathrm{a}}=10 \mu \mathrm{~A}+1 \mathrm{nA} \sim 10 \mu \mathrm{~A}
$$

## Curve Fitting Circuit Parameters



