General Instructions instructions:

- Exam is closed book / closed notes other than the one-page of handwritten notes.
- Most questions are worth 3 points; first two questions are worth 2 points.
- Only the final answers, as indicated by the question, will be considered correct for each question.
- Choose the best possible answer available in all cases.

Honorlock instructions:

- The only notes allowed is a one-page of handwritten notes. Front and back of the sheet are allowed. Sheet should be shown to the camera.
- Restroom breaks are not encouraged, although if necessary, it is allowed when asking the proctoring system. Timing will be recorded.
- Blank scratch paper is allowed, and needs to be shown to the proctor.
- Music is allowed assuming it is at a low volume and not conveying any exam answers.

1. (2pt) For the elements above and $\mathrm{R}=10 \mathrm{k} \Omega$, the equivalent resistance is
a. $2.5 \mathrm{k} \Omega$
b. $5 \mathrm{k} \Omega$
c. $10 \mathrm{k} \Omega$
d. $20 \mathrm{k} \Omega$
e. $40 \mathrm{k} \Omega$

2. For these elements and $\mathrm{R}=10 \mathrm{k} \Omega$, the equivalent resistance is
a. $2.5 \mathrm{k} \Omega$
b. $5 \mathrm{k} \Omega$
c. $10 \mathrm{k} \Omega$
d. $20 \mathrm{k} \Omega$
e. $40 \mathrm{k} \Omega$

3. For the elements above and $\mathrm{C}=1 \mathrm{nF}$, the equivalent capacitance is
a. 0.25 nF
b. 0.5 nF
c. 1 nF
d. 2 nF
e. 4 nF

4. For these elements and $\mathrm{C}=1 \mathrm{nF}$, the equivalent capacitance is
a. 0.25 nF
b. 0.5 nF
c. 1 nF
d. 2 nF
e. 4 nF

5. For the elements above and $\mathrm{L}=1 \mathrm{mH}$, the equivalent inductance is
a. 0.25 mH
b. 0.5 mH
c. 1 mH
d. 2 mH
e. 4 mH

6. For $R_{1}=1 k \Omega, R_{3}=2 k \Omega, R_{2}=4 k \Omega$, and $R_{4}=4 k \Omega$, if $V_{2}=V_{3}=0 V$, what is $V_{\text {measure }}$ for $V_{1}=$ 4 V ?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
7. For $R_{1}=1 k \Omega, R_{3}=2 k \Omega, R_{2}=4 k \Omega$, and $R_{4}=4 k \Omega$, if $V_{1}=V_{3}=0 V$, what is $V_{\text {measure }}$ for $V_{2}=$ 4V?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
8. For $R_{1}=1 k \Omega, R_{3}=2 k \Omega, R_{2}=4 k \Omega$, and $R_{4}=4 k \Omega$, if $V_{1}=V_{2}=0 \mathrm{~V}$, what is $V_{\text {measure }}$ for $V_{3}=$ 4 V ?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
9. For $R_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{3}=2 \mathrm{k} \Omega, \mathrm{R}_{2}=4 \mathrm{k} \Omega$, and $\mathrm{R}_{4}=4 \mathrm{k} \Omega$, if $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=2 \mathrm{~V}$, what is $\mathrm{V}_{\text {measure }}$?
a. 1.0 V
b. 1.25 V
c. 1.5 V
d. 1.75 V
e. 2 V
10. T/F: For $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{3}=2 \mathrm{k} \Omega, \mathrm{R}_{2}=4 \mathrm{k} \Omega$, and $\mathrm{R}_{4}=4 \mathrm{k} \Omega$, if $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=0 \mathrm{~V}, \mathrm{~V}_{\text {measure }}$ could be a voltage other than 0 V .

11. For $\mathrm{C}_{1}=4 \mathrm{pF}, \mathrm{C}_{3}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{C}_{4}=1 \mathrm{pF}$, assuming $\mathrm{V}_{\text {measure }}=0 \mathrm{~V}$ when $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$ $=0 \mathrm{~V}$, if $\mathrm{V}_{2}=\mathrm{V}_{3}=0 \mathrm{~V}$, what is $\mathrm{V}_{\text {measure }}$ for $\mathrm{V}_{1}=4 \mathrm{~V}$?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
12. For $\mathrm{C}_{1}=4 \mathrm{pF}, \mathrm{C}_{3}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{C}_{4}=1 \mathrm{pF}$, assuming $\mathrm{V}_{\text {measure }}=0 \mathrm{~V}$ when $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$ $=0 \mathrm{~V}$, if $\mathrm{V}_{1}=\mathrm{V}_{3}=0 \mathrm{~V}$, what is $\mathrm{V}_{\text {measure }}$ for $\mathrm{V}_{2}=4 \mathrm{~V}$?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
13. For $\mathrm{C}_{1}=4 \mathrm{pF}, \mathrm{C}_{3}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{C}_{4}=1 \mathrm{pF}$, assuming $\mathrm{V}_{\text {measure }}=0 \mathrm{~V}$ when $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$ $=0 \mathrm{~V}$, if $\mathrm{V}_{1}=\mathrm{V}_{2}=0 \mathrm{~V}$, what is $\mathrm{V}_{\text {measure }}$ for $\mathrm{V}_{3}=4 \mathrm{~V}$?
a. 0.125 V
b. 0.25 V
c. 0.5 V
d. 1 V
e. 2 V
14. For $\mathrm{C}_{1}=4 \mathrm{pF}, \mathrm{C}_{3}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{C}_{4}=1 \mathrm{pF}$, assuming $\mathrm{V}_{\text {measure }}=0.5 \mathrm{~V}$ when $\mathrm{V}_{1}=\mathrm{V}_{2}, \mathrm{~V}_{3}$ $=0 \mathrm{~V}$, if $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=2 \mathrm{~V}$, what is $\mathrm{V}_{\text {measure }}$?
a. 1.5 V
b. 1.75 V
c. 2.0 V
d. 2.25 V
e. 2.5 V
15. T/F: For $\mathrm{C}_{1}=4 \mathrm{pF}, \mathrm{C}_{3}=2 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}$, and $\mathrm{C}_{4}=1 \mathrm{pF}$, if $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=0 \mathrm{~V}, \mathrm{~V}_{\text {measure }}$ could be a voltage other than 0 V .

16. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $\mathrm{G}_{\mathrm{s}}=0$, what is the equivalent Thevenin voltage source value for this one-port network?
a. -2 V
b. -1 V
c. 0.5 V
d. 1 V
e. 2 V
17. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $\mathrm{G}_{\mathrm{s}}=0$, what is the equivalent one-port resistance for this one-port network?
a. $0.5 \mathrm{M} \Omega$
b. $1 \mathrm{M} \Omega$
c. $2 \mathrm{M} \Omega$
d. $4 \mathrm{M} \Omega$
e. $8 \mathrm{M} \Omega$
18. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $\mathrm{G}_{\mathrm{s}}=0$, what is the equivalent Norton current source value for this one-port network?
a. $-1 \mu \mathrm{~A}$
b. $-0.5 \mu \mathrm{~A}$
c. $0 \mu \mathrm{~A}$
d. $0.5 \mu \mathrm{~A}$
e. $1 \mu \mathrm{~A}$

20 . When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $G_{s}=1 / 1 \mathrm{k} \Omega$, what is the equivalent Norton current source value for this one-port network?
a. $-1 \mu \mathrm{~A}$
b. $-0.5 \mu \mathrm{~A}$
c. $0 \mu \mathrm{~A}$
d. $0.5 \mu \mathrm{~A}$
e. $1 \mu \mathrm{~A}$
21. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $G_{s}=1 / 1 \mathrm{k} \Omega$, what is the equivalent oneport resistance for this one-port network?
a. $1 \mathrm{M} \Omega$
b. $2 \mathrm{M} \Omega$
c. $10 \mathrm{M} \Omega$
d. $100 \mathrm{M} \Omega$
e. $1 \mathrm{G} \Omega$
22. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $\mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega$, what is the equivalent Thevenin voltage source value for this one-port network?
a. -1000 V
b. -100 V
c. -10 V
d. -1 V
e. 0 V
19. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $G_{s}=0$ with $R_{L}=40 k \Omega$, what is the measured output voltage at V_{2} ?
a. -10 mV
b. -20 mV
c. -40 mV
23. When $\mathrm{I}_{1}=1 \mu \mathrm{~A}, \mathrm{R}_{1}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and for $\mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega$ with $\mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega$, what is the measured output voltage at V_{2} ?
a. -10 mV
b. -20 mV
d. -100 mV
c. -40 mV
e. -200 mV
d. -100 mV
e. -200 mV

24. For $\mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 1}=1 / 200 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 2 \mathrm{k} \Omega$, and $\mathrm{R}_{1}=1 \mathrm{M} \Omega$, what is the equivalent resistance for the one-port network at V_{1} ?
a. $400 \mathrm{k} \Omega$
b. $100 \mathrm{k} \Omega$
c. $4 \mathrm{M} \Omega$
d. $10 \mathrm{k} \Omega$
e. $40 \mathrm{k} \Omega$
25. For $\mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 1}=1 / 200 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 2 \mathrm{k} \Omega$, and $\mathrm{R}_{1}=1 \mathrm{M} \Omega$, what is the equivalent Thevenin voltage for the one-port network at V_{1} ?
a. -2 V
b. -1 V
c. 0 V
d. 1 V
e. 2 V
26. For $G_{s}=1 / 10 \mathrm{k} \Omega, G_{m 1}=1 / 10 \mathrm{M} \Omega, G_{m}=1 / 20 \mathrm{k} \Omega$, and $R_{1}=10 \mathrm{M} \Omega$, what is the equivalent resistance for the one-port network at V 1 ?
a. $1 \mathrm{M} \Omega$
b. $4 \mathrm{M} \Omega$
c. $10 \mathrm{M} \Omega$
d. $20 \mathrm{M} \Omega$
e. $40 \mathrm{M} \Omega$

27. For the Differential Mode Circuit, the G_{s} element can be ignored. (T/F)
30. Assume we have two inputs, I_{1} and $\mathrm{I}_{2} . \mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega$, $\mathrm{G}_{\mathrm{m} 1}=1 / 10 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 10 \mathrm{k} \Omega$, $R_{2}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{1}=5 \mathrm{M} \Omega$. For a Differential current input, $I_{1}=-I_{2}$, the gain from input to differential output, I_{1} $=-\mathrm{I}_{2}$, is
a. 10
b. 20
c. 40
d. 100
e. 200
33. Assume we have two inputs, $\mathrm{I}_{1}=20.1 \mu \mathrm{~A}$ and $\mathrm{I}_{2}=$ $19.9 \mu \mathrm{~A} \quad \mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{ml}}=$ $1 / 10 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=$ $1 \mathrm{M} \Omega$, and $\mathrm{R}_{1}=5 \mathrm{M} \Omega$. What is the differental input current?
a. 1nA
b. 10 nA
c. 100 nA
d. $1 \mu \mathrm{~A}$
a. $\ln \mathrm{A}$
b. 10 nA
c. 100 nA
e. $10 \mu \mathrm{~A}$
d. $1 \mu \mathrm{~A}$
e. $10 \mu \mathrm{~A}$
28. For the Differential Mode

Circuit, the $\mathrm{G}_{\mathrm{m} 2}$ element can be ignored. (T/F)
31. Assume we have two inputs, I_{1} and $\mathrm{I}_{2} . \mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega$, $\mathrm{G}_{\mathrm{m} 1}=1 / 10 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 10 \mathrm{k} \Omega$, $\mathrm{R}_{2}=1 \mathrm{M} \Omega$, and $\mathrm{R}_{1}=5 \mathrm{M} \Omega$. For a Common current input, $\mathrm{I}_{1}=\mathrm{I}_{2}$, the gain from input to common output, $\mathrm{I}_{1}=\mathrm{I}_{2}$, is
a. 0.0001
b. 0.001
29. For the Common Mode Circuit, the $\mathrm{G}_{\mathrm{m} 1}$ element can be ignored. (T/F)
32. Assume we have two inputs, $\mathrm{I}_{1}=20.1 \mu \mathrm{~A}$ and $\mathrm{I}_{2}=$ $19.9 \mu \mathrm{~A} \quad \mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{ml}}=$ $1 / 10 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=$ $1 \mathrm{M} \Omega$, and $\mathrm{R}_{1}=5 \mathrm{M} \Omega$. What is the common input current?
a. $2 \mu \mathrm{~A}$
b. $4 \mu \mathrm{~A}$
c. $10 \mu \mathrm{~A}$
c. 0.01
d. $20 \mu \mathrm{~A}$
d. 0.1
e. $40 \mu \mathrm{~A}$
e. 1
34. Assume we have two inputs, $\mathrm{I}_{1}=20.1 \mu \mathrm{~A}$ and $\mathrm{I}_{2}=$ $19.9 \mu \mathrm{~A} \quad \mathrm{G}_{\mathrm{s}}=1 / 1 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{ml}}=$ $1 / 10 \mathrm{k} \Omega, \mathrm{G}_{\mathrm{m} 2}=1 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=$
$1 \mathrm{M} \Omega$, and $\mathrm{R}_{1}=5 \mathrm{M} \Omega$. What is the output at I_{a} ?

