ECE 2040 Midterm Exam 1 Fall 2020

General Instructions instructions:

- Exam is closed book / closed notes other than the one-page of handwritten notes.
- Most questions are worth 3 points; first two questions are worth 2 points.
- Only the final answers, as indicated by the question, will be considered correct for each question.
- Choose the best possible answer available in all cases.

Honorlock instructions:

- The only notes allowed is a one-page of handwritten notes. Front and back of the sheet are allowed. Sheet should be shown to the camera.
- Restroom breaks are not encouraged, although if necessary, it is allowed when asking the proctoring system. Timing will be recorded.
- Blank scratch paper is allowed, and needs to be shown to the proctor.
- Music is allowed assuming it is at a low volume and not conveying any exam answers.

- 1. (2pt) For the elements above and $R = 10k\Omega$, the equivalent resistance is
- a. 2.5kΩ
- b. 5kΩ
- c. $10k\Omega$
- d. $20k\Omega$
- e. $40k\Omega$

- 2. For these elements and $R = 10k\Omega$, the equivalent resistance is
- $a. \ 2.5 k\Omega$
- b. 5kΩ
- c. $10k\Omega$
- $\begin{array}{ll} d. & 20k\Omega \\ e. & 40k\Omega \end{array}$

- 3. For the elements above and C = 1nF, the equivalent capacitance is
- a. 0.25nF
- $b. \ 0.5 nF$
- c. 1nF
- d. 2nF
- e. 4nF

- 4. For these elements and C = 1nF, the equivalent capacitance is
- a. 0.25nF
- b. 0.5nF
- c. 1nF
- d. 2nF
- e. 4nF

- 5. For the elements above and L = 1 mH, the equivalent inductance is
- a. 0.25mH
- b. 0.5mH
- c. 1mH
- d. 2mH
- e. 4mH

6. For $R_1 = 1k\Omega$, $R_3 = 2k\Omega$, $R_2 = 4k\Omega$, and $R_4 = 4k\Omega$, if $V_2 = V_3 = 0V$, what is V_{measure} for $V_1 =$ 4V? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 7. For $R_1 = 1k\Omega$, $R_3 = 2k\Omega$, $R_2 = 4k\Omega$, and $R_4 = 4k\Omega$, if $V_1 = V_3 = 0V$, what is V_{measure} for $V_2 =$ 4V? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 8. For $R_1 = 1k\Omega$, $R_3 = 2k\Omega$, $R_2 = 4k\Omega$, and $R_4 = 4k\Omega$, if $V_1 = V_2 = 0V$, what is V_{measure} for $V_3 =$ 4V? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 9. For $R_1 = 1k\Omega$, $R_3 = 2k\Omega$, $R_2 = 4k\Omega$, and $R_4 = 4k\Omega$, if $V_1 = V_2 = V_3 = 2V$, what is V_{measure} ? a. 1.0V b. 1.25V c. 1.5V d. 1.75V e. 2V

10. T/F: For $R_1 = 1k\Omega$, $R_3 = 2k\Omega$, $R_2 = 4k\Omega$, and $R_4 = 4k\Omega$, if $V_1 = V_2 = V_3 = 0V$, V_{measure} could be a voltage other than 0V.

11. For $C_1 = 4pF$, $C_3 = 2pF$, $C_2 = 1pF$, and $C_4 = 1pF$, assuming $V_{\text{measure}} = 0V$ when $V_1 = V_2 = V_3$ = 0V, if $V_2 = V_3 = 0V$, what is V_{measure} for $V_1 = 4V$? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 12. For $C_1 = 4pF$, $C_3 = 2pF$, $C_2 = 1pF$, and $C_4 = 1pF$, assuming $V_{\text{measure}} = 0V$ when $V_1 = V_2 = V_3$ = 0V, if $V_1 = V_3 = 0V$, what is V_{measure} for $V_2 = 4V$? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 13. For $C_1 = 4pF$, $C_3 = 2pF$, $C_2 = 1pF$, and $C_4 = 1pF$, assuming $V_{\text{measure}} = 0V$ when $V_1 = V_2 = V_3$ = 0V, if $V_1 = V_2 = 0V$, what is V_{measure} for $V_3 = 4V$? a. 0.125V b. 0.25V c. 0.5V d. 1V e. 2V 14. For $C_1 = 4pF$, $C_3 = 2pF$, $C_2 = 1pF$, and $C_4 = 1pF$, assuming $V_{measure} = 0.5V$ when $V_1 = V_2$, V_3 = 0V, if $V_1 = V_2 = V_3 = 2V$, what is V_{measure} ? a. 1.5V b. 1.75V c. 2.0V d. 2.25V e. 2.5V

15. T/F: For $C_1 = 4pF$, $C_3 = 2pF$, $C_2 = 1pF$, and $C_4 = 1pF$, if $V_1 = V_2 = V_3 = 0V$, V_{measure} could be a voltage other than 0V.

16. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 0$, what is the equivalent Thevenin voltage source value for this one-port network? a. -2V

- b. -1V
- c. 0.5V
- d. 1V
- e. 2V

17. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 0$, what is the equivalent one-port resistance for this one-port network?

- a. 0.5MΩ
- b. 1MΩ
- c. 2MΩ
- d. 4MΩ
- e. 8MΩ

18. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 0$, what is the equivalent Norton current source value for this one-port network?

- a. -1µA
- b. -0.5μA
- c. 0µA
- d. 0.5µA
- e. 1µA

19. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 0$ with $R_L = 40k\Omega$, what is the measured output voltage at V_2 ?

- a. -10mV
- b. -20mV
- c. -40mV

d. -100mV

e. -200mV

20. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 1/1k\Omega$, what is the equivalent Norton current source value for this one-port network?

- a. -1µA
- b. -0.5µA
- c. 0µA
- d. 0.5µA
- e. 1µA

21. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 1/1k\Omega$, what is the equivalent one-port resistance for this one-port network?

- a. 1MΩ
- b. 2MΩ
- c. 10MΩ
- d. 100MΩ
- e. 1GΩ

22. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 1/1k\Omega$, what is the equivalent Thevenin voltage source value for this one-port network?

- a. -1000V
- b. -100V
- c. -10V
- d. -1V
- e. 0V

23. When $I_1 = 1\mu A$, $R_1 = 1M\Omega$, and $R_2 = 1M\Omega$, and for $G_s = 1/1k\Omega$ with $R_L = 40k\Omega$, what is the measured output voltage at V₂?

- a. -10mV
- b. -20mV
- c. -40mV
- d. -100mV
- e. -200mV

24. For $G_s = 1/1k\Omega$, $G_{m1} = 1/200k\Omega$, $G_{m2} = 1/2k\Omega$, and $R_1 = 1M\Omega$, what is the equivalent resistance for the one-port network at V_1 ?

- a. $400k\Omega$
- b. $100k\Omega$
- $c.\;4M\Omega$
- d. $10k\Omega$
- e. $40k\Omega$

25. For $G_s = 1/1k\Omega$, $G_{m1} = 1/200k\Omega$, $G_{m2} = 1/2k\Omega$, and $R_1 = 1M\Omega$, what is the equivalent Thevenin voltage for the one-port network at V_1 ?

- a. -2V
- b. -1V
- c. 0V
- d. 1V
- e. 2V

26. For $G_s = 1/10k\Omega$, $G_{m1} = 1/10M\Omega$, $G_{m2} = 1/20k\Omega$, and $R_1 = 10M\Omega$, what is the equivalent resistance for the one-port network at V1?

- a. 1MΩ
- $b.4M\Omega$
- c. $10M\Omega$
- d. 20MΩ
- e. 40MΩ

27. For the Differential Mode Circuit, the G_s element can be ignored. (T/F) 30. Assume we have two inputs, I_1 and I_2 . $G_s = 1/1k\Omega$, $G_{m1} = 1/10k\Omega, G_{m2} = 1/10k\Omega,$ $R_2 = 1M\Omega$, and $R_1 = 5M\Omega$. For a Differential current input, $I_1 = -I_2$, the gain from input to differential output, I_1 $= -I_2$, is a. 10 b. 20 c. 40 d. 100 e. 200 33. Assume we have two inputs, $I_1 = 20.1 \mu A$ and $I_2 =$ 19.9 μ A G_s = 1/1k Ω , G_{m1} = 19.9 μ A G_s = 1/1k Ω , G_{m1} = $1/10k\Omega$, $G_{m2} = 1/10k\Omega$, $R_2 =$ $1/10k\Omega$, $G_{m2} = 1/10k\Omega$, $R_2 =$ 1M Ω , and R₁ = 5M Ω . What 1M Ω , and R₁ = 5M Ω . What is the differental input current? is the output at I_a? a. 1nA a. 1nA b. 10nA b. 10nA c. 100nA c. 100nA d. 1µA d. 1µA e. 10µA

e. 10µA

28. For the Differential Mode Circuit, the G_{m2} element can be ignored. (T/F)31. Assume we have two inputs, I_1 and I_2 . $G_s = 1/1k\Omega$, $G_{m1} = 1/10k\Omega, G_{m2} = 1/10k\Omega,$ $R_2 = 1M\Omega$, and $R_1 = 5M\Omega$. For a Common current input, $I_1 = I_2$, the gain from input to common output, $I_1 = I_2$, is a. 0.0001 b. 0.001 c. 0.01 d. 0.1 e. 1 34. Assume we have two inputs, $I_1 = 20.1 \mu A$ and $I_2 =$

29. For the Common Mode Circuit, the G_{m1} element can be ignored. (T/F)32. Assume we have two inputs, $I_1 = 20.1 \mu A$ and $I_2 =$ 19.9 μ A G_s = 1/1k Ω , G_{m1} = $1/10k\Omega$, $G_{m2} = 1/10k\Omega$, $R_2 =$ 1M Ω , and R₁ = 5M Ω . What is the common input current? a. 2µA b. 4µA

c. 10µA

d. 20µA

e. 40µA