
Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 1

Objectives

Upon completion of this module, you should be able to:

• understand uniform quantizers, including dynamic range and sources of error,
• represent numbers in two’s complement binary form,
• assign binary symbols to quantized signal values, and
• scale a signal to fit within a specified range.

What are signals?

As we saw in the “Volts
and Amps” module,
sensors typically convert
observed data into time-
varying voltages. In other
words the sensors act as
transducers that convert
environmental data into a
corresponding current
flow that can then be
observed and measured
with electronics as a

changing voltage. The resulting data are functions of time with units in volts and are
known as ‘signals.’

What does such a voltage signal look like? Signals are commonly observed and graphed
as functions of time:

Such a function is known as a continuous-time signal. These signals are defined for all
values of t and take on a continuous range of voltage values.

Problem: Digital computers cannot store this type of data.

+

-
Voltage

sensor

environment

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 2

Numerical quantities represented by computers have finite precision, as they must be
represented by a small number of bits. We have to quantize the values in v(t) into the
finite precision values that can be stored in however many bits are allowed per number.

Quantization

Assume that the observed voltage is known to range from a minimum of vmin to a
maximum of vmax. A quantizer is a system that divides this continuous range of values
into a finite number of discrete values. The most common quantizers are uniform
quantizers that divide the range of values into equal-sized intervals. Here are two typical
uniform quantizers for a system with 3 bits of precision.

For N bits of precision a quantizer has 2N output levels. Thus, these 3-bit quantizers have
8 levels. Midstep quantizers are generally preferred over midrise quantizers as they are
less sensitive to noise at low signal levels. Let Δ denote the size of the quantization levels
in these uniform quantizers. Note that for any input value of v(t) between −Δ/2 and Δ/2
the output of the midstep quantizer is the same, while the midrise quantizer will change
output levels whenever the input crosses zero. For a small signal that is approximately
zero but is varying slightly because of noise or similar observational variations, the
midrise quantizer’s toggling between −Δ/2 and Δ/2 can actually magnify the effect of
these small distortions. The midstep quantizer is slightly asymmetric with more negative
output levels than positive, but that difference becomes insignificant as the number of bits
increases.

Question: The LEGO Mindstorms NXT sensors use 10 bits to encode data. How
many levels can be represented with uniform quantizers at that precision? Also,
for most of the NXT sensors, vmax – vmin = 4.3V. In these cases what is Δ?

Now, for the example quantizers above we can represent each value of vq(t) with 3 bits in
the NXT processor. The error in this approximation can be as large as Δ/2, but that
decreases as the number of bits increases.

Question: Given vmax, vmin, and N bits of precision, what is Δ?

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 3

We can choose vmax and vmin to correspond to the range of voltages allowed by the NXT.
That voltage range and the number of bits determine the dynamic range of the data. We’ll
define the dynamic range as the ratio of the largest value that can be represented to the
smallest nonnegative value. Consequently, Dynamic Range = vmax/Δ.

For the NXT and its sensors, we typically have that vmin= 0 with vmax= 4.3V. In this case
Δ = (vmax- vmin)/2N = 2-Nvmax. Thus, Dynamic Range = vmax/(2-Nvmax) = 2N.

In many other cases, vmin = -vmax. Here, Δ = (vmax- vmin)/2N = 2vmax/2N = 2-N+1vmax.
Therefore, Dynamic Range = vmax/2-N+1vmax = 2N-1.

Binary Representations

For 3 bits of precision we have 8 unique sets of 3 bits. How should we assign these
symbols to the different quantizer output levels? Here, we will consider three of the most
common binary representations.

Unsigned Binary: We could just label the levels in order from 000 (corresponding to 010)
to 111 (corresponding to 710). (Note we are using the numerical subscripts to denote the
base defining the number’s representation. A subscript of 10 indicates that the number is
in the standard decimal representation.)

However, this ordering does not provide a clear, mathematical relation between the
symbols and the values of vq(t). For instance, we cannot add or subtract these binary
values and have a correspondence to mathematical operations on the signal values.

Signed Magnitude Binary: An alternative is to use the first bit in each symbol as a sign bit
to denote the sign of the voltage being represented. In this case 011 = 310, but 111 = -310.
Thus, the levels would be labeled in the following manner.

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 4

However, with signed magnitude binary 000 = 100 = 010. Therefore, this binary notation
can only support 7 quantization levels instead of the usual 8. Also, arithmetic on the
binary representations of the levels, while more straightforward than for unsigned binary,
still does not have a simple relationship to operations on the corresponding voltage
values.

To add signed magnitude binary numbers:

• Add their magnitudes, if their signs are the same. Give the result the same sign
bit.

• If their signs are different, subtract their magnitudes. The relative size of the
magnitudes determines the final sign bit. Give the result the same sign bit as the
number with the largest magnitude.

Example: 110 + (-310) = 001 + 111

Subtract the magnitudes: 11 – 01 = 10
11 > 01, so the resulting sign bit is 1 (i.e., the result is negative)
Therefore, 011 + 111 = 110

These operations are fairly awkward, especially when they must be implemented in
hardware.

Two’s Complement Binary: This binary representation generally provides the best, most
elegant solution. All 2N quantization levels can be used, and arithmetic is straightforward.
To find the two’s complement binary representation:

• For positive numbers, two’s complement is simply the standard, unsigned binary
representation with the sign bit set to zero.

• For negative numbers and N bits, the two’s complement representation is
2N

10 – |number10|

Example: -210 represented with 3 bits
23

10 – 210 = 610
Therefore, 110 = -210 in two’s complement with 3 bits

Fortunately, there’s a much simpler algorithm for arriving at this answer:

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 5

two’s complement representation = one’s complement + 1,
where the one’s complement representation for negative values is found by flipping all
the bits from the unsigned binary representation of the absolute value of the number.

Example: -210 represented with 3 bits

210 = 010  flip the bits  101  add 1  110

Harder example: -610 with N=8 bits
610 = 0000 0110  flip  1111 1001  add 1  1111 1010

So, for 3 bits the two’s complement binary numbers and their decimal equivalents are:

011 = 310
010 = 210
001 = 110
000 = 010
111 = -110
110 = -210
101 = -310
100 = -410

Addition of two’s complement numbers follows the usual addition rules. There is no
difficulty provided that there is no overflow (i.e., the numbers add to more than 310) or
underflow (i.e., the numbers add to less than -310). However, those are issues for any
finite precision representation. There are only so many values that can be represented
with a finite number of bits.

Using two’s complement binary, the uniform, midstep 3-bit quantizer has the following
representations for each quantization level:

Question: What value of vq(t) is represented by 110? What range of values of v(t)
corresponds to 110?

Sampling

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 6

We still don’t quite have our signal data in a form that a computer can store and process.
Currently, we have continuous-time signals that are defined over all values of t, while
computers are designed to work with sequences of numbers. The solution is to sample
our signal by only keeping values every T seconds.

t

v(t)

v[-1] v[0]
v[1]

v[2]=v(2T)

v[3]

v[4]

v[5]

T 2T 3T
4T

5T-T 0

The function v[n] = v(nT) is known as a discrete-time signal and is only defined for
integer values of n. We will further distinguish discrete-time signals from continuous-
time signals by using square brackets (i.e., [.]) around their time variable. Note that if it
has not been quantized, then a discrete-time signal is allowed to take on a continuous
range of values.

Going from v(t) to v[n] is a process called sampling. As long as v(t) is sampled quickly
enough and does not vary too quickly, then it can easily be reconstructed from v[n].
However, sampling does introduce some ambiguity into the representation of the signal,
as there are always an infinite number of signals that will have those same samples.

t

v(t)

v[-1] v[0]
v[1]

v[2]=v(2T)

v[3]

v[4]

v[5]

T 2T 3T
4T

5T-T 0

s(t)

Given the samples v[n], most people would choose a signal similar to the smooth, slowly
varying v(t) as the continuous-time signal that generated those samples. However, that
signal reconstruction is never unique, and s(t) clearly would generate the same v[n] when
sampled every T seconds. However, for a signal that varies as quickly as s(t), we can also
reasonably assume that samples need to be taken more often to get a reliable
reconstruction. In fact, reconstruction systems always pick the lowest energy signal (i.e.,
the signal with the least variability) that matches the samples.

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 7

The two key questions regarding sampled signals are:

• How often do we have to sample a signal so that we can reconstruct it?
• Given the signal has been sampled fast enough, how do we reconstruct it?

With regards to the first question, the answer is that the sampling rate can be surprisingly
low. Formally, the sampling frequency, 1/T, only has to be more than twice the highest
frequency of the signal. If we consider a simple signal such as a sinusoid, this sampling
rate is just slightly more than 2 samples per period.

Example: The sampling rate for the music on a standard audio CD is 44.1 kHz, or
44,100 samples per second. Consequently, the highest frequency contained in
CD-quality music is approximately 22kHz. (In practice the sampling frequency is
always somewhat greater than twice the highest frequency to account for real
world limitations in the sampling and reconstruction process.)

Signal reconstruction is also a fairly simple operation achieved primarily through a
process known as lowpass filtering. Lowpass filtering removes the faster varying
components of the sampled signal while preserving the parts that change more slowly
(i.e., that are of ‘low frequency’). Although this result may not be intuitive, for a
signal that has been sampled appropriately, retention of these low frequency
components is all that is required for reconstruction of the original signal.

Scaling

As we’ve seen, quantizers assume an input signal over the range vmin to vmax. Best
results are achieved when the input signal is scaled to match the input range of the
quantizer as closely as possible. If the signal’s range is too small, then we are not
taking full advantage of the quantizer’s dynamic range. Consider the extreme case of
an input signal that falls entirely between −Δ/2 and Δ/2. A midstep quantizer would
completely eliminate this signal, since all of the signal’s quantized values would map
to zero. If the signal’s range is too large, then values larger than vmax or smaller than
vmin would be clipped to fall between vmin and vmax. If the signal has values falling
considerably outside the quantizer’s range, then distortions significantly larger than
Δ/2 can occur during quantization.

Scaling is also essential when programming the LEGO NXT such that the output hub
from one sensor block feeds one of the input hubs of another sensor block. If the
output data falls outside the range of the data hub it is connected to, then the input
hub will either ignore the data value or change it to a value within its specified range.
Quite likely, neither action is what the programmer intended when connecting these
blocks.

As an example, consider programming your tribot to follow a dark line on a white
background. As part of a line-following algorithm, you might want your tribot to turn
left in response to a low light intensity reading (i.e., away from the black line) and to

Intro to ECE Design
Drs. Butera/Williams Module: Digital Signals/Representations

2008, Douglas B. Williams and Robert J. Butera, Jr. Page 8

turn right in response to high light intensity levels (i.e., away from the white
background).

The NXT’s light sensor provides light intensity measures ranging from 0 (completely
dark) to 100 (very bright). The steering input for the NXT’s Move block accepts
inputs from -100 (turn sharply left) to +100 (turn sharply right). Let’s scale the light
intensity data to match the range expected by the Move block’s steering input. (Note:
for several reasons this approach is not quite what you should do for a good line
following algorithm, but you will learn more about that in the lab covering the light
sensor.)

A simple scaling technique will take the input intensity reading, i, and change it to s
= ai + b for some constants a and b. Since we have 2 unknowns, we only need two
equations to specify the constants. For x = 0, we want the steering s to be -100:

-100 = a(0) + b
For x = 100, we want the steering to be 100:

100 = a(100) + b
Therefore, a = 2 and b = -100 to give s = 2i – 100.

Questions:

1) What value of s corresponds to the tribot moving in a straight line? What
is the corresponding light intensity reading? Where would this reading
place the light sensor relative to the black line?

2) What should a and b be if you want to
• reverse the steering (i.e., dark  turn right and bright  turn left)?
• use less extreme steering such that -50 ≤ y ≤ 50?

Summary

The complete system for sampling and quantizing a continuous-time signal is commonly
represented as an analog-digital, or A/D, converter.

A/D
v(t) vq[n]

Continuous-time
Signal

Analog-Digital
Converter

Discrete-time
Signal

(N bits/sample)

Despite the sampling and quantization, where almost the entire original signal is thrown
away, v(t) can still be reconstructed very closely. All of us have had experience with CD
quality music that consists of 44,100 samples/second and 16 bits/sample but exhibits very
little distortion when compared to classic analog recording techniques. ECE 2025
(Introduction to Signal Processing) covers these topics in much more detail.

